32 Commits

Author SHA1 Message Date
c293c6c809 container.array: Fix assigning non-copyable values
Fix #59.
2018-12-18 05:37:52 +01:00
e93898d837 Update dmd to 2.083.1 2018-12-17 18:04:36 +01:00
49d7452b33 Make containers work with non-copyable elements
It is the first step. The containers can be at least created with
non-copyable structs without compilation errors now.
Fix #69.
2018-11-24 06:25:55 +01:00
884dc30953 Fix emplacing POD structs 2018-11-23 13:36:31 +01:00
e67a05138e range.primitive: Support non copyable elements
... in all ranges.
2018-11-19 21:37:58 +01:00
7585bf59e7 Add test.stub. Fix #51 2018-11-18 06:32:10 +01:00
0a121d9d19 Disable length when taking from a lengthless range
Fix #79.
2018-11-13 08:29:51 +01:00
9e6f5c3105 Add algorithm.mutation.rotate 2018-11-12 07:54:52 +01:00
3f66782368 Add support for DMD 2.083.0 2018-11-11 07:27:25 +01:00
3c8f6e3435 Merge remote-tracking branch 'n8sh/take-slice' 2018-11-07 07:08:52 +01:00
ee8b7ef719 Merge remote-tracking branch 'retro-retro' 2018-11-06 16:59:57 +01:00
6b22cd60df take(take(range,...),n) is take(range, n) and use slicing in take like in takeExactly
Also take!R is the same as takeExactly!R when isInfinite!R.
2018-11-05 22:49:10 -05:00
c290c85088 retro(retro(range)) is range 2018-11-05 18:43:58 -05:00
65e2e344df Use inout in tanya.range.array functions
This is to reduce distinct generated functions in final executable.
Also add `scope` and `return` to function parameters.
2018-11-05 16:40:48 -05:00
184d307e40 Add range primitive sameHead 2018-11-04 06:31:38 +01:00
8aec781e2a memory.op.equal: Fix parameter documentation 2018-10-30 12:57:09 +01:00
1e46109e50 algorithm.mutation.destroyAll: New
Fix #71.
2018-10-29 11:14:33 +01:00
64ceb0330c Merge pull request #74 from n8sh/128-bit-fnv
Add FNV constants for size_t == ucent
2018-10-25 20:05:21 +02:00
b230685595 Add FNV constants for size_t == ucent 2018-10-25 07:07:29 -04:00
ff58b5e81c Add algorithm.mutation.initializeAll 2018-10-24 08:14:15 +02:00
373a192b3a Make hasLvalueElements work with non-copyable 2018-10-22 08:39:38 +02:00
4e8c9bd28f Use new __traits(isZeroInit) to check for a null initializer at compile time instead of runtime 2018-10-21 18:52:02 -04:00
3b5709821a Add algorithm.mutation.uninitializedFill 2018-10-20 10:42:01 +02:00
a04a04bb96 conv.emplace: Don't call a destructor
Don't call the destructor on uninitialized elements.
2018-10-14 11:30:02 +02:00
d0d682ca65 Update dmd to 2.082.1, Update GDC .gitignore 2018-10-12 19:57:49 +02:00
6d01680685 conv.emplace: Fix emplacing structs w/o this() 2018-10-08 17:51:59 +02:00
4f9927a8c3 Add algorithm.mutation.fill() 2018-10-06 16:00:08 +02:00
a8b18d7603 Deprecate Entropy (leaving platform sources alone)
Also introduces unavoidable breaking change in EntropySource interface:
poll() returns Option!ubyte instead of Nullable.
2018-10-05 13:23:57 +02:00
9364112690 net.ip: Parse embedded Ipv4. Fix #64 2018-10-03 20:49:14 +02:00
772e87739c Replace memory.op.cmp with optimized equal version
Deprecate cmp.
Fix #68.
2018-10-02 08:55:29 +02:00
2a90a812db Add algorithm.searching.count 2018-09-30 15:25:10 +02:00
e68fcc3a38 Remove code deprecated in 0.11.2 and earlier
- conv.to!String
- meta.metafunction.Tuple
- range.adapter.take
- range.adapter.takeExactly
- range.primitive: put()-ting input range into an output one
2018-09-29 09:00:43 +02:00
34 changed files with 1767 additions and 1084 deletions

2
.gitignore vendored
View File

@ -10,7 +10,7 @@ dub.selections.json
__test__*__
__test__*__.core
/tanya-test-*
/dub_platform_probe-*
/dub_platform_probe[_-]*
/docs/
/docs.json

View File

@ -7,19 +7,26 @@ os:
language: d
d:
- dmd-2.082.0
- dmd-2.081.2
- dmd-2.083.1
- dmd-2.082.1
env:
global:
- LATEST=2.083.1
matrix:
- ARCH=x86_64
- ARCH=x86
matrix:
include:
- name: "D-Scanner"
d: dmd-2.082.0
env: DSCANNER=0.5.10
- name: D-Scanner
d: dmd-$LATEST
env: DSCANNER=0.5.11
os: linux
- name: DDoc
d: dmd-$LATEST
env: DDOC=true
os: linux
addons:
@ -28,13 +35,15 @@ addons:
- gcc-multilib
before_script:
- if [ "`$DC --version | head -n 1 | grep 'v2.082.0'`" ] &&
[ -z "$DSCANNER" ]; then
- if [ "`$DC --version | head -n 1 | grep v$LATEST`" ] &&
[ -z "$DSCANNER$DDOC" ]; then
export UNITTEST="unittest-cov";
fi
script:
- if [ -z "$DSCANNER" ]; then
- if [ -n "$DDOC" ]; then
dub build -b ddox --compiler=$DC;
elif [ -z "$DSCANNER" ]; then
dub test -b ${UNITTEST:-unittest} --arch=$ARCH --compiler=$DC;
else
dub fetch dscanner --version=$DSCANNER;

View File

@ -173,10 +173,10 @@ parameter is used)
### Supported compilers
| DMD | GCC |
|:-------:|:------:|
| 2.082.0 | gdc-8 |
| 2.081.2 | gdc-7 |
| DMD | GCC |
|:-------:|:---------------:|
| 2.083.1 | gdc-8 (2.081.2) |
| 2.082.1 | gdc-7 (2.081.2) |
### Release management

View File

@ -4,16 +4,16 @@ os: Visual Studio 2015
environment:
matrix:
- DC: dmd
DVersion: 2.082.0
DVersion: 2.083.1
arch: x64
- DC: dmd
DVersion: 2.082.0
DVersion: 2.083.1
arch: x86
- DC: dmd
DVersion: 2.081.2
DVersion: 2.082.1
arch: x64
- DC: dmd
DVersion: 2.081.2
DVersion: 2.082.1
arch: x86
skip_tags: true

View File

@ -6,9 +6,9 @@ rule archive
build abs.o: gas x64/linux/math/abs.S
build log.o: gas x64/linux/math/log.S
build cmp.o: gas x64/linux/memory/cmp.S
build equal.o: gas x64/linux/memory/equal.S
build fill.o: gas x64/linux/memory/fill.S
build copy.o: gas x64/linux/memory/copy.S
build syscall.o: gas x64/linux/syscall.S
build tanya.a: archive syscall.o copy.o fill.o cmp.o log.o abs.o
build tanya.a: archive syscall.o copy.o fill.o equal.o log.o abs.o

View File

@ -1,20 +1,19 @@
.text
/*
* cmpMemory.
* equalMemory.
*
* rdi - r1 length
* rsi - r1 data.
* rdx - r2 length.
* rcx - r2 data.
*/
.globl _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi
.type _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi, @function
_D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi:
.globl _D5tanya6memory2op11equalMemoryFNaNbNixAvxQdZb
.type _D5tanya6memory2op11equalMemoryFNaNbNixAvxQdZb, @function
_D5tanya6memory2op11equalMemoryFNaNbNixAvxQdZb:
// Compare the lengths
cmp %rdx, %rdi
jl less
jg greater
jne not_equal
mov %rcx, %rdi
@ -26,8 +25,7 @@ _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi:
naligned:
cmpsb
jl less
jg greater
jne not_equal
dec %rdx
test $0x07, %edi
@ -38,8 +36,7 @@ _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi:
shr $0x03, %rcx
repe cmpsq
jl less
jg greater
jne not_equal
and $0x07, %edx
jz equal
@ -49,19 +46,14 @@ _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi:
cmp $0x0, %rcx
repe cmpsb
jl less
jg greater
jne not_equal
equal:
mov $0x01, %rax // Return 1
jmp end
not_equal:
xor %rax, %rax // Return 0
jmp end
greater:
mov $0x01, %rax
jmp end
less:
mov $-0x01, %rax
end:
ret

View File

@ -15,8 +15,8 @@
module tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.math : isNaN;
import tanya.memory.op;
import tanya.math;
static import tanya.memory.op;
import tanya.meta.metafunction;
import tanya.meta.trait;
import tanya.meta.transform;
@ -296,7 +296,7 @@ if (allSatisfy!(isInputRange, R1, R2)
&& is(R1 == R2)
&& __traits(isPOD, ElementType!R1))
{
return cmp(r1, r2) == 0;
return tanya.memory.op.equal(r1, r2);
}
else
{

View File

@ -3,13 +3,13 @@
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Range adapters.
* Iteration algorithms.
*
* A range adapter wraps another range and modifies the way, how the original
* These algorithms wrap other ranges and modify the way, how the original
* range is iterated, or the order in which its elements are accessed.
*
* All adapters are lazy algorithms, they request the next element of the
* adapted range on demand.
* All algorithms in this module are lazy, they request the next element of the
* original range on demand.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
@ -23,8 +23,9 @@ module tanya.algorithm.iteration;
import tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.range;
version (unittest) import tanya.test.stub;
private mixin template Take(R, bool exactly)
private struct Take(R, bool exactly)
{
private R source;
size_t length_;
@ -73,13 +74,16 @@ private mixin template Take(R, bool exactly)
}
else
{
return length == 0 || this.source.empty;
return this.length_ == 0 || this.source.empty;
}
}
@property size_t length()
static if (exactly || hasLength!R)
{
return this.length_;
@property size_t length()
{
return this.length_;
}
}
static if (hasAssignableElements!R)
@ -187,6 +191,22 @@ private mixin template Take(R, bool exactly)
}
}
}
static if (!exactly && hasSlicing!R)
{
auto opSlice(size_t i, size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
do
{
return typeof(this)(this.source[i .. j], length);
}
}
version (unittest) static assert(isInputRange!Take);
}
/**
@ -212,25 +232,34 @@ private mixin template Take(R, bool exactly)
auto take(R)(R range, size_t n)
if (isInputRange!R)
{
static struct Take
static if (hasSlicing!R && hasLength!R)
{
mixin .Take!(R, false);
static if (hasSlicing!R)
{
auto opSlice(size_t i, size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
do
{
return typeof(this)(this.source[i .. j], length);
}
}
if (range.length <= n)
return range;
else
return range[0 .. n];
}
// Special case: take(take(...), n)
else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
{
if (n > range.length_)
n = range.length_;
static if (exact)
// `take(takeExactly(r, n0), n)` is rewritten `takeExactly(r, min(n0, n))`.
return Take!(RRange, true)(range.source, n);
else
// `take(take(r, n0), n)` is rewritten `take(r, min(n0, n))`.
return Take!(RRange, false)(range.source, n);
}
else static if (isInfinite!R)
{
// If the range is infinite then `take` is the same as `takeExactly`.
return Take!(R, true)(range, n);
}
else
{
return Take!(R, false)(range, n);
}
return Take(range, n);
}
///
@ -290,6 +319,18 @@ if (isInputRange!R)
assert(t.empty);
}
// length is unknown when taking from a range without length
@nogc nothrow pure @safe unittest
{
static struct R
{
mixin InputRangeStub;
}
auto actual = take(R(), 100);
static assert(!hasLength!(typeof(actual)));
}
/**
* Takes exactly $(D_PARAM n) elements from $(D_PARAM range).
*
@ -315,13 +356,15 @@ if (isInputRange!R)
{
return range[0 .. n];
}
// Special case: takeExactly(take(range, ...), n) is takeExactly(range, n)
else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
{
assert(n <= range.length_);
return Take!(RRange, true)(range.source, n);
}
else
{
static struct TakeExactly
{
mixin Take!(R, true);
}
return TakeExactly(range, n);
return Take!(R, true)(range, n);
}
}
@ -408,6 +451,114 @@ if (isInputRange!R)
}
}
// Reverse-access-order range returned by `retro`.
private struct Retro(Range)
{
Range source;
@disable this();
private this(Range source)
{
this.source = source;
}
Retro save()
{
return this;
}
@property auto ref front()
in (!empty)
{
return this.source.back;
}
void popFront()
in (!empty)
{
this.source.popBack();
}
@property auto ref back()
in (!empty)
{
return this.source.front;
}
void popBack()
in (!empty)
{
this.source.popFront();
}
@property bool empty()
{
return this.source.empty;
}
static if (hasLength!Range)
{
@property size_t length()
{
return this.source.length;
}
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
auto ref opIndex(size_t i)
in (i < length)
{
return this.source[$ - ++i];
}
}
static if (hasAssignableElements!Range)
{
@property void front(ref ElementType!Range value)
in (!empty)
{
this.source.back = value;
}
@property void front(ElementType!Range value)
in (!empty)
{
this.source.back = move(value);
}
@property void back(ref ElementType!Range value)
in (!empty)
{
this.source.front = value;
}
@property void back(ElementType!Range value)
in (!empty)
{
this.source.front = move(value);
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
void opIndexAssign(ref ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = value;
}
void opIndexAssign(ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = move(value);
}
}
}
version (unittest) static assert(isBidirectionalRange!Retro);
}
/**
* Iterates a bidirectional range backwards.
*
@ -420,115 +571,14 @@ if (isInputRange!R)
*
* Returns: Bidirectional range with the elements order reversed.
*/
auto retro(Range)(Range range)
auto retro(Range)(return Range range)
if (isBidirectionalRange!Range)
{
static struct Retro
{
Range source;
@disable this();
private this(Range source)
{
this.source = source;
}
Retro save()
{
return this;
}
@property auto ref front()
in (!empty)
{
return this.source.back;
}
void popFront()
in (!empty)
{
this.source.popBack();
}
@property auto ref back()
in (!empty)
{
return this.source.front;
}
void popBack()
in (!empty)
{
this.source.popFront();
}
@property bool empty()
{
return this.source.empty;
}
static if (hasLength!Range)
{
@property size_t length()
{
return this.source.length;
}
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
auto ref opIndex(size_t i)
in (i < length)
{
return this.source[$ - ++i];
}
}
static if (hasAssignableElements!Range)
{
@property void front(ref ElementType!Range value)
in (!empty)
{
this.source.back = value;
}
@property void front(ElementType!Range value)
in (!empty)
{
this.source.back = move(value);
}
@property void back(ref ElementType!Range value)
in (!empty)
{
this.source.front = value;
}
@property void back(ElementType!Range value)
in (!empty)
{
this.source.front = move(value);
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
void opIndexAssign(ref ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = value;
}
void opIndexAssign(ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = move(value);
}
}
}
}
return Retro(range);
// Special case: retro(retro(range)) is range
static if (is(Range == Retro!RRange, RRange))
return range.source;
else
return Retro!Range(range);
}
///

View File

@ -14,10 +14,12 @@
*/
module tanya.algorithm.mutation;
import tanya.conv;
static import tanya.memory.op;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range;
version (unittest) import tanya.test.stub;
private void deinitialize(bool zero, T)(ref T value)
{
@ -88,13 +90,20 @@ do
static if (hasElaborateCopyConstructor!T || hasElaborateDestructor!T)
{
if (typeid(T).initializer().ptr is null)
static if (__VERSION__ >= 2083) // __traits(isZeroInit) available.
{
deinitialize!true(source);
deinitialize!(__traits(isZeroInit, T))(source);
}
else
{
deinitialize!false(source);
if (typeid(T).initializer().ptr is null)
{
deinitialize!true(source);
}
else
{
deinitialize!false(source);
}
}
}
}
@ -388,3 +397,296 @@ do
assert(copy(source[], target).value == 5);
}
/**
* Fills $(D_PARAM range) with $(D_PARAM value).
*
* Params:
* Range = Input range type.
* Value = Filler type.
* range = Input range.
* value = Filler.
*/
void fill(Range, Value)(Range range, auto ref Value value)
if (isInputRange!Range && isAssignable!(ElementType!Range, Value))
{
static if (!isDynamicArray!Range && is(typeof(range[] = value)))
{
range[] = value;
}
else
{
for (; !range.empty; range.popFront())
{
range.front = value;
}
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
int[6] actual;
const int[6] expected = [1, 1, 1, 1, 1, 1];
fill(actual[], 1);
assert(equal(actual[], expected[]));
}
// [] is called where possible
@nogc nothrow pure @system unittest
{
static struct Slice
{
bool* slicingCalled;
int front() @nogc nothrow pure @safe
{
return 0;
}
void front(int) @nogc nothrow pure @safe
{
}
void popFront() @nogc nothrow pure @safe
{
}
bool empty() @nogc nothrow pure @safe
{
return true;
}
void opIndexAssign(int) @nogc nothrow pure @safe
{
*this.slicingCalled = true;
}
}
bool slicingCalled;
auto range = Slice(&slicingCalled);
fill(range, 0);
assert(slicingCalled);
}
/**
* Fills $(D_PARAM range) with $(D_PARAM value) assuming the elements of the
* $(D_PARAM range) aren't initialized.
*
* Params:
* Range = Input range type.
* Value = Initializer type.
* range = Input range.
* value = Initializer.
*/
void uninitializedFill(Range, Value)(Range range, auto ref Value value)
if (isInputRange!Range && hasLvalueElements!Range
&& isAssignable!(ElementType!Range, Value))
{
static if (hasElaborateDestructor!(ElementType!Range))
{
for (; !range.empty; range.popFront())
{
ElementType!Range* p = &range.front;
emplace!(ElementType!Range)(cast(void[]) (p[0 .. 1]), value);
}
}
else
{
fill(range, value);
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
int[6] actual = void;
const int[6] expected = [1, 1, 1, 1, 1, 1];
uninitializedFill(actual[], 1);
assert(equal(actual[], expected[]));
}
/**
* Initializes all elements of the $(D_PARAM range) assuming that they are
* uninitialized.
*
* Params:
* Range = Input range type
* range = Input range.
*/
void initializeAll(Range)(Range range) @trusted
if (isInputRange!Range && hasLvalueElements!Range)
{
import tanya.memory.op : copy, fill;
alias T = ElementType!Range;
static if (__VERSION__ >= 2083
&& isDynamicArray!Range
&& __traits(isZeroInit, T))
{
fill!0(range);
}
else
{
static immutable init = T.init;
for (; !range.empty; range.popFront())
{
copy((&init)[0 .. 1], (&range.front)[0 .. 1]);
}
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
int[2] actual = void;
const int[2] expected = [0, 0];
initializeAll(actual[]);
assert(equal(actual[], expected[]));
}
@nogc nothrow pure @safe unittest
{
NonCopyable[] nonCopyable;
initializeAll(nonCopyable);
}
/**
* Destroys all elements in the $(D_PARAM range).
*
* This function has effect only if the element type of $(D_PARAM Range) has
* an elaborate destructor, i.e. it is a $(D_PSYMBOL struct) with an explicit
* or generated by the compiler destructor.
*
* Params:
* Range = Input range type.
* range = Input range.
*/
void destroyAll(Range)(Range range)
if (isInputRange!Range && hasLvalueElements!Range)
{
static if (hasElaborateDestructor!(ElementType!Range))
{
foreach (ref e; range)
{
destroy(e);
}
}
}
///
@nogc nothrow pure @trusted unittest
{
static struct WithDtor
{
private size_t* counter;
~this() @nogc nothrow pure
{
if (this.counter !is null)
{
++(*this.counter);
}
}
}
size_t counter;
WithDtor[2] withDtor = [WithDtor(&counter), WithDtor(&counter)];
destroyAll(withDtor[]);
assert(counter == 2);
}
/**
* Rotates the elements of a union of two ranges.
*
* Performs a left rotation on the given ranges, as if it would be a signle
* range, so that [`front.front`, `back.front`$(RPAREN) is a valid range, that
* is $(D_PARAM back) would continue $(D_PARAM front).
*
* The elements are moved so, that the first element of $(D_PARAM back) becomes
* the first element of $(D_PARAM front) without changing the relative order of
* their elements.
*
* Params:
* Range = Range type.
* front = Left half.
* back = Right half.
*/
void rotate(Range)(Range front, Range back)
if (isForwardRange!Range && hasSwappableElements!Range)
{
auto next = back.save();
while (!front.empty && !next.empty && !sameHead(front, next))
{
swap(front.front, next.front);
front.popFront();
next.popFront();
if (next.empty)
{
next = back.save();
}
else if (front.empty)
{
front = back.save();
back = next.save();
}
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[7] expected = [1, 2, 3, 4, 5, 6, 7];
int[7] actual = [5, 6, 3, 4, 1, 2, 7];
rotate(actual[0 .. 2], actual[4 .. 6]);
assert(equal(actual[], expected[]));
}
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[5] expected = [1, 2, 3, 4, 5];
int[5] actual = [4, 5, 1, 2, 3];
rotate(actual[0 .. 2], actual[2 .. $]);
assert(equal(actual[], expected[]));
}
// Doesn't cause an infinite loop if back is shorter than the front
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[5] expected = [1, 2, 3, 4, 5];
int[5] actual = [3, 4, 5, 1, 2];
rotate(actual[0 .. 3], actual[3 .. $]);
assert(equal(actual[], expected[]));
}
// Doesn't call .front on an empty front
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[2] expected = [2, 8];
int[2] actual = expected;
rotate(actual[0 .. 0], actual[]);
assert(equal(actual[], expected[]));
}

View File

@ -0,0 +1,78 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Searching algorithms.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/algorithm/searching.d,
* tanya/algorithm/searching.d)
*/
module tanya.algorithm.searching;
import tanya.range;
/**
* Counts the elements in an input range.
*
* If $(D_PARAM R) has length, $(D_PSYMBOL count) returns it, otherwise it
* iterates over the range and counts the elements.
*
* Params:
* R = Input range type.
* range = Input range.
*
* Returns: $(D_PARAM range) length.
*/
size_t count(R)(R range)
if (isInputRange!R)
{
static if (hasLength!R)
{
return range.length;
}
else
{
size_t counter;
for (; !range.empty; range.popFront(), ++counter)
{
}
return counter;
}
}
///
@nogc nothrow pure @safe unittest
{
int[3] array;
assert(count(array) == 3);
}
@nogc nothrow pure @safe unittest
{
static struct Range
{
private int counter = 3;
int front() const @nogc nothrow pure @safe
{
return this.counter;
}
void popFront() @nogc nothrow pure @safe
{
--this.counter;
}
bool empty() const @nogc nothrow pure @safe
{
return this.counter == 0;
}
}
Range range;
assert(count(range) == 3);
}

View File

@ -15,19 +15,15 @@
module tanya.container.array;
import core.checkedint;
import std.algorithm.mutation : bringToFront,
copy,
fill,
initializeAll,
uninitializedFill;
import std.meta;
import tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.exception;
import tanya.functional;
import tanya.memory;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.primitive;
import tanya.range;
version (unittest) import tanya.test.stub;
/**
* Random-access range for the $(D_PSYMBOL Array).
@ -299,7 +295,9 @@ struct Array(T)
* init = Initial value to fill the array with.
* allocator = Allocator.
*/
this(size_t len, T init, shared Allocator allocator = defaultAllocator)
this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{
this(allocator);
reserve(len);
@ -354,15 +352,19 @@ struct Array(T)
(() @trusted => allocator.deallocate(slice(capacity)))();
}
/**
* Copies the array.
*/
this(this)
static if (isCopyable!T)
{
auto buf = slice(this.length);
this.length_ = capacity_ = 0;
this.data = null;
insertBack(buf);
this(this)
{
auto buf = slice(this.length);
this.length_ = capacity_ = 0;
this.data = null;
insertBack(buf);
}
}
else
{
@disable this(this);
}
/**
@ -419,27 +421,19 @@ struct Array(T)
*/
@property void length(size_t len) @trusted
{
if (len == length)
{
return;
}
else if (len > length)
if (len > length)
{
reserve(len);
initializeAll(this.data[length_ .. len]);
}
else
{
static if (hasElaborateDestructor!T)
{
const T* end = this.data + length_ - 1;
for (T* e = this.data + len; e != end; ++e)
{
destroy(*e);
}
}
destroyAll(this.data[len .. this.length_]);
}
if (len != length)
{
length_ = len;
}
length_ = len;
}
///
@ -817,10 +811,11 @@ struct Array(T)
}
do
{
const oldLen = length;
const offset = r.end - this.data;
const oldLength = length;
const after = r.end - this.data;
const inserted = insertBack(el);
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]);
rotate(this.data[after .. oldLength], this.data[oldLength .. length]);
return inserted;
}
@ -859,7 +854,7 @@ struct Array(T)
{
moveBack(el);
}
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]);
rotate(this.data[offset .. oldLen], this.data[oldLen .. length]);
return 1;
}
@ -915,7 +910,7 @@ struct Array(T)
{
moveBack(el);
}
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]);
rotate(this.data[offset .. oldLen], this.data[oldLen .. length]);
return 1;
}
@ -1006,7 +1001,7 @@ struct Array(T)
*/
ref T opIndexAssign(E : T)(auto ref E value, size_t pos)
{
return opIndex(pos) = value;
return opIndex(pos) = forward!value;
}
/// ditto
@ -1040,7 +1035,7 @@ struct Array(T)
}
/// ditto
Range opIndexAssign(Range value)
Range opIndexAssign()(Range value)
{
return opSliceAssign(value, 0, length);
}
@ -1334,7 +1329,7 @@ struct Array(T)
}
/// ditto
Range opSliceAssign(Range value, size_t i, size_t j) @trusted
Range opSliceAssign()(Range value, size_t i, size_t j) @trusted
in
{
assert(i <= j);
@ -1588,15 +1583,10 @@ struct Array(T)
assert(v7[].equal(v8[]));
}
// Destructor can destroy empty arrays
@nogc nothrow pure @safe unittest
{
struct SWithDtor
{
~this() @nogc nothrow pure @safe
{
}
}
auto v = Array!SWithDtor(); // Destructor can destroy empty arrays.
auto v = Array!WithDtor();
}
@nogc nothrow pure @safe unittest
@ -1607,7 +1597,6 @@ struct Array(T)
A a1, a2;
auto v1 = Array!A([a1, a2]);
// Issue 232: https://issues.caraus.io/issues/232.
static assert(is(Array!(A*)));
}
@ -1692,3 +1681,10 @@ struct Array(T)
}
func(array);
}
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(is(Array!NonCopyable));
static assert(is(typeof({ Array!NonCopyable.init[0] = NonCopyable(); })));
}

View File

@ -20,6 +20,7 @@ import tanya.memory.allocator;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.typecons;
version (unittest) import tanya.test.stub;
package struct SEntry(T)
{
@ -59,12 +60,12 @@ package struct Bucket(K, V = void)
}
BucketStatus status = BucketStatus.empty;
this(ref K key)
this()(ref K key)
{
this.key = key;
}
@property void key(ref K key)
@property void key()(ref K key)
{
this.key() = key;
this.status = BucketStatus.used;
@ -170,7 +171,7 @@ package struct HashArray(alias hasher, K, V = void)
.swap(this.length, data.length);
}
void opAssign(ref typeof(this) that)
void opAssign()(ref typeof(this) that)
{
this.array = that.array;
this.lengthIndex = that.lengthIndex;
@ -326,3 +327,13 @@ package struct HashArray(alias hasher, K, V = void)
return false;
}
}
// Can be constructed with non-copyable key/values
@nogc nothrow pure @safe unittest
{
static assert(is(Bucket!NonCopyable));
static assert(is(Bucket!(NonCopyable, NonCopyable)));
static assert(is(HashArray!((ref NonCopyable) => 0U, NonCopyable)));
static assert(is(HashArray!((ref NonCopyable) => 0U, NonCopyable, NonCopyable)));
}

View File

@ -22,6 +22,7 @@ import tanya.memory;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/**
* Bidirectional range whose element type is a tuple of a key and the
@ -68,7 +69,7 @@ struct Range(T)
return this.dataRange.empty();
}
@property void popFront()
void popFront()
in
{
assert(!empty);
@ -87,7 +88,7 @@ struct Range(T)
while (!empty && dataRange.front.status != BucketStatus.used);
}
@property void popBack()
void popBack()
in
{
assert(!empty);
@ -759,7 +760,7 @@ if (isHashFunction!(hasher, Key))
*
* Returns: The number of the inserted elements with a unique key.
*/
size_t insert(ref KeyValue keyValue)
size_t insert()(ref KeyValue keyValue)
{
auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key);
size_t inserted;
@ -773,7 +774,7 @@ if (isHashFunction!(hasher, Key))
}
/// ditto
size_t insert(KeyValue keyValue)
size_t insert()(KeyValue keyValue)
{
auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key);
size_t inserted;
@ -1197,3 +1198,16 @@ if (isHashFunction!(hasher, Key))
static assert(is(typeof("asdf" in HashTable!(String, int)())));
static assert(is(typeof(HashTable!(String, int)()["asdf"])));
}
// Can have non-copyable keys and elements
@nogc nothrow pure @safe unittest
{
@NonCopyable @Hashable
static struct S
{
mixin StructStub;
}
static assert(is(HashTable!(S, int)));
static assert(is(HashTable!(int, S)));
static assert(is(HashTable!(S, S)));
}

View File

@ -15,7 +15,6 @@
*/
module tanya.container.list;
import std.algorithm.searching;
import tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.container.entry;
@ -24,6 +23,7 @@ import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.array;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/**
* Forward range for the $(D_PSYMBOL SList).
@ -156,8 +156,9 @@ struct SList(T)
* init = Initial value to fill the list with.
* allocator = Allocator.
*/
this(size_t len, T init, shared Allocator allocator = defaultAllocator)
@trusted
this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{
this(allocator);
if (len == 0)
@ -183,7 +184,18 @@ struct SList(T)
/// ditto
this(size_t len, shared Allocator allocator = defaultAllocator)
{
this(len, T.init, allocator);
this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next = next.next;
}
}
///
@ -272,14 +284,18 @@ struct SList(T)
clear();
}
/**
* Copies the list.
*/
this(this)
static if (isCopyable!T)
{
auto list = typeof(this)(this[], this.allocator);
this.head = list.head;
list.head = null;
this(this)
{
auto list = typeof(this)(this[], this.allocator);
this.head = list.head;
list.head = null;
}
}
else
{
@disable this(this);
}
///
@ -513,7 +529,7 @@ struct SList(T)
}
/// ditto
size_t insertBefore(Range r, ref T el) @trusted
size_t insertBefore()(Range r, ref T el) @trusted
in
{
assert(checkRangeBelonging(r));
@ -1121,8 +1137,9 @@ struct DList(T)
* init = Initial value to fill the list with.
* allocator = Allocator.
*/
this(size_t len, T init, shared Allocator allocator = defaultAllocator)
@trusted
this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{
this(allocator);
if (len == 0)
@ -1151,7 +1168,20 @@ struct DList(T)
/// ditto
this(size_t len, shared Allocator allocator = defaultAllocator)
{
this(len, T.init, allocator);
this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next.next.prev = next;
next = next.next;
}
this.tail = next;
}
///
@ -1243,15 +1273,19 @@ struct DList(T)
clear();
}
/**
* Copies the list.
*/
this(this)
static if (isCopyable!T)
{
auto list = typeof(this)(this[], this.allocator);
this.head = list.head;
this.tail = list.tail;
list.head = list .tail = null;
this(this)
{
auto list = typeof(this)(this[], this.allocator);
this.head = list.head;
this.tail = list.tail;
list.head = list .tail = null;
}
}
else
{
@disable this(this);
}
///
@ -1642,7 +1676,7 @@ struct DList(T)
}
/// ditto
size_t insertBefore(Range r, ref T el) @trusted
size_t insertBefore()(Range r, ref T el) @trusted
in
{
assert(checkRangeBelonging(r));
@ -1759,7 +1793,7 @@ struct DList(T)
}
/// ditto
size_t insertAfter(Range r, ref T el) @trusted
size_t insertAfter()(Range r, ref T el) @trusted
in
{
assert(checkRangeBelonging(r));
@ -2356,3 +2390,10 @@ struct DList(T)
assert(!l1.remove(r).empty);
assert(l1 == l2);
}
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(is(SList!NonCopyable));
static assert(is(DList!NonCopyable));
}

View File

@ -22,6 +22,7 @@ import tanya.memory;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/**
* Bidirectional range that iterates over the $(D_PSYMBOL Set)'s values.
@ -67,7 +68,7 @@ struct Range(T)
return this.dataRange.empty();
}
@property void popFront()
void popFront()
in
{
assert(!empty);
@ -86,7 +87,7 @@ struct Range(T)
while (!empty && dataRange.front.status != BucketStatus.used);
}
@property void popBack()
void popBack()
in
{
assert(!empty);
@ -459,7 +460,7 @@ if (isHashFunction!(hasher, T))
*
* Returns: Amount of new elements inserted.
*/
size_t insert(ref T value)
size_t insert()(ref T value)
{
auto e = ((ref v) @trusted => &this.data.insert(v))(value);
if (e.status != BucketStatus.used)
@ -470,7 +471,7 @@ if (isHashFunction!(hasher, T))
return 0;
}
size_t insert(T value)
size_t insert()(T value)
{
auto e = ((ref v) @trusted => &this.data.insert(v))(value);
if (e.status != BucketStatus.used)
@ -773,3 +774,14 @@ if (isHashFunction!(hasher, T))
{
static assert(is(Set!(int, (const ref x) => cast(size_t) x)));
}
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
@NonCopyable @Hashable
static struct S
{
mixin StructStub;
}
static assert(is(Set!S));
}

View File

@ -26,8 +26,6 @@
*/
module tanya.container.string;
import std.algorithm.mutation : bringToFront;
import std.algorithm.searching : count;
import tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.hash.lookup;
@ -1485,6 +1483,8 @@ struct String
///
@nogc pure @safe unittest
{
import tanya.algorithm.searching : count;
auto s = String("Из пословицы слова не выкинешь.");
assert(s.remove(s[5 .. 24]).length == 33);
@ -1530,11 +1530,10 @@ struct String
do
{
const oldLength = length;
const rangeEnd = r.end - this.data;
const after = r.end - this.data;
const inserted = insertBack(el);
auto containerEnd = this.data + oldLength;
bringToFront(ByCodeUnit!char(this, this.data + rangeEnd, containerEnd),
ByCodeUnit!char(this, containerEnd, this.data + length));
rotate(this.data[after .. oldLength], this.data[oldLength .. length]);
return inserted;
}

View File

@ -14,6 +14,7 @@
*/
module tanya.conv;
import tanya.algorithm.mutation;
import tanya.container.string;
import tanya.format;
import tanya.memory;
@ -26,6 +27,7 @@ import tanya.range.primitive;
version (unittest)
{
import tanya.test.assertion;
import tanya.test.stub;
}
/**
@ -161,43 +163,53 @@ do
return result;
}
/// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isPolymorphicType!T && isAggregateType!T)
in
private void initializeOne(T)(ref void[] memory, ref T* result) @trusted
{
assert(memory.length >= T.sizeof);
}
out (result)
{
assert(memory.ptr is result);
}
do
{
auto result = (() @trusted => cast(T*) memory.ptr)();
static if (!hasElaborateAssign!T && isAssignable!T)
{
*result = T.init;
}
else static if (__VERSION__ >= 2083 // __traits(isZeroInit) available.
&& __traits(isZeroInit, T))
{
memory.ptr[0 .. T.sizeof].fill!0;
}
else
{
static const T init = T.init;
copy((cast(void*) &init)[0 .. T.sizeof], memory);
static immutable T init = T.init;
copy((&init)[0 .. 1], memory);
}
}
/// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isPolymorphicType!T && isAggregateType!T)
in(memory.length >= T.sizeof)
out(result; memory.ptr is result)
{
auto result = (() @trusted => cast(T*) memory.ptr)();
static if (Args.length == 0)
{
static assert(is(typeof({ static T t; })),
"Default constructor is disabled");
}
else static if (is(typeof(T(args))))
{
*result = T(args);
initializeOne(memory, result);
}
else static if (is(typeof(result.__ctor(args))))
{
initializeOne(memory, result);
result.__ctor(args);
}
else static if (Args.length == 1 && is(typeof({ T t = args[0]; })))
{
((ref arg) @trusted =>
copy((cast(void*) &arg)[0 .. T.sizeof], memory))(args[0]);
}
else static if (is(typeof({ T t = T(args); })))
{
auto init = T(args);
(() @trusted => moveEmplace(init, *result))();
}
else
{
static assert(false,
@ -245,6 +257,41 @@ do
static assert(is(typeof(emplace!F((void[]).init))));
}
// Can emplace structs without a constructor
@nogc nothrow pure @safe unittest
{
static assert(is(typeof(emplace!WithDtor(null, WithDtor()))));
static assert(is(typeof(emplace!WithDtor(null))));
}
// Doesn't call a destructor on uninitialized elements
@nogc nothrow pure @system unittest
{
static struct SWithDtor
{
private bool canBeInvoked = false;
~this() @nogc nothrow pure @safe
{
assert(this.canBeInvoked);
}
}
void[SWithDtor.sizeof] memory = void;
auto actual = emplace!SWithDtor(memory[], SWithDtor(true));
assert(actual.canBeInvoked);
}
// Initializes structs if no arguments are given
@nogc nothrow pure @safe unittest
{
static struct SEntry
{
byte content;
}
ubyte[1] mem = [3];
assert(emplace!SEntry(cast(void[]) mem[0 .. 1]).content == 0);
}
/**
* Thrown if a type conversion fails.
*/
@ -856,13 +903,6 @@ if (is(Unqual!From == bool) && isNumeric!To && !is(Unqual!To == Unqual!From))
assert(false.to!int == 0);
}
deprecated("Use tanya.format.format instead")
To to(To, From)(auto ref From from)
if (is(Unqual!To == String))
{
return format!"{}"(from);
}
/**
* Converts a stringish range to an integral value.
*

View File

@ -43,7 +43,7 @@ import tanya.algorithm.comparison;
import tanya.container.string;
import tanya.encoding.ascii;
import tanya.math;
import tanya.memory.op;
static import tanya.memory.op;
import tanya.meta.metafunction;
import tanya.meta.trait;
import tanya.meta.transform;
@ -1351,7 +1351,7 @@ do
intSlice.popBack();
}
const begin = buffer.length - intSlice.length;
copy(intSlice, buffer[begin .. $]);
tanya.memory.op.copy(intSlice, buffer[begin .. $]);
exponent = cast(int) (intSlice.length + mismatch);
@ -1388,7 +1388,7 @@ do
char[21] intBuffer;
auto intSlice = integral2String(decimal, intBuffer);
copy(intSlice, buffer);
tanya.memory.op.copy(intSlice, buffer);
exponent = cast(int) intSlice.length;
size_t position = exponent;
@ -1903,7 +1903,7 @@ private char[] errol3(double value,
if (pathologies[middle].representation == bits.integral)
{
exponent = pathologies[middle].exponent;
copy(pathologies[middle].digits, buffer);
tanya.memory.op.copy(pathologies[middle].digits, buffer);
return buffer[0 .. pathologies[middle].digits.length];
}
else if (pathologies[middle].representation < bits.integral)
@ -2054,7 +2054,7 @@ if (isFloatingPoint!T)
{
length = precision + 1;
}
realString[1 .. length].copy(bufferSlice);
tanya.memory.op.copy(realString[1 .. length], bufferSlice);
bufferSlice.popFrontExactly(length - 1);
// Dump the exponent.
@ -2116,7 +2116,7 @@ if (isFloatingPoint!T)
n = precision;
}
fill!'0'(bufferSlice[0 .. n]);
tanya.memory.op.fill!'0'(bufferSlice[0 .. n]);
bufferSlice.popFrontExactly(n);
if ((length + n) > precision)
@ -2124,7 +2124,7 @@ if (isFloatingPoint!T)
length = precision - n;
}
realString[0 .. length].copy(bufferSlice);
tanya.memory.op.copy(realString[0 .. length], bufferSlice);
bufferSlice.popFrontExactly(length);
}
else if (cast(uint) decimalPoint >= length)
@ -2142,7 +2142,7 @@ if (isFloatingPoint!T)
{
n = decimalPoint - n;
fill!'0'(bufferSlice[0 .. n]);
tanya.memory.op.fill!'0'(bufferSlice[0 .. n]);
bufferSlice.popFrontExactly(n);
}
if (precision != 0)
@ -2173,7 +2173,7 @@ if (isFloatingPoint!T)
length = precision + decimalPoint;
}
realString[n .. length].copy(bufferSlice);
tanya.memory.op.copy(realString[n .. length], bufferSlice);
bufferSlice.popFrontExactly(length - n);
}
}

View File

@ -16,6 +16,7 @@ module tanya.hash.lookup;
import tanya.meta.trait;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
private struct FNV
{
@ -29,6 +30,11 @@ private struct FNV
enum ulong offsetBasis = 14695981039346656037UL;
enum ulong prime = 1099511628211UL;
}
else static if (size_t.sizeof == 16)
{
enum size_t offsetBasis = (size_t(0x6c62272e07bb0142UL) << 64) + 0x62b821756295c58dUL;
enum size_t prime = (size_t(1) << 88) + (1 << 8) + 0x3b;
}
else
{
static assert(false, "FNV requires at least 32-bit hash length");
@ -141,14 +147,6 @@ version (unittest)
~ r10!x ~ r10!x ~ r10!x ~ r10!x ~ r10!x;
enum string r500(string x) = r100!x ~ r100!x ~ r100!x ~ r100!x ~ r100!x;
private static struct ToHash
{
size_t toHash() const @nogc nothrow pure @safe
{
return 0;
}
}
private static struct HashRange
{
string fo = "fo";
@ -173,9 +171,9 @@ version (unittest)
{
bool empty_;
@property ToHash front() const @nogc nothrow pure @safe
@property Hashable front() const @nogc nothrow pure @safe
{
return ToHash();
return Hashable();
}
void popFront() @nogc nothrow pure @safe
@ -194,7 +192,7 @@ version (unittest)
@nogc nothrow pure @safe unittest
{
assert(hash(null) == 0);
assert(hash(ToHash()) == 0U);
assert(hash(Hashable()) == 0U);
assert(hash('a') == 'a');
}

View File

@ -14,7 +14,6 @@
*/
module tanya.math.mp;
import std.algorithm.mutation : fill;
import tanya.algorithm.comparison;
import tanya.algorithm.iteration;
import tanya.algorithm.mutation;

View File

@ -15,10 +15,11 @@
module tanya.math.random;
import std.digest.sha;
import std.typecons;
import tanya.memory;
import tanya.typecons;
/// Block size of entropy accumulator (SHA-512).
deprecated
enum blockSize = 64;
/// Maximum amount gathered from the entropy sources.
@ -39,7 +40,7 @@ class EntropyException : Exception
this(string msg,
string file = __FILE__,
size_t line = __LINE__,
Throwable next = null) pure @safe nothrow const @nogc
Throwable next = null) const @nogc nothrow pure @safe
{
super(msg, file, line, next);
}
@ -56,17 +57,17 @@ abstract class EntropySource
/**
* Returns: Minimum bytes required from the entropy source.
*/
@property ubyte threshold() const pure nothrow @safe @nogc;
@property ubyte threshold() const @nogc nothrow pure @safe;
/**
* Returns: Whether this entropy source is strong.
*/
@property bool strong() const pure nothrow @safe @nogc;
@property bool strong() const @nogc nothrow pure @safe;
/**
* Returns: Amount of already generated entropy.
*/
@property ushort size() const pure nothrow @safe @nogc
@property ushort size() const @nogc nothrow pure @safe
{
return size_;
}
@ -76,7 +77,7 @@ abstract class EntropySource
* size = Amount of already generated entropy. Cannot be smaller than the
* already set value.
*/
@property void size(ushort size) pure nothrow @safe @nogc
@property void size(ushort size) @nogc nothrow pure @safe
{
size_ = size;
}
@ -89,9 +90,13 @@ abstract class EntropySource
* to fill the buffer).
*
* Returns: Number of bytes that were copied to the $(D_PARAM output)
* or $(D_PSYMBOL Nullable!ubyte.init) on error.
* or nothing on error.
*
* Postcondition: Returned length is less than or equal to
* $(D_PARAM output) length.
*/
Nullable!ubyte poll(out ubyte[maxGather] output) @nogc;
Option!ubyte poll(out ubyte[maxGather] output) @nogc
out (length; length.isNothing || length.get <= maxGather);
}
version (CRuntime_Bionic)
@ -118,7 +123,7 @@ else version (Solaris)
version (linux)
{
import core.stdc.config : c_long;
extern (C) c_long syscall(c_long number, ...) nothrow @system @nogc;
private extern(C) c_long syscall(c_long number, ...) @nogc nothrow @system;
/**
* Uses getrandom system call.
@ -128,7 +133,7 @@ version (linux)
/**
* Returns: Minimum bytes required from the entropy source.
*/
override @property ubyte threshold() const pure nothrow @safe @nogc
override @property ubyte threshold() const @nogc nothrow pure @safe
{
return 32;
}
@ -136,7 +141,7 @@ version (linux)
/**
* Returns: Whether this entropy source is strong.
*/
override @property bool strong() const pure nothrow @safe @nogc
override @property bool strong() const @nogc nothrow pure @safe
{
return true;
}
@ -149,19 +154,14 @@ version (linux)
* to fill the buffer).
*
* Returns: Number of bytes that were copied to the $(D_PARAM output)
* or $(D_PSYMBOL Nullable!ubyte.init) on error.
* or nothing on error.
*/
override Nullable!ubyte poll(out ubyte[maxGather] output) nothrow @nogc
out (length)
{
assert(length <= maxGather);
}
do
override Option!ubyte poll(out ubyte[maxGather] output) @nogc nothrow
{
// int getrandom(void *buf, size_t buflen, unsigned int flags);
import mir.linux._asm.unistd : NR_getrandom;
auto length = syscall(NR_getrandom, output.ptr, output.length, 0);
Nullable!ubyte ret;
Option!ubyte ret;
if (length >= 0)
{
@ -170,19 +170,11 @@ version (linux)
return ret;
}
}
@nogc @system unittest
{
auto entropy = defaultAllocator.make!Entropy();
ubyte[blockSize] output;
output = entropy.random;
defaultAllocator.dispose(entropy);
}
}
else version (SecureARC4Random)
{
private extern (C) void arc4random_buf(scope void* buf, size_t nbytes) nothrow @nogc @system;
private extern(C) void arc4random_buf(scope void* buf, size_t nbytes)
@nogc nothrow @system;
/**
* Uses arc4random_buf.
@ -192,7 +184,7 @@ else version (SecureARC4Random)
/**
* Returns: Minimum bytes required from the entropy source.
*/
override @property ubyte threshold() const pure nothrow @safe @nogc
override @property ubyte threshold() const @nogc nothrow pure @safe
{
return 32;
}
@ -200,7 +192,7 @@ else version (SecureARC4Random)
/**
* Returns: Whether this entropy source is strong.
*/
override @property bool strong() const pure nothrow @safe @nogc
override @property bool strong() const @nogc nothrow pure @safe
{
return true;
}
@ -213,23 +205,15 @@ else version (SecureARC4Random)
* to fill the buffer).
*
* Returns: Number of bytes that were copied to the $(D_PARAM output)
* or $(D_PSYMBOL Nullable!ubyte.init) on error.
* or nothing on error.
*/
override Nullable!ubyte poll(out ubyte[maxGather] output) nothrow @nogc @safe
override Option!ubyte poll(out ubyte[maxGather] output)
@nogc nothrow @safe
{
(() @trusted => arc4random_buf(output.ptr, output.length))();
return Nullable!ubyte(cast(ubyte) (output.length));
return Option!ubyte(cast(ubyte) (output.length));
}
}
@nogc @system unittest
{
auto entropy = defaultAllocator.make!Entropy();
ubyte[blockSize] output;
output = entropy.random;
defaultAllocator.dispose(entropy);
}
}
else version (Windows)
{
@ -248,22 +232,31 @@ else version (Windows)
BOOL CryptReleaseContext(HCRYPTPROV, ULONG_PTR);
}
private bool initCryptGenRandom(scope ref HCRYPTPROV hProvider) @nogc nothrow @trusted
private bool initCryptGenRandom(scope ref HCRYPTPROV hProvider)
@nogc nothrow @trusted
{
// https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886(v=vs.85).aspx
// For performance reasons, we recommend that you set the pszContainer
// parameter to NULL and the dwFlags parameter to CRYPT_VERIFYCONTEXT
// in all situations where you do not require a persisted key.
// CRYPT_SILENT is intended for use with applications for which the UI cannot be displayed by the CSP.
if (!CryptAcquireContextW(&hProvider, null, null, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_SILENT))
// CRYPT_SILENT is intended for use with applications for which the UI
// cannot be displayed by the CSP.
if (!CryptAcquireContextW(&hProvider,
null,
null,
PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT))
{
if (GetLastError() == NTE_BAD_KEYSET)
if (GetLastError() != NTE_BAD_KEYSET)
{
// Attempt to create default container
if (!CryptAcquireContextA(&hProvider, null, null, PROV_RSA_FULL, CRYPT_NEWKEYSET | CRYPT_SILENT))
return false;
return false;
}
else
// Attempt to create default container
if (!CryptAcquireContextA(&hProvider,
null,
null,
PROV_RSA_FULL,
CRYPT_NEWKEYSET | CRYPT_SILENT))
{
return false;
}
@ -299,7 +292,7 @@ else version (Windows)
/**
* Returns: Minimum bytes required from the entropy source.
*/
override @property ubyte threshold() const pure nothrow @safe @nogc
override @property ubyte threshold() const @nogc nothrow pure @safe
{
return 32;
}
@ -307,7 +300,7 @@ else version (Windows)
/**
* Returns: Whether this entropy source is strong.
*/
override @property bool strong() const pure nothrow @safe @nogc
override @property bool strong() const @nogc nothrow pure @safe
{
return true;
}
@ -320,16 +313,14 @@ else version (Windows)
* to fill the buffer).
*
* Returns: Number of bytes that were copied to the $(D_PARAM output)
* or $(D_PSYMBOL Nullable!ubyte.init) on error.
* or nothing on error.
*/
override Nullable!ubyte poll(out ubyte[maxGather] output) @nogc nothrow @safe
in
override Option!ubyte poll(out ubyte[maxGather] output)
@nogc nothrow @safe
{
assert(hProvider > 0, "hProvider not properly initialized.");
}
do
{
Nullable!ubyte ret;
Option!ubyte ret;
assert(hProvider > 0, "hProvider not properly initialized");
if ((() @trusted => CryptGenRandom(hProvider, output.length, cast(PBYTE) output.ptr))())
{
ret = cast(ubyte) (output.length);
@ -337,15 +328,16 @@ else version (Windows)
return ret;
}
}
}
@nogc @system unittest
{
auto entropy = defaultAllocator.make!Entropy();
ubyte[blockSize] output;
output = entropy.random;
static if (is(PlatformEntropySource)) @nogc @system unittest
{
import tanya.memory.smartref : unique;
defaultAllocator.dispose(entropy);
}
auto source = defaultAllocator.unique!PlatformEntropySource();
assert(source.threshold == 32);
assert(source.strong);
}
/**
@ -360,6 +352,7 @@ else version (Windows)
* defaultAllocator.dispose(entropy);
* ---
*/
deprecated
class Entropy
{
/// Entropy sources.
@ -396,7 +389,7 @@ class Entropy
/**
* Returns: Amount of the registered entropy sources.
*/
@property ubyte sourceCount() const pure nothrow @safe @nogc
@property ubyte sourceCount() const @nogc nothrow pure @safe
{
return sourceCount_;
}
@ -413,7 +406,7 @@ class Entropy
* $(D_PSYMBOL EntropySource)
*/
Entropy opOpAssign(string op)(EntropySource source)
pure nothrow @safe @nogc
@nogc nothrow pure @safe
if (op == "~")
in
{
@ -451,7 +444,7 @@ class Entropy
{
auto outputLength = sources[i].poll(buffer);
if (!outputLength.isNull)
if (!outputLength.isNothing)
{
if (outputLength > 0)
{
@ -502,7 +495,7 @@ class Entropy
*/
protected void update(in ubyte sourceId,
ref ubyte[maxGather] data,
ubyte length) pure nothrow @safe @nogc
ubyte length) @nogc nothrow pure @safe
{
ubyte[2] header;

View File

@ -24,7 +24,7 @@ version (TanyaNative)
extern private void moveMemory(const void[], void[])
pure nothrow @system @nogc;
extern private int cmpMemory(const void[], const void[])
extern private bool equalMemory(const void[], const void[])
pure nothrow @system @nogc;
}
else
@ -43,7 +43,7 @@ version (TanyaNative)
@nogc nothrow pure @safe unittest
{
assert(cmp(null, null) == 0);
assert(equal(null, null));
}
}
@ -91,7 +91,7 @@ do
ubyte[9] source = [1, 2, 3, 4, 5, 6, 7, 8, 9];
ubyte[9] target;
source.copy(target);
assert(cmp(source, target) == 0);
assert(equal(source, target));
}
@nogc nothrow pure @safe unittest
@ -110,7 +110,7 @@ do
ubyte[8] source = [1, 2, 3, 4, 5, 6, 7, 8];
ubyte[8] target;
source.copy(target);
assert(cmp(source, target) == 0);
assert(equal(source, target));
}
}
@ -212,7 +212,7 @@ do
ubyte[6] expected = [ 'a', 'a', 'a', 'a', 'b', 'b' ];
copyBackward(mem[0 .. 4], mem[2 .. $]);
assert(cmp(expected, mem) == 0);
assert(equal(expected, mem));
}
@nogc nothrow pure @safe unittest
@ -221,7 +221,7 @@ do
ubyte[9] r2;
copyBackward(r1, r2);
assert(cmp(r1, r2) == 0);
assert(equal(r1, r2));
}
/**
@ -241,6 +241,7 @@ do
* negative integer if $(D_INLINECODE r2 > r1),
* `0` if $(D_INLINECODE r1 == r2).
*/
deprecated("Use tanya.memory.op.equal() or tanya.algorithm.comparison.compare() instead")
int cmp(const void[] r1, const void[] r2) @nogc nothrow pure @trusted
in
{
@ -249,48 +250,13 @@ in
}
do
{
version (TanyaNative)
import core.stdc.string : memcmp;
if (r1.length > r2.length)
{
return cmpMemory(r1, r2);
return 1;
}
else
{
if (r1.length > r2.length)
{
return 1;
}
return r1.length < r2.length ? -1 : memcmp(r1.ptr, r2.ptr, r1.length);
}
}
///
@nogc nothrow pure @safe unittest
{
ubyte[4] r1 = [ 'a', 'b', 'c', 'd' ];
ubyte[3] r2 = [ 'c', 'a', 'b' ];
assert(cmp(r1[0 .. 3], r2[]) < 0);
assert(cmp(r2[], r1[0 .. 3]) > 0);
assert(cmp(r1, r2) > 0);
assert(cmp(r2, r1) < 0);
}
@nogc nothrow pure @safe unittest
{
ubyte[16] r1 = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
];
ubyte[16] r2 = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
];
assert(cmp(r1, r2) == 0);
assert(cmp(r1[1 .. $], r2[1 .. $]) == 0);
assert(cmp(r1[0 .. $ - 1], r2[0 .. $ - 1]) == 0);
assert(cmp(r1[0 .. 8], r2[0 .. 8]) == 0);
return r1.length < r2.length ? -1 : memcmp(r1.ptr, r2.ptr, r1.length);
}
/**
@ -362,13 +328,13 @@ do
{
const ubyte[9] haystack = ['a', 'b', 'c', 'd', 'e', 'f', 'b', 'g', 'h'];
assert(cmp(find(haystack, 'a'), haystack[]) == 0);
assert(cmp(find(haystack, 'b'), haystack[1 .. $]) == 0);
assert(cmp(find(haystack, 'c'), haystack[2 .. $]) == 0);
assert(cmp(find(haystack, 'd'), haystack[3 .. $]) == 0);
assert(cmp(find(haystack, 'e'), haystack[4 .. $]) == 0);
assert(cmp(find(haystack, 'f'), haystack[5 .. $]) == 0);
assert(cmp(find(haystack, 'h'), haystack[8 .. $]) == 0);
assert(equal(find(haystack, 'a'), haystack[]));
assert(equal(find(haystack, 'b'), haystack[1 .. $]));
assert(equal(find(haystack, 'c'), haystack[2 .. $]));
assert(equal(find(haystack, 'd'), haystack[3 .. $]));
assert(equal(find(haystack, 'e'), haystack[4 .. $]));
assert(equal(find(haystack, 'f'), haystack[5 .. $]));
assert(equal(find(haystack, 'h'), haystack[8 .. $]));
assert(find(haystack, 'i').length == 0);
assert(find(null, 'a').length == 0);
@ -441,10 +407,66 @@ do
///
@nogc nothrow pure @safe unittest
{
assert(cmp(findNullTerminated("abcdef\0gh"), "abcdef") == 0);
assert(cmp(findNullTerminated("\0garbage"), "") == 0);
assert(cmp(findNullTerminated("\0"), "") == 0);
assert(cmp(findNullTerminated("cstring\0"), "cstring") == 0);
assert(equal(findNullTerminated("abcdef\0gh"), "abcdef"));
assert(equal(findNullTerminated("\0garbage"), ""));
assert(equal(findNullTerminated("\0"), ""));
assert(equal(findNullTerminated("cstring\0"), "cstring"));
assert(findNullTerminated(null) is null);
assert(findNullTerminated("abcdef") is null);
}
/**
* Compares two memory areas $(D_PARAM r1) and $(D_PARAM r2) for equality.
*
* Params:
* r1 = First memory block.
* r2 = Second memory block.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) are equal,
* $(D_KEYWORD false) otherwise.
*/
bool equal(const void[] r1, const void[] r2) @nogc nothrow pure @trusted
in
{
assert(r1.length == 0 || r1.ptr !is null);
assert(r2.length == 0 || r2.ptr !is null);
}
do
{
version (TanyaNative)
{
return equalMemory(r1, r2);
}
else
{
return r1.length == r2.length
&& memcmp(r1.ptr, r2.ptr, r1.length) == 0;
}
}
///
@nogc nothrow pure @safe unittest
{
assert(equal("asdf", "asdf"));
assert(!equal("asd", "asdf"));
assert(!equal("asdf", "asd"));
assert(!equal("asdf", "qwer"));
}
// Compares unanligned memory
@nogc nothrow pure @safe unittest
{
ubyte[16] r1 = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
];
ubyte[16] r2 = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
];
assert(equal(r1, r2));
assert(equal(r1[1 .. $], r2[1 .. $]));
assert(equal(r1[0 .. $ - 1], r2[0 .. $ - 1]));
assert(equal(r1[0 .. 8], r2[0 .. 8]));
}

View File

@ -14,7 +14,7 @@
*/
module tanya.memory;
import std.algorithm.mutation : uninitializedFill;
import tanya.algorithm.mutation;
import tanya.conv;
import tanya.exception;
public import tanya.memory.allocator;
@ -341,13 +341,7 @@ if (isPolymorphicType!T)
package(tanya) void[] finalize(T)(ref T[] p)
{
static if (hasElaborateDestructor!(typeof(p[0])))
{
foreach (ref e; p)
{
destroy(e);
}
}
destroyAll(p);
return p;
}

View File

@ -30,6 +30,7 @@ import tanya.exception;
import tanya.memory;
import tanya.meta.trait;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
private template Payload(T)
{
@ -611,19 +612,11 @@ do
@nogc @system unittest
{
static bool destroyed;
static struct F
size_t destroyed;
{
~this() @nogc nothrow @safe
{
destroyed = true;
}
auto rc = defaultAllocator.refCounted!WithDtor(destroyed);
}
{
auto rc = defaultAllocator.refCounted!F();
}
assert(destroyed);
assert(destroyed == 1);
}
/**

View File

@ -238,18 +238,6 @@ struct Pack(Args...)
alias Seq this;
}
deprecated("Use Pack instead")
struct Tuple(Args...)
{
/// Elements in this tuple as $(D_PSYMBOL AliasSeq).
alias Seq = Args;
/// The length of the tuple.
enum size_t length = Args.length;
alias Seq this;
}
///
@nogc nothrow pure @safe unittest
{

View File

@ -1493,6 +1493,8 @@ if (F.length == 1)
}
/**
* Determines whether $(D_PARAM T) defines a symbol $(D_PARAM member).
*
* Params:
* T = Aggregate type.
* member = Symbol name.
@ -2854,6 +2856,46 @@ template hasUDA(alias symbol, alias attr)
static assert(!hasUDA!(a, Attr2));
}
/**
* If $(D_PARAM T) is a type, constructs its default value, otherwise
* $(D_PSYMBOL evalUDA) aliases itself to $(D_PARAM T).
*
* This template is useful when working with UDAs with default parameters,
* i.e. if an attribute can be given as `@Attr` or `@Attr("param")`,
* $(D_PSYMBOL evalUDA) makes `@Attr()` from `@Attr`, but returns
* `@Attr("param")` as is.
*
* $(D_PARAM T) (or its type if it isn't a type already) should have a default
* constructor.
*
* Params:
* T = User Defined Attribute.
*/
alias evalUDA(alias T) = T;
/// ditto
alias evalUDA(T) = Alias!(T());
///
@nogc nothrow pure @safe unittest
{
static struct Length
{
size_t length = 8;
}
@Length @Length(0) int i;
alias uda = AliasSeq!(__traits(getAttributes, i));
alias attr1 = evalUDA!(uda[0]);
alias attr2 = evalUDA!(uda[1]);
static assert(is(typeof(attr1) == Length));
static assert(is(typeof(attr2) == Length));
static assert(attr1.length == 8);
static assert(attr2.length == 0);
}
/**
* Tests whether $(D_PARAM T) is an inner class, i.e. a class nested inside
* another class.

View File

@ -490,8 +490,8 @@ struct Address6
assert(address6("::14") > address6("::1"));
assert(address6("::1") < address6("::14"));
assert(address6("::1") == address6("::1"));
assert(address6("::1%1") < address6("::1%2"));
assert(address6("::1%2") > address6("::1%1"));
assert(address6("fe80::1%1") < address6("fe80::1%2"));
assert(address6("fe80::1%2") > address6("fe80::1%1"));
}
/**
@ -716,20 +716,17 @@ private void write2Bytes(R)(ref R range, ubyte[] address)
* is specified (i.e. first character after `%` is not a digit), the parser
* tries to convert it to the ID of that interface. If the interface with the
* given name can't be found, the parser doesn't fail, but just ignores the
* invalid interface name.
* invalid interface name, scope ID is `0` then.
*
* If an ID is given (i.e. first character after `%` is a digit),
* $(D_PSYMBOL address6) just stores it in $(D_PSYMBOL Address6.scopeID) without
* checking whether an interface with this ID really exists. If the ID is
* invalid (if it is too long or contains non decimal characters), parsing
* and nothing is returned.
* fails and nothing is returned.
*
* If neither an ID nor a name is given, $(D_PSYMBOL Address6.scopeID) is set
* to `0`.
*
* The parser doesn't support notation with an embedded IPv4 address (e.g.
* ::1.2.3.4).
*
* Params:
* R = Input range type.
* range = Stringish range containing the address.
@ -746,7 +743,6 @@ if (isForwardRange!R && is(Unqual!(ElementType!R) == char) && hasLength!R)
}
Address6 result;
ubyte[12] tail;
size_t i;
size_t j;
// An address begins with a number, not ':'. But there is a special case
@ -764,22 +760,40 @@ if (isForwardRange!R && is(Unqual!(ElementType!R) == char) && hasLength!R)
// Parse the address before '::'.
// This loop parses the whole address if it doesn't contain '::'.
for (; i < 13; i += 2)
static foreach (i; 0 .. 7)
{
write2Bytes(range, result.address[i .. $]);
if (range.empty || range.front != ':')
{
return typeof(return)();
}
range.popFront();
if (range.empty)
{
return typeof(return)();
}
if (range.front == ':')
{
{ // To make "state" definition local
static if (i == 6) // Can be embedded IPv4
{
auto state = range.save();
}
write2Bytes(range, result.address[i * 2 .. $]);
if (range.empty)
{
return typeof(return)();
}
static if (i == 6)
{
if (range.front == '.')
{
swap(range, state);
goto ParseIPv4;
}
}
if (range.front != ':')
{
return typeof(return)();
}
range.popFront();
goto ParseTail;
if (range.empty)
{
return typeof(return)();
}
if (range.front == ':')
{
range.popFront();
goto ParseTail;
}
}
}
write2Bytes(range, result.address[14 .. $]);
@ -810,27 +824,38 @@ ParseTail: // after ::
{
return typeof(return)();
}
write2Bytes(range, tail[j .. $]);
if (range.empty)
{
goto CopyTail;
}
else if (range.front == '%')
{
goto ParseIface;
}
else if (range.front != ':')
{
return typeof(return)();
}
range.popFront();
{ // To make "state" definition local
auto state = range.save();
for (i = 2, j = 2; i <= 11; i += 2, j += 2, range.popFront())
write2Bytes(range, tail[j .. $]);
if (range.empty)
{
goto CopyTail;
}
else if (range.front == '%')
{
goto ParseIface;
}
else if (range.front == '.')
{
swap(range, state);
goto ParseIPv4;
}
else if (range.front != ':')
{
return typeof(return)();
}
range.popFront();
}
j = 2;
for (size_t i = 2; i <= 11; i += 2, j += 2, range.popFront())
{
if (range.empty || range.front == ':')
{
return typeof(return)();
}
auto state = range.save();
write2Bytes(range, tail[j .. $]);
if (range.empty)
@ -841,12 +866,45 @@ ParseTail: // after ::
{
goto ParseIface;
}
else if (range.front == '.')
{
swap(range, state);
goto ParseIPv4;
}
else if (range.front != ':')
{
return typeof(return)();
}
}
ParseIPv4:
// We know there is a number followed by '.'. We have to ensure this number
// is an octet
tail[j] = readIntegral!ubyte(range);
static foreach (i; 1 .. 4)
{
if (range.empty || range.front != '.')
{
return typeof(return)();
}
range.popFront();
if (range.empty)
{
return typeof(return)();
}
tail[j + i] = readIntegral!ubyte(range);
}
j += 2;
if (range.empty)
{
goto CopyTail;
}
else if (range.front != '%')
{
return typeof(return)();
}
ParseIface: // Scope name or ID
range.popFront();
if (range.empty)
@ -907,7 +965,31 @@ CopyTail:
assert(address6(":a").isNothing);
assert(address6("a:").isNothing);
assert(address6("1:2:3:4::6:").isNothing);
assert(address6("1:2:3:4::6:7:8%").isNothing);
assert(address6("fe80:2:3:4::6:7:8%").isNothing);
}
// Parses embedded IPv4 address
@nogc nothrow @safe unittest
{
{
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4];
auto actual = address6("0:0:0:0:0:0:1.2.3.4");
assert(actual.address == expected);
}
{
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4];
auto actual = address6("::1.2.3.4");
assert(actual.address == expected);
}
{
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 6, 1, 2, 3, 4];
auto actual = address6("::5:6:1.2.3.4");
assert(actual.address == expected);
}
assert(address6("0:0:0:0:0:0:1.2.3.").isNothing);
assert(address6("0:0:0:0:0:0:1.2:3.4").isNothing);
assert(address6("0:0:0:0:0:0:1.2.3.4.").isNothing);
assert(address6("fe80:0:0:0:0:0:1.2.3.4%1").scopeID == 1);
}
/**

View File

@ -53,10 +53,10 @@ module tanya.network.socket;
import core.stdc.errno;
import core.time;
public import std.socket : SocketOption, SocketOptionLevel;
import std.traits;
import std.typecons;
import tanya.algorithm.comparison;
import tanya.bitmanip;
import tanya.memory;
import tanya.meta.trait;
import tanya.os.error;
/// Value returned by socket operations on error.

View File

@ -5,12 +5,6 @@
/**
* Range adapters.
*
* A range adapter wraps another range and modifies the way, how the original
* range is iterated, or the order in which its elements are accessed.
*
* All adapters are lazy algorithms, they request the next element of the
* adapted range on demand.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
@ -18,245 +12,4 @@
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/range/adapter.d,
* tanya/range/adapter.d)
*/
deprecated("Use tanya.algorithm.iteration instead")
module tanya.range.adapter;
import tanya.algorithm.mutation;
import tanya.math;
import tanya.range.primitive;
private mixin template Take(R, bool exactly)
{
private R source;
size_t length_;
@disable this();
private this(R source, size_t length)
{
this.source = source;
static if (!exactly && hasLength!R)
{
this.length_ = min(source.length, length);
}
else
{
this.length_ = length;
}
}
@property auto ref front()
in
{
assert(!empty);
}
do
{
return this.source.front;
}
void popFront()
in
{
assert(!empty);
}
do
{
this.source.popFront();
--this.length_;
}
@property bool empty()
{
static if (exactly || isInfinite!R)
{
return length == 0;
}
else
{
return length == 0 || this.source.empty;
}
}
@property size_t length()
{
return this.length_;
}
static if (hasAssignableElements!R)
{
@property void front(ref ElementType!R value)
in
{
assert(!empty);
}
do
{
this.source.front = value;
}
@property void front(ElementType!R value)
in
{
assert(!empty);
}
do
{
this.source.front = move(value);
}
}
static if (isForwardRange!R)
{
typeof(this) save()
{
return typeof(this)(this.source.save(), length);
}
}
static if (isRandomAccessRange!R)
{
@property auto ref back()
in
{
assert(!empty);
}
do
{
return this.source[this.length - 1];
}
void popBack()
in
{
assert(!empty);
}
do
{
--this.length_;
}
auto ref opIndex(size_t i)
in
{
assert(i < length);
}
do
{
return this.source[i];
}
static if (hasAssignableElements!R)
{
@property void back(ref ElementType!R value)
in
{
assert(!empty);
}
do
{
this.source[length - 1] = value;
}
@property void back(ElementType!R value)
in
{
assert(!empty);
}
do
{
this.source[length - 1] = move(value);
}
void opIndexAssign(ref ElementType!R value, size_t i)
in
{
assert(i < length);
}
do
{
this.source[i] = value;
}
void opIndexAssign(ElementType!R value, size_t i)
in
{
assert(i < length);
}
do
{
this.source[i] = move(value);
}
}
}
static if (hasSlicing!R)
{
auto opSlice(size_t i, size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
do
{
return take(this.source[i .. j], length);
}
}
}
/**
* Takes $(D_PARAM n) elements from $(D_PARAM range).
*
* If $(D_PARAM range) doesn't have $(D_PARAM n) elements, the resulting range
* spans all elements of $(D_PARAM range).
*
* $(D_PSYMBOL take) is particulary useful with infinite ranges. You can take
` $(B n) elements from such range and pass the result to an algorithm which
* expects a finit range.
*
* Params:
* R = Type of the adapted range.
* range = The range to take the elements from.
* n = The number of elements to take.
*
* Returns: A range containing maximum $(D_PARAM n) first elements of
* $(D_PARAM range).
*
* See_Also: $(D_PSYMBOL takeExactly).
*/
auto take(R)(R range, size_t n)
if (isInputRange!R)
{
struct Take
{
mixin .Take!(R, false);
}
return Take(range, n);
}
/**
* Takes exactly $(D_PARAM n) elements from $(D_PARAM range).
*
* $(D_PARAM range) must have at least $(D_PARAM n) elements.
*
* $(D_PSYMBOL takeExactly) is particulary useful with infinite ranges. You can
` take $(B n) elements from such range and pass the result to an algorithm
* which expects a finit range.
*
* Params:
* R = Type of the adapted range.
* range = The range to take the elements from.
* n = The number of elements to take.
*
* Returns: A range containing $(D_PARAM n) first elements of $(D_PARAM range).
*
* See_Also: $(D_PSYMBOL take).
*/
auto takeExactly(R)(R range, size_t n)
if (isInputRange!R)
{
struct TakeExactly
{
mixin Take!(R, true);
}
return TakeExactly(range, n);
}

View File

@ -54,7 +54,7 @@ module tanya.range.array;
*
* Precondition: $(D_INLINECODE array.length > 0).
*/
@property ref T front(T)(T[] array)
@property ref inout(T) front(T)(return scope inout(T)[] array)
in
{
assert(array.length > 0);
@ -94,7 +94,7 @@ do
*
* Precondition: $(D_INLINECODE array.length > 0).
*/
@property ref T back(T)(T[] array)
@property ref inout(T) back(T)(return scope inout(T)[] array)
in
{
assert(array.length > 0);
@ -133,7 +133,7 @@ do
*
* Precondition: $(D_INLINECODE array.length > 0).
*/
void popFront(T)(ref T[] array)
void popFront(T)(scope ref inout(T)[] array)
in
{
assert(array.length > 0);
@ -144,7 +144,7 @@ do
}
/// ditto
void popBack(T)(ref T[] array)
void popBack(T)(scope ref inout(T)[] array)
in
{
assert(array.length > 0);
@ -178,7 +178,7 @@ do
* Returns: $(D_KEYWORD true) if $(D_PARAM array) has no elements,
* $(D_KEYWORD false) otherwise.
*/
@property bool empty(T)(const T[] array)
@property bool empty(T)(scope const T[] array)
{
return array.length == 0;
}
@ -203,7 +203,7 @@ do
*
* Returns: A copy of the slice $(D_PARAM array).
*/
@property T[] save(T)(T[] array)
@property inout(T)[] save(T)(return scope inout(T)[] array)
{
return array;
}

View File

@ -20,6 +20,19 @@ import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.array;
version (unittest)
{
import tanya.test.stub;
private struct AssertPostblit
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
}
/**
* Returns the element type of the range $(D_PARAM R).
*
@ -73,10 +86,7 @@ template ElementType(R)
*
* See_Also: $(D_PSYMBOL isInfinite).
*/
template hasLength(R)
{
enum bool hasLength = is(ReturnType!((R r) => r.length) == size_t);
}
enum bool hasLength(R) = is(ReturnType!((R r) => r.length) == size_t);
///
@nogc nothrow pure @safe unittest
@ -294,34 +304,6 @@ template hasSlicing(R)
static assert(hasSlicing!D);
}
version (unittest)
{
mixin template InputRangeStub()
{
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property bool empty() const @nogc nothrow pure @safe
{
return false;
}
void popFront() @nogc nothrow pure @safe
{
}
}
mixin template BidirectionalRangeStub()
{
@property int back() @nogc nothrow pure @safe
{
return 0;
}
void popBack() @nogc nothrow pure @safe
{
}
}
}
private template isDynamicArrayRange(R)
{
static if (is(R E : E[]))
@ -334,6 +316,26 @@ private template isDynamicArrayRange(R)
}
}
private struct Primitive(Candidate, string primitive)
{
auto ref returnType(Candidate candidate)
{
mixin("return candidate." ~ primitive ~ ";");
}
alias ReturnType = .ReturnType!returnType;
static assert(!is(ReturnType == void));
enum uint attributes = functionAttributes!returnType
& FunctionAttribute.ref_;
bool opEquals(That)(That) const
{
return is(ReturnType == That.ReturnType)
&& attributes == That.attributes;
}
}
/**
* Determines whether $(D_PARAM R) is an input range.
*
@ -353,11 +355,11 @@ private template isDynamicArrayRange(R)
*/
template isInputRange(R)
{
static if (is(ReturnType!((R r) => r.front()) U)
static if (is(Primitive!(R, "front()") U)
&& is(ReturnType!((R r) => r.empty) == bool)
&& is(typeof(R.popFront())))
{
enum bool isInputRange = !is(U == void);
enum bool isInputRange = true;
}
else
{
@ -373,10 +375,12 @@ template isInputRange(R)
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
@ -391,13 +395,8 @@ template isInputRange(R)
{
static struct Range1(T)
{
void popFront()
{
}
int front()
{
return 0;
}
mixin InputRangeStub;
T empty() const
{
return true;
@ -408,50 +407,56 @@ template isInputRange(R)
static struct Range2
{
mixin InputRangeStub;
int popFront() @nogc nothrow pure @safe
{
return 100;
}
int front() @nogc nothrow pure @safe
{
return 100;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(isInputRange!Range2);
static struct Range3
{
void popFront() @nogc nothrow pure @safe
{
}
mixin InputRangeStub;
void front() @nogc nothrow pure @safe
{
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(!isInputRange!Range3);
static struct Range4
{
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
mixin InputRangeStub;
enum bool empty = false;
}
static assert(isInputRange!Range4);
}
// Ranges with non-copyable elements can be input ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin InputRangeStub!NonCopyable;
}
static assert(isInputRange!R);
}
// Ranges with const non-copyable elements can be input ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin InputRangeStub!(const(NonCopyable));
}
static assert(isInputRange!R);
}
/**
* Determines whether $(D_PARAM R) is a forward range.
*
@ -489,14 +494,17 @@ template isForwardRange(R)
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
typeof(this) save() @nogc nothrow pure @safe
{
return this;
@ -515,6 +523,7 @@ template isForwardRange(R)
static struct Range2
{
mixin InputRangeStub;
Range1 save() @nogc nothrow pure @safe
{
return Range1();
@ -525,6 +534,7 @@ template isForwardRange(R)
static struct Range3
{
mixin InputRangeStub;
const(typeof(this)) save() const @nogc nothrow pure @safe
{
return this;
@ -553,11 +563,11 @@ template isForwardRange(R)
*/
template isBidirectionalRange(R)
{
static if (is(ReturnType!((R r) => r.back()) U)
static if (is(Primitive!(R, "back()") U)
&& is(typeof(R.popBack())))
{
enum bool isBidirectionalRange = isForwardRange!R
&& is(U == ReturnType!((R r) => r.front()));
&& (U() == Primitive!(R, "front()")());
}
else
{
@ -573,21 +583,26 @@ template isBidirectionalRange(R)
void popFront() @nogc nothrow pure @safe
{
}
void popBack() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property int back() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
Range save() @nogc nothrow pure @safe
{
return this;
@ -602,33 +617,33 @@ template isBidirectionalRange(R)
{
static struct Range(T, U)
{
void popFront() @nogc nothrow pure @safe
{
}
void popBack() @nogc nothrow pure @safe
{
}
mixin BidirectionalRangeStub;
@property T front() @nogc nothrow pure @safe
{
return T.init;
}
@property U back() @nogc nothrow pure @safe
{
return U.init;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
Range save() @nogc nothrow pure @safe
{
return this;
}
}
static assert(!isBidirectionalRange!(Range!(int, uint)));
static assert(!isBidirectionalRange!(Range!(int, const int)));
}
// Ranges with non-copyable elements can be bidirectional ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin BidirectionalRangeStub!NonCopyable;
}
static assert(isBidirectionalRange!R);
}
/**
* Determines whether $(D_PARAM R) is a random-access range.
*
@ -654,11 +669,11 @@ template isBidirectionalRange(R)
*/
template isRandomAccessRange(R)
{
static if (is(ReturnType!((R r) => r.opIndex(size_t.init)) U))
static if (is(Primitive!(R, "opIndex(size_t.init)") U))
{
enum bool isRandomAccessRange = isInputRange!R
&& (hasLength!R || isInfinite!R)
&& is(U == ReturnType!((R r) => r.front()));
&& (U() == Primitive!(R, "front()")());
}
else
{
@ -674,29 +689,22 @@ template isRandomAccessRange(R)
void popFront() @nogc nothrow pure @safe
{
}
void popBack() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property int back() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
int opIndex(size_t) @nogc nothrow pure @safe
{
return 0;
}
size_t length() const @nogc nothrow pure @safe
{
return 0;
@ -711,15 +719,14 @@ template isRandomAccessRange(R)
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
enum bool empty = false;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{
return 0;
@ -732,76 +739,43 @@ template isRandomAccessRange(R)
{
static struct Range1
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{
return 0;
}
mixin RandomAccessRangeStub;
}
static assert(!isRandomAccessRange!Range1);
@Length
static struct Range2(Args...)
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(Args) @nogc nothrow pure @safe
{
return 0;
}
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(isRandomAccessRange!(Range2!size_t));
static assert(!isRandomAccessRange!(Range2!()));
static assert(!isRandomAccessRange!(Range2!(size_t, size_t)));
@Length
static struct Range3
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1, const size_t pos2 = 0)
@nogc nothrow pure @safe
{
return 0;
}
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(isRandomAccessRange!Range3);
static struct Range4
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
mixin RandomAccessRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1) @nogc nothrow pure @safe
{
return 0;
}
size_t opDollar() const @nogc nothrow pure @safe
{
return 0;
@ -810,20 +784,42 @@ template isRandomAccessRange(R)
static assert(!isRandomAccessRange!Range4);
}
// Ranges with non-copyable elements can be random-access ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements @Infinite
static struct R
{
mixin RandomAccessRangeStub!NonCopyable;
}
static assert(isRandomAccessRange!R);
}
/**
* Puts $(D_PARAM e) into the $(D_PARAM range).
*
* $(D_PSYMBOL R) should be an output range for $(D_PARAM E).
*
* $(D_PARAM range) is advanced after putting an element into it if all of the
* following conditions are met:
* $(D_PSYMBOL R) should be an output range for $(D_PARAM E). It doesn't mean
* that everything $(D_PARAM range) is an output range for can be put into it,
* but only if one of the following conditions is met:
*
* $(OL
* $(LI $(D_PSYMBOL R) is an input range)
* $(LI $(D_PSYMBOL R) doesn't define a `put`-method)
* $(LI $(D_PARAM R) defines a `put`-method for $(D_PARAM E))
* $(LI $(D_PARAM e) can be assigned to $(D_INLINECODE range.front))
* $(LI $(D_PARAM e) can be put into $(D_PARAM range) using
* $(D_INLINECODE range(e))
* )
* )
*
* The method to put $(D_PARAM e) into $(D_PARAM range) is chosen based on the
* order specified above.
*
* If $(D_PARAM E) is an input range and $(D_PARAM R) is an output range for
* its elements as well, use $(D_PSYMBOL tanya.algorithm.mutation.copy)
* instead.
*
* $(D_PARAM range) is advanced after putting an element into it if it is an
* input range that doesn't define a `put`-method.
*
* Params:
* R = Target range type.
* E = Source element type.
@ -849,15 +845,6 @@ void put(R, E)(ref R range, auto ref E e)
{
range(e);
}
else static if (isInputRange!E)
{
pragma(msg, "Putting an input range into an output range is "
~ "deprecated. Use tanya.algorithm.mutation.copy instead");
for (; !e.empty; e.popFront())
{
put(range, e.front);
}
}
else
{
static assert(false, R.stringof ~ " is not an output range for "
@ -1095,28 +1082,20 @@ template isInfinite(R)
@nogc nothrow pure @safe unittest
{
@Infinite
static struct StaticConstRange
{
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
mixin InputRangeStub;
static bool empty = false;
}
static assert(!isInfinite!StaticConstRange);
@Infinite
static struct TrueRange
{
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
mixin InputRangeStub;
static const bool empty = true;
}
static assert(!isInfinite!TrueRange);
@ -1346,15 +1325,12 @@ if (isBidirectionalRange!R)
@nogc nothrow pure @safe unittest
{
@Infinite
static struct InfiniteRange
{
mixin ForwardRangeStub;
private int i;
InfiniteRange save() @nogc nothrow pure @safe
{
return this;
}
void popFront() @nogc nothrow pure @safe
{
++this.i;
@ -1374,8 +1350,6 @@ if (isBidirectionalRange!R)
{
return this.i;
}
enum bool empty = false;
}
{
InfiniteRange range;
@ -1495,44 +1469,19 @@ if (isInputRange!R)
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1
{
Element element;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
mixin InputRangeStub!AssertPostblit;
}
static assert(is(typeof(moveFront(R1()))));
// Returns elements with a postblit constructor by value. moveFront fails.
@Infinite
static struct R2
{
enum bool empty = false;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
mixin InputRangeStub!AssertPostblit;
}
static assert(!is(typeof(moveFront(R2()))));
}
@ -1580,58 +1529,19 @@ if (isBidirectionalRange!R)
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1
{
Element element;
enum bool empty = false;
ref Element back() @nogc nothrow pure @safe
{
return element;
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R1 save() @nogc nothrow pure @safe
{
return this;
}
mixin BidirectionalRangeStub!AssertPostblit;
}
static assert(is(typeof(moveBack(R1()))));
// Returns elements with a postblit constructor by value. moveBack fails.
@Infinite
static struct R2
{
enum bool empty = false;
Element back() @nogc nothrow pure @safe
{
return Element();
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R2 save() @nogc nothrow pure @safe
{
return this;
}
mixin BidirectionalRangeStub!AssertPostblit;
}
static assert(!is(typeof(moveBack(R2()))));
}
@ -1678,54 +1588,19 @@ if (isRandomAccessRange!R)
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1
{
Element element;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
ref Element opIndex(size_t)
{
return element;
}
mixin RandomAccessRangeStub!AssertPostblit;
}
static assert(is(typeof(moveAt(R1(), 0))));
// Returns elements with a postblit constructor by value. moveAt fails.
@Infinite
static struct R2
{
enum bool empty = false;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
Element opIndex() @nogc nothrow pure @safe
{
return Element();
}
mixin RandomAccessRangeStub!AssertPostblit;
}
static assert(!is(typeof(moveAt(R2(), 0))));
}
@ -1826,7 +1701,7 @@ template hasMobileElements(R)
*/
template hasLvalueElements(R)
{
private alias refDg = (ref ElementType!R e) => e;
private alias refDg = (ref ElementType!R e) => &e;
static if (isRandomAccessRange!R)
{
@ -1884,6 +1759,12 @@ template hasLvalueElements(R)
static assert(hasLvalueElements!R2);
}
// Works with non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(hasLvalueElements!(NonCopyable[]));
}
/**
* Determines whether the elements of $(D_PARAM R) are assignable.
*
@ -2039,3 +1920,41 @@ template hasSwappableElements(R)
}
static assert(!hasSwappableElements!R2);
}
/**
* Determines whether `r1.front` and `r2.front` point to the same element.
*
* Params:
* r1 = First range.
* r2 = Second range.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) have the same
* head, $(D_KEYWORD false) otherwise.
*/
bool sameHead(Range)(Range r1, Range r2) @trusted
if (isInputRange!Range && hasLvalueElements!Range)
{
return &r1.front is &r2.front;
}
///
@nogc nothrow pure @safe unittest
{
const int[2] array;
auto r1 = array[];
auto r2 = array[];
assert(sameHead(r1, r2));
}
///
@nogc nothrow pure @safe unittest
{
const int[2] array;
auto r1 = array[];
auto r2 = array[1 .. $];
assert(!sameHead(r1, r2));
}

View File

@ -15,3 +15,4 @@
module tanya.test;
public import tanya.test.assertion;
public import tanya.test.stub;

373
source/tanya/test/stub.d Normal file
View File

@ -0,0 +1,373 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Range and generic type generators.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/test/stub.d,
* tanya/test/stub.d)
*/
module tanya.test.stub;
/**
* Attribute signalizing that the generated range should contain the given
* number of elements.
*
* $(D_PSYMBOL Count) should be always specified with some value and not as a
* type, so $(D_INLINECODE Count(1)) instead just $(D_INLINECODE Count),
* otherwise you can just omit $(D_PSYMBOL Count) and it will default to 0.
*
* $(D_PSYMBOL Count) doesn't generate `.length` property - use
* $(D_PSYMBOL Length) for that.
*
* If neither $(D_PSYMBOL Length) nor $(D_PSYMBOL Infinite) is given,
* $(D_ILNINECODE Count(0)) is assumed.
*
* This attribute conflicts with $(D_PSYMBOL Infinite) and $(D_PSYMBOL Length).
*/
struct Count
{
/// Original range length.
size_t count = 0;
@disable this();
/**
* Constructs the attribute with the given length.
*
* Params:
* count = Original range length.
*/
this(size_t count) @nogc nothrow pure @safe
{
this.count = count;
}
}
/**
* Attribute signalizing that the generated range should be infinite.
*
* This attribute conflicts with $(D_PSYMBOL Count) and $(D_PSYMBOL Length).
*/
struct Infinite
{
}
/**
* Generates `.length` property for the range.
*
* The length of the range can be specified as a constructor argument,
* otherwise it is 0.
*
* This attribute conflicts with $(D_PSYMBOL Count) and $(D_PSYMBOL Infinite).
*/
struct Length
{
/// Original range length.
size_t length = 0;
}
/**
* Attribute signalizing that the generated range should return values by
* reference.
*
* This atribute affects the return values of `.front`, `.back` and `[]`.
*/
struct WithLvalueElements
{
}
/**
* Generates an input range.
*
* Params:
* E = Element type.
*/
mixin template InputRangeStub(E = int)
{
import tanya.meta.metafunction : Alias;
import tanya.meta.trait : evalUDA, getUDAs, hasUDA;
/*
* Aliases for the attribute lookups to access them faster
*/
private enum bool infinite = hasUDA!(typeof(this), Infinite);
private enum bool withLvalueElements = hasUDA!(typeof(this),
WithLvalueElements);
private alias Count = getUDAs!(typeof(this), .Count);
private alias Length = getUDAs!(typeof(this), .Length);
static if (Count.length != 0)
{
private enum size_t count = Count[0].count;
static assert (!infinite,
"Range cannot have count and be infinite at the same time");
static assert (Length.length == 0,
"Range cannot have count and length at the same time");
}
else static if (Length.length != 0)
{
private enum size_t count = evalUDA!(Length[0]).length;
static assert (!infinite,
"Range cannot have length and be infinite at the same time");
}
else static if (!infinite)
{
private enum size_t count = 0;
}
/*
* Member generation
*/
static if (infinite)
{
enum bool empty = false;
}
else
{
private size_t length_ = count;
@property bool empty() const @nogc nothrow pure @safe
{
return this.length_ == 0;
}
}
static if (withLvalueElements)
{
private E* element; // Pointer to enable range copying in save()
}
void popFront() @nogc nothrow pure @safe
in (!empty)
{
static if (!infinite)
{
--this.length_;
}
}
static if (withLvalueElements)
{
ref E front() @nogc nothrow pure @safe
in (!empty)
{
return *this.element;
}
}
else
{
E front() @nogc nothrow pure @safe
in (!empty)
{
return E.init;
}
}
static if (Length.length != 0)
{
size_t length() const @nogc nothrow pure @safe
{
return this.length_;
}
}
}
/**
* Generates a forward range.
*
* This mixin includes input range primitives as well, but can be combined with
* $(D_PSYMBOL RandomAccessRangeStub).
*
* Params:
* E = Element type.
*/
mixin template ForwardRangeStub(E = int)
{
static if (!is(typeof(this.InputRangeMixin) == void))
{
mixin InputRangeStub!E InputRangeMixin;
}
auto save() @nogc nothrow pure @safe
{
return this;
}
}
/**
* Generates a bidirectional range.
*
* This mixin includes forward range primitives as well, but can be combined with
* $(D_PSYMBOL RandomAccessRangeStub).
*
* Params:
* E = Element type.
*/
mixin template BidirectionalRangeStub(E = int)
{
mixin ForwardRangeStub!E;
void popBack() @nogc nothrow pure @safe
in (!empty)
{
static if (!infinite)
{
--this.length_;
}
}
static if (withLvalueElements)
{
ref E back() @nogc nothrow pure @safe
in (!empty)
{
return *this.element;
}
}
else
{
E back() @nogc nothrow pure @safe
in (!empty)
{
return E.init;
}
}
}
/**
* Generates a random-access range.
*
* This mixin includes input range primitives as well, but can be combined with
* $(D_PSYMBOL ForwardRangeStub) or $(D_PSYMBOL BidirectionalRangeStub).
*
* Note that a random-access range also requires $(D_PSYMBOL Length) or
* $(D_PARAM Infinite) by definition.
*
* Params:
* E = Element type.
*/
mixin template RandomAccessRangeStub(E = int)
{
static if (!is(typeof(this.InputRangeMixin) == void))
{
mixin InputRangeStub!E InputRangeMixin;
}
static if (withLvalueElements)
{
ref E opIndex(size_t) @nogc nothrow pure @safe
{
return *this.element;
}
}
else
{
E opIndex(size_t) @nogc nothrow pure @safe
{
return E.init;
}
}
}
/**
* Struct with a disabled postblit constructor.
*
* $(D_PSYMBOL NonCopyable) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*/
struct NonCopyable
{
@disable this(this);
}
/**
* Struct with an elaborate destructor.
*
* $(D_PSYMBOL WithDtor) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*
* When used as a standalone object the constructor of $(D_PSYMBOL WithDtor)
* accepts an additional `counter` argument, which is incremented by the
* destructor. $(D_PSYMBOL WithDtor) stores a pointer to the passed variable,
* so the variable can be investigated after the struct isn't available
* anymore.
*/
struct WithDtor
{
size_t* counter;
this(ref size_t counter) @nogc nothrow pure @trusted
{
this.counter = &counter;
}
~this() @nogc nothrow pure @safe
{
if (this.counter !is null)
{
++*this.counter;
}
}
}
/**
* Struct supporting hashing.
*
* $(D_PSYMBOL Hashable) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*
* The constructor accepts an additional parameter, which is returned by the
* `toHash()`-function. `0U` is returned if no hash value is given.
*/
struct Hashable
{
size_t hash;
size_t toHash() const @nogc nothrow pure @safe
{
return this.hash;
}
}
/**
* Generates a $(D_KEYWORD struct) with common functionality.
*
* To specify the needed functionality use user-defined attributes on the
* $(D_KEYWORD struct) $(D_PSYMBOL StructStub) is mixed in.
*
* Supported attributes are: $(D_PSYMBOL NonCopyable), $(D_PSYMBOL Hashable),
* $(D_PSYMBOL WithDtor).
*/
mixin template StructStub()
{
import tanya.meta.trait : evalUDA, getUDAs, hasUDA;
static if (hasUDA!(typeof(this), NonCopyable))
{
@disable this(this);
}
private alias Hashable = getUDAs!(typeof(this), .Hashable);
static if (Hashable.length > 0)
{
size_t toHash() const @nogc nothrow pure @safe
{
return evalUDA!(Hashable[0]).hash;
}
}
static if (hasUDA!(typeof(this), WithDtor))
{
~this() @nogc nothrow pure @safe
{
}
}
}

View File

@ -22,6 +22,7 @@ import tanya.format;
import tanya.functional;
import tanya.meta.metafunction;
import tanya.meta.trait;
version (unittest) import tanya.test.stub;
/**
* $(D_PSYMBOL Tuple) can store two or more heterogeneous objects.
@ -454,29 +455,24 @@ struct Option(T)
// Moving
@nogc nothrow pure @safe unittest
{
static struct NotCopyable
{
@disable this(this);
}
static assert(is(typeof(Option!NotCopyable(NotCopyable()))));
static assert(is(typeof(Option!NonCopyable(NonCopyable()))));
// The value cannot be returned by reference because the default value
// isn't passed by reference
static assert(!is(typeof(Option!DisabledPostblit().or(NotCopyable()))));
static assert(!is(typeof(Option!DisabledPostblit().or(NonCopyable()))));
{
NotCopyable notCopyable;
static assert(is(typeof(Option!NotCopyable().or(notCopyable))));
NonCopyable notCopyable;
static assert(is(typeof(Option!NonCopyable().or(notCopyable))));
}
{
Option!NotCopyable option;
Option!NonCopyable option;
assert(option.isNothing);
option = NotCopyable();
option = NonCopyable();
assert(!option.isNothing);
}
{
Option!NotCopyable option;
Option!NonCopyable option;
assert(option.isNothing);
option = Option!NotCopyable(NotCopyable());
option = Option!NonCopyable(NonCopyable());
assert(!option.isNothing);
}
}
@ -507,30 +503,16 @@ struct Option(T)
// Returns default value
@nogc nothrow pure @safe unittest
{
{
int i = 5;
assert(((ref e) => e)(Option!int().or(i)) == 5);
}
int i = 5;
assert(((ref e) => e)(Option!int().or(i)) == 5);
}
// Implements toHash() for nothing
@nogc nothrow pure @safe unittest
{
static struct ToHash
{
size_t toHash() const @nogc nothrow pure @safe
{
return 1U;
}
}
{
Option!ToHash toHash;
assert(toHash.toHash() == 0U);
}
{
auto toHash = Option!ToHash(ToHash());
assert(toHash.toHash() == 1U);
}
alias OptionT = Option!Hashable;
assert(OptionT().toHash() == 0U);
assert(OptionT(Hashable(1U)).toHash() == 1U);
}
/**