Eugen Wissner 49d7452b33 Make containers work with non-copyable elements
It is the first step. The containers can be at least created with
non-copyable structs without compilation errors now.
Fix #69.
2018-11-24 06:25:55 +01:00

2400 lines
50 KiB
D

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* This module contains singly-linked ($(D_PSYMBOL SList)) and doubly-linked
* ($(D_PSYMBOL DList)) lists.
*
* Copyright: Eugene Wissner 2016-2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/container/list.d,
* tanya/container/list.d)
*/
module tanya.container.list;
import tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.container.entry;
import tanya.memory;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.array;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/**
* Forward range for the $(D_PSYMBOL SList).
*
* Params:
* L = List type.
*/
struct SRange(L)
{
private alias EntryPointer = typeof(L.head);
private alias E = typeof(EntryPointer.content);
private EntryPointer* head;
invariant
{
assert(this.head !is null);
}
private this(ref EntryPointer head) @trusted
{
this.head = &head;
}
@disable this();
@property SRange save()
{
return this;
}
@property bool empty() const
{
return *this.head is null;
}
@property ref inout(E) front() inout
in
{
assert(!empty);
}
do
{
return (*this.head).content;
}
void popFront() @trusted
in
{
assert(!empty);
}
do
{
this.head = &(*this.head).next;
}
SRange opIndex()
{
return typeof(return)(*this.head);
}
L.ConstRange opIndex() const
{
return typeof(return)(*this.head);
}
}
/**
* Singly-linked list.
*
* Params:
* T = Content type.
*/
struct SList(T)
{
/// The range types for $(D_PSYMBOL SList).
alias Range = SRange!SList;
/// ditto
alias ConstRange = SRange!(const SList);
private alias Entry = SEntry!T;
// 0th element of the list.
private Entry* head;
/**
* Creates a new $(D_PSYMBOL SList) with the elements from a static array.
*
* Params:
* R = Static array size.
* init = Values to initialize the list with.
* allocator = Allocator.
*/
this(size_t R)(T[R] init, shared Allocator allocator = defaultAllocator)
{
this(allocator);
insertFront(init[]);
}
///
@nogc nothrow pure @safe unittest
{
auto l = SList!int([5, 8, 15]);
assert(l.front == 5);
}
/**
* Creates a new $(D_PSYMBOL SList) with the elements from an input range.
*
* Params:
* R = Type of the initial range.
* init = Values to initialize the list with.
* allocator = Allocator.
*/
this(R)(R init, shared Allocator allocator = defaultAllocator)
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
{
this(allocator);
insertFront(init);
}
/**
* Creates a new $(D_PSYMBOL SList).
*
* Params:
* len = Initial length of the list.
* init = Initial value to fill the list with.
* allocator = Allocator.
*/
this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{
this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry(init);
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry(init);
next = next.next;
}
}
///
@nogc nothrow pure @safe unittest
{
auto l = SList!int(2, 3);
assert(l.front == 3);
}
/// ditto
this(size_t len, shared Allocator allocator = defaultAllocator)
{
this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next = next.next;
}
}
///
@nogc nothrow pure @safe unittest
{
auto l = SList!int(2);
assert(l.front == 0);
}
/// ditto
this(shared Allocator allocator)
in
{
assert(allocator !is null);
}
do
{
this.allocator_ = allocator;
}
/**
* Initializes this list from another one.
*
* If $(D_PARAM init) is passed by value, it won't be copied, but moved.
* If the allocator of ($D_PARAM init) matches $(D_PARAM allocator),
* $(D_KEYWORD this) will just take the ownership over $(D_PARAM init)'s
* storage, otherwise, the storage will be allocated with
* $(D_PARAM allocator) and all elements will be moved;
* $(D_PARAM init) will be destroyed at the end.
*
* If $(D_PARAM init) is passed by reference, it will be copied.
*
* Params:
* R = Source list type.
* init = Source list.
* allocator = Allocator.
*/
this(R)(ref R init, shared Allocator allocator = defaultAllocator)
if (is(Unqual!R == SList))
{
this(init[], allocator);
}
/// ditto
this(R)(R init, shared Allocator allocator = defaultAllocator) @trusted
if (is(R == SList))
{
this(allocator);
if (allocator is init.allocator)
{
this.head = init.head;
init.head = null;
}
else
{
Entry* next;
for (auto current = init.head; current !is null; current = current.next)
{
if (this.head is null)
{
this.head = allocator.make!Entry(move(current.content));
next = this.head;
}
else
{
next.next = allocator.make!Entry(move(current.content));
next = next.next;
}
}
}
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int([5, 1, 234]);
auto l2 = SList!int(l1);
assert(l1 == l2);
}
/**
* Removes all elements from the list.
*/
~this()
{
clear();
}
static if (isCopyable!T)
{
this(this)
{
auto list = typeof(this)(this[], this.allocator);
this.head = list.head;
list.head = null;
}
}
else
{
@disable this(this);
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int([5, 1, 234]);
auto l2 = l1;
assert(l1 == l2);
}
/**
* Removes all contents from the list.
*/
void clear()
{
while (!empty)
{
removeFront();
}
}
///
@nogc nothrow pure @safe unittest
{
SList!int l = SList!int([8, 5]);
assert(!l.empty);
l.clear();
assert(l.empty);
}
/**
* Returns: First element.
*
* Precondition: $(D_INLINECODE !empty).
*/
@property ref inout(T) front() inout
in
{
assert(!empty);
}
do
{
return this.head.content;
}
private size_t moveEntry(R)(ref Entry* head, ref R el) @trusted
if (isImplicitlyConvertible!(R, T))
{
auto temp = cast(Entry*) allocator.allocate(Entry.sizeof);
el.moveEmplace(temp.content);
temp.next = head;
head = temp;
return 1;
}
/**
* Inserts a new element at the beginning.
*
* Params:
* R = Type of the inserted value(s).
* el = New element(s).
*
* Returns: The number of elements inserted.
*/
size_t insertFront(R)(R el)
if (isImplicitlyConvertible!(R, T))
{
return moveEntry(this.head, el);
}
/// ditto
size_t insertFront(R)(ref R el) @trusted
if (isImplicitlyConvertible!(R, T))
{
this.head = allocator.make!Entry(el, this.head);
return 1;
}
///
@nogc nothrow pure @safe unittest
{
SList!int l;
int value = 5;
l.insertFront(value);
assert(l.front == value);
value = 8;
l.insertFront(value);
assert(l.front == 8);
}
/// ditto
size_t insertFront(R)(R el) @trusted
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
{
size_t retLength;
Entry* next, newHead;
if (!el.empty)
{
next = allocator.make!Entry(el.front);
newHead = next;
el.popFront();
retLength = 1;
}
foreach (ref e; el)
{
next.next = allocator.make!Entry(e);
next = next.next;
++retLength;
}
if (newHead !is null)
{
next.next = this.head;
this.head = newHead;
}
return retLength;
}
/// ditto
size_t insertFront(size_t R)(T[R] el)
{
return insertFront!(T[])(el[]);
}
/// ditto
alias insert = insertFront;
///
@nogc nothrow pure @safe unittest
{
SList!int l1;
assert(l1.insertFront(8) == 1);
assert(l1.front == 8);
assert(l1.insertFront(9) == 1);
assert(l1.front == 9);
SList!int l2;
assert(l2.insertFront([25, 30, 15]) == 3);
assert(l2.front == 25);
l2.insertFront(l1[]);
assert(l2.front == 9);
}
private bool checkRangeBelonging(ref const Range r) const
{
version (assert)
{
const(Entry)* pos = this.head;
for (; pos !is *r.head && pos !is null; pos = pos.next)
{
}
return pos is *r.head;
}
else
{
return true;
}
}
/**
* Inserts new elements before $(D_PARAM r).
*
* Params:
* R = Type of the inserted value(s).
* r = Range extracted from this list.
* el = New element(s).
*
* Returns: The number of elements inserted.
*
* Precondition: $(D_PARAM r) is extracted from this list.
*/
size_t insertBefore(R)(Range r, R el)
if (isImplicitlyConvertible!(R, T))
in
{
assert(checkRangeBelonging(r));
}
do
{
return moveEntry(*r.head, el);
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int([234, 5, 1]);
auto l2 = SList!int([5, 1]);
l2.insertBefore(l2[], 234);
assert(l1 == l2);
}
/// ditto
size_t insertBefore(R)(Range r, R el)
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
in
{
assert(checkRangeBelonging(r));
}
do
{
size_t inserted;
foreach (e; el)
{
inserted += insertBefore(r, e);
r.popFront();
}
return inserted;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int([5, 234, 30, 1]);
auto l2 = SList!int([5, 1]);
auto l3 = SList!int([234, 30]);
auto r = l2[];
r.popFront();
l2.insertBefore(r, l3[]);
assert(l1 == l2);
}
/// ditto
size_t insertBefore()(Range r, ref T el) @trusted
in
{
assert(checkRangeBelonging(r));
}
do
{
*r.head = allocator.make!Entry(el, *r.head);
return 1;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int([234, 5, 1]);
auto l2 = SList!int([5, 1]);
int var = 234;
l2.insertBefore(l2[], var);
assert(l1 == l2);
}
/**
* Inserts elements from a static array before $(D_PARAM r).
*
* Params:
* R = Static array size.
* r = Range extracted from this list.
* el = New elements.
*
* Returns: The number of elements inserted.
*
* Precondition: $(D_PARAM r) is extracted from this list.
*/
size_t insertBefore(size_t R)(Range r, T[R] el)
{
return insertBefore!(T[])(r, el[]);
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int([5, 234, 30, 1]);
auto l2 = SList!int([5, 1]);
auto r = l2[];
r.popFront();
l2.insertBefore(r, [234, 30]);
assert(l1 == l2);
}
/**
* Comparison for equality.
*
* Params:
* that = The list to compare with.
*
* Returns: $(D_KEYWORD true) if the lists are equal, $(D_KEYWORD false)
* otherwise.
*/
bool opEquals()(auto ref typeof(this) that) inout
{
return equal(opIndex(), that[]);
}
///
@nogc nothrow pure @safe unittest
{
SList!int l1, l2;
l1.insertFront(8);
l1.insertFront(9);
l2.insertFront(8);
l2.insertFront(10);
assert(l1 != l2);
l1.removeFront();
assert(l1 != l2);
l2.removeFront();
assert(l1 == l2);
l1.removeFront();
assert(l1 != l2);
l2.removeFront();
assert(l1 == l2);
}
/**
* Returns: $(D_KEYWORD true) if the list is empty.
*/
@property bool empty() const
{
return this.head is null;
}
/**
* Removes the front element.
*
* Precondition: $(D_INLINECODE !empty)
*/
void removeFront()
in
{
assert(!empty);
}
do
{
auto n = this.head.next;
allocator.dispose(this.head);
this.head = n;
}
///
@nogc nothrow pure @safe unittest
{
SList!int l;
l.insertFront(8);
l.insertFront(9);
assert(l.front == 9);
l.removeFront();
assert(l.front == 8);
l.removeFront();
assert(l.empty);
}
/**
* Removes $(D_PARAM howMany) elements from the list.
*
* Unlike $(D_PSYMBOL removeFront()), this method doesn't fail, if it could not
* remove $(D_PARAM howMany) elements. Instead, if $(D_PARAM howMany) is
* greater than the list length, all elements are removed.
*
* Params:
* howMany = How many elements should be removed.
*
* Returns: The number of elements removed.
*/
size_t removeFront(size_t howMany)
out (removed)
{
assert(removed <= howMany);
}
do
{
size_t i;
for (; i < howMany && !empty; ++i)
{
removeFront();
}
return i;
}
///
@nogc nothrow pure @safe unittest
{
SList!int l = SList!int([8, 5, 4]);
assert(l.removeFront(0) == 0);
assert(l.removeFront(2) == 2);
assert(l.removeFront(3) == 1);
assert(l.removeFront(3) == 0);
}
/**
* Removes $(D_PARAM r) from the list.
*
* Params:
* r = The range to remove.
*
* Returns: An empty range.
*
* Precondition: $(D_PARAM r) is extracted from this list.
*/
Range remove(Range r)
in
{
assert(checkRangeBelonging(r));
}
do
{
auto outOfScopeList = typeof(this)(allocator);
outOfScopeList.head = *r.head;
*r.head = null;
return r;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int([5, 234, 30, 1]);
auto l2 = SList!int([5]);
auto r = l1[];
r.popFront();
assert(l1.remove(r).empty);
assert(l1 == l2);
}
/**
* Removes the front element of the $(D_PARAM range) from the list.
*
* Params:
* range = Range whose front element should be removed.
*
* Returns: $(D_PSYMBOL range) with its front element removed.
*
* Precondition: $(D_INLINECODE !range.empty).
* $(D_PARAM range) is extracted from this list.
*/
Range popFirstOf(Range range)
in
{
assert(!range.empty);
assert(checkRangeBelonging(range));
}
do
{
auto next = (*range.head).next;
allocator.dispose(*range.head);
*range.head = next;
return range;
}
///
@nogc nothrow pure @safe unittest
{
auto list = SList!int([5, 234, 30]);
auto range = list[];
range.popFront();
assert(list.popFirstOf(range).front == 30);
range = list[];
assert(range.front == 5);
range.popFront;
assert(range.front == 30);
range.popFront;
assert(range.empty);
}
/**
* Returns: Range that iterates over all elements of the container, in
* forward order.
*/
Range opIndex()
{
return typeof(return)(this.head);
}
/// ditto
ConstRange opIndex() const
{
return typeof(return)(this.head);
}
/**
* Assigns another list.
*
* If $(D_PARAM that) is passed by value, it won't be copied, but moved.
* This list will take the ownership over $(D_PARAM that)'s storage and
* the allocator.
*
* If $(D_PARAM that) is passed by reference, it will be copied.
*
* Params:
* R = Content type.
* that = The value should be assigned.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(R)(ref R that)
if (is(Unqual!R == SList))
{
return this = that[];
}
/// ditto
ref typeof(this) opAssign(R)(R that)
if (is(R == SList))
{
swap(this.head, that.head);
swap(this.allocator_, that.allocator_);
return this;
}
///
@nogc nothrow pure @safe unittest
{
{
auto l1 = SList!int([5, 4, 9]);
auto l2 = SList!int([9, 4]);
l1 = l2;
assert(l1 == l2);
}
{
auto l1 = SList!int([5, 4, 9]);
auto l2 = SList!int([9, 4]);
l1 = SList!int([9, 4]);
assert(l1 == l2);
}
}
/**
* Assigns an input range.
*
* Params:
* R = Type of the initial range.
* that = Values to initialize the list with.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(R)(R that) @trusted
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
{
Entry** next = &this.head;
foreach (ref e; that)
{
if (*next is null)
{
*next = allocator.make!Entry(e);
}
else
{
(*next).content = e;
}
next = &(*next).next;
}
remove(Range(*next));
return this;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int([5, 4, 9]);
auto l2 = SList!int([9, 4]);
l1 = l2[];
assert(l1 == l2);
}
/**
* Assigns a static array.
*
* Params:
* R = Static array size.
* that = Values to initialize the list with.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(size_t R)(T[R] that)
{
return opAssign!(T[])(that[]);
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int([5, 4, 9]);
auto l2 = SList!int([9, 4]);
l1 = [9, 4];
assert(l1 == l2);
}
mixin DefaultAllocator;
}
///
@nogc nothrow pure @safe unittest
{
SList!int l;
size_t i;
l.insertFront(5);
l.insertFront(4);
l.insertFront(9);
foreach (e; l)
{
assert(i != 0 || e == 9);
assert(i != 1 || e == 4);
assert(i != 2 || e == 5);
++i;
}
assert(i == 3);
}
@nogc nothrow pure @safe unittest
{
interface Stuff
{
}
static assert(is(SList!Stuff));
}
@nogc nothrow pure @safe unittest
{
auto l = SList!int(0, 0);
assert(l.empty);
}
// foreach called using opIndex().
@nogc nothrow pure @safe unittest
{
SList!int l;
size_t i;
l.insertFront(5);
l.insertFront(4);
l.insertFront(9);
foreach (e; l)
{
assert(i != 0 || e == 9);
assert(i != 1 || e == 4);
assert(i != 2 || e == 5);
++i;
}
}
@nogc nothrow pure @safe unittest
{
auto l1 = SList!int();
auto l2 = SList!int([9, 4]);
l1 = l2[];
assert(l1 == l2);
}
/**
* Bidirectional range for the $(D_PSYMBOL DList).
*
* Params:
* L = List type.
*/
struct DRange(L)
{
private alias E = typeof(L.head.content);
private alias EntryPointer = typeof(L.head);
private EntryPointer* head;
private EntryPointer* tail;
invariant
{
assert(this.head !is null);
assert(this.tail !is null);
}
private this(ref EntryPointer head, ref EntryPointer tail) @trusted
{
this.head = &head;
this.tail = &tail;
}
@disable this();
@property DRange save()
{
return this;
}
@property bool empty() const
{
return *this.head is null || *this.head is (*this.tail).next;
}
@property ref inout(E) front() inout
in
{
assert(!empty);
}
do
{
return (*this.head).content;
}
@property ref inout(E) back() inout
in
{
assert(!empty);
}
do
{
return (*this.tail).content;
}
void popFront() @trusted
in
{
assert(!empty);
}
do
{
this.head = &(*this.head).next;
}
void popBack() @trusted
in
{
assert(!empty);
}
do
{
this.tail = &(*this.tail).prev;
}
DRange opIndex()
{
return typeof(return)(*this.head, *this.tail);
}
L.ConstRange opIndex() const
{
return typeof(return)(*this.head, *this.tail);
}
}
/**
* Doubly-linked list.
*
* $(D_PSYMBOL DList) can be also used as a queue. Elements can be enqueued
* with $(D_PSYMBOL DList.insertBack). To process the queue a `for`-loop comes
* in handy:
*
* ---
* for (; !dlist.empty; dlist.removeFront())
* {
* do_something_with(dlist.front);
* }
* ---
*
* Params:
* T = Content type.
*/
struct DList(T)
{
/// The range types for $(D_PSYMBOL DList).
alias Range = DRange!DList;
/// ditto
alias ConstRange = DRange!(const DList);
private alias Entry = DEntry!T;
// 0th and the last elements of the list.
private Entry* head, tail;
invariant
{
assert((this.tail is null && this.head is null)
|| (this.tail !is null && this.head !is null));
assert(this.tail is null || this.tail.next is null);
assert(this.head is null || this.head.prev is null);
}
/**
* Creates a new $(D_PSYMBOL DList) with the elements from a static array.
*
* Params:
* R = Static array size.
* init = Values to initialize the list with.
* allocator = Allocator.
*/
this(size_t R)(T[R] init, shared Allocator allocator = defaultAllocator)
{
this(allocator);
insertFront(init[]);
}
///
@nogc nothrow pure @safe unittest
{
auto l = DList!int([5, 8, 15]);
assert(l.front == 5);
}
/**
* Creates a new $(D_PSYMBOL DList) with the elements from an input range.
*
* Params:
* R = Type of the initial range.
* init = Values to initialize the list with.
* allocator = Allocator.
*/
this(R)(R init, shared Allocator allocator = defaultAllocator)
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
{
this(allocator);
insertFront(init);
}
/**
* Creates a new $(D_PSYMBOL DList).
*
* Params:
* len = Initial length of the list.
* init = Initial value to fill the list with.
* allocator = Allocator.
*/
this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{
this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry(init);
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry(init);
next.next.prev = next;
next = next.next;
}
this.tail = next;
}
///
@nogc nothrow pure @safe unittest
{
auto l = DList!int(2, 3);
assert(l.front == 3);
assert(l.back == 3);
}
/// ditto
this(size_t len, shared Allocator allocator = defaultAllocator)
{
this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next.next.prev = next;
next = next.next;
}
this.tail = next;
}
///
@nogc nothrow pure @safe unittest
{
auto l = DList!int(2);
assert(l.front == 0);
}
/// ditto
this(shared Allocator allocator)
in
{
assert(allocator !is null);
}
do
{
this.allocator_ = allocator;
}
/**
* Initializes this list from another one.
*
* If $(D_PARAM init) is passed by value, it won't be copied, but moved.
* If the allocator of ($D_PARAM init) matches $(D_PARAM allocator),
* $(D_KEYWORD this) will just take the ownership over $(D_PARAM init)'s
* storage, otherwise, the storage will be allocated with
* $(D_PARAM allocator) and all elements will be moved;
* $(D_PARAM init) will be destroyed at the end.
*
* If $(D_PARAM init) is passed by reference, it will be copied.
*
* Params:
* R = Source list type.
* init = Source list.
* allocator = Allocator.
*/
this(R)(ref R init, shared Allocator allocator = defaultAllocator)
if (is(Unqual!R == DList))
{
this(init[], allocator);
}
/// ditto
this(R)(R init, shared Allocator allocator = defaultAllocator) @trusted
if (is(R == DList))
{
this(allocator);
if (allocator is init.allocator)
{
this.head = init.head;
this.tail = init.tail;
init.head = this.tail = null;
}
else
{
Entry* next;
for (auto current = init.head; current !is null; current = current.next)
{
if (this.head is null)
{
this.head = allocator.make!Entry(move(current.content));
next = this.head;
}
else
{
next.next = allocator.make!Entry(move(current.content));
next.next.prev = next;
next = next.next;
}
}
this.tail = next;
}
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 1, 234]);
auto l2 = DList!int(l1);
assert(l1 == l2);
}
/**
* Removes all elements from the list.
*/
~this()
{
clear();
}
static if (isCopyable!T)
{
this(this)
{
auto list = typeof(this)(this[], this.allocator);
this.head = list.head;
this.tail = list.tail;
list.head = list .tail = null;
}
}
else
{
@disable this(this);
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 1, 234]);
auto l2 = l1;
assert(l1 == l2);
}
/**
* Removes all contents from the list.
*/
void clear()
{
while (!empty)
{
removeFront();
}
}
///
@nogc nothrow pure @safe unittest
{
DList!int l = DList!int([8, 5]);
assert(!l.empty);
l.clear();
assert(l.empty);
}
/**
* Returns: First element.
*
* Precondition: $(D_INLINECODE !empty).
*/
@property ref inout(T) front() inout
in
{
assert(!empty);
}
do
{
return this.head.content;
}
/**
* Returns: Last element.
*
* Precondition: $(D_INLINECODE !empty).
*/
@property ref inout(T) back() inout
in
{
assert(!empty);
}
do
{
return this.tail.content;
}
///
@nogc nothrow pure @safe unittest
{
auto l = DList!int([25]);
assert(l.front == 25);
assert(l.back == 25);
l.insertFront(30);
assert(l.front == 30);
assert(l.back == 25);
}
private size_t moveFront(R)(ref Entry* head, ref R el) @trusted
if (isImplicitlyConvertible!(R, T))
{
auto temp = cast(Entry*) allocator.allocate(Entry.sizeof);
el.moveEmplace(temp.content);
temp.next = head;
if (this.tail is null)
{
temp.prev = null;
this.tail = temp;
}
else
{
temp.prev = head.prev;
head.prev = temp;
}
head = temp;
return 1;
}
// Creates a lsit of linked entries from a range.
// Returns count of the elements in the list.
private size_t makeList(R)(ref R el, out Entry* head, out Entry* tail) @trusted
out (retLength)
{
assert((retLength == 0 && head is null && tail is null)
|| (retLength > 0 && head !is null && tail !is null));
}
do
{
size_t retLength;
if (!el.empty)
{
head = tail = allocator.make!Entry(el.front);
el.popFront();
retLength = 1;
}
foreach (ref e; el)
{
tail.next = allocator.make!Entry(e);
tail.next.prev = tail;
tail = tail.next;
++retLength;
}
return retLength;
}
/**
* Inserts a new element at the beginning.
*
* Params:
* R = Type of the inserted value(s).
* el = New element(s).
*
* Returns: The number of elements inserted.
*/
size_t insertFront(R)(R el)
if (isImplicitlyConvertible!(R, T))
{
return moveFront(this.head, el);
}
/// ditto
size_t insertFront(R)(ref R el) @trusted
if (isImplicitlyConvertible!(R, T))
{
if (this.tail is null)
{
this.head = this.tail = allocator.make!Entry(el);
}
else
{
this.head.prev = allocator.make!Entry(el, this.head);
this.head = this.head.prev;
}
return 1;
}
///
@nogc nothrow pure @safe unittest
{
DList!int l;
int value = 5;
l.insertFront(value);
assert(l.front == value);
assert(l.back == value);
value = 8;
l.insertFront(value);
assert(l.front == 8);
assert(l.back == 5);
}
/// ditto
size_t insertFront(R)(R el)
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
{
Entry* begin, end;
const inserted = makeList(el, begin, end);
if (this.head is null)
{
this.tail = end;
}
if (begin !is null)
{
end.next = this.head;
this.head = begin;
}
return inserted;
}
/// ditto
size_t insertFront(size_t R)(T[R] el)
{
return insertFront!(T[])(el[]);
}
///
@nogc nothrow pure @safe unittest
{
DList!int l1;
assert(l1.insertFront(8) == 1);
assert(l1.front == 8);
assert(l1.back == 8);
assert(l1.insertFront(9) == 1);
assert(l1.front == 9);
assert(l1.back == 8);
DList!int l2;
assert(l2.insertFront([25, 30, 15]) == 3);
assert(l2.front == 25);
assert(l2.back == 15);
l2.insertFront(l1[]);
assert(l2.front == 9);
assert(l2.back == 15);
}
private size_t moveBack(R)(ref Entry* tail, ref R el) @trusted
if (isImplicitlyConvertible!(R, T))
{
auto temp = cast(Entry*) allocator.allocate(Entry.sizeof);
el.moveEmplace(temp.content);
temp.prev = tail;
if (this.head is null)
{
temp.next = null;
this.head = this.tail = temp;
}
else
{
temp.next = tail.next;
tail.next = temp;
}
tail = temp;
return 1;
}
/**
* Inserts a new element at the end.
*
* Params:
* R = Type of the inserted value(s).
* el = New element(s).
*
* Returns: The number of elements inserted.
*/
size_t insertBack(R)(R el) @trusted
if (isImplicitlyConvertible!(R, T))
{
return moveBack(this.tail, el);
}
/// ditto
size_t insertBack(R)(ref R el) @trusted
if (isImplicitlyConvertible!(R, T))
{
if (this.tail is null)
{
this.head = this.tail = allocator.make!Entry(el);
}
else
{
this.tail.next = allocator.make!Entry(el, null, this.tail);
this.tail = this.tail.next;
}
return 1;
}
///
@nogc nothrow pure @safe unittest
{
DList!int l;
int value = 5;
l.insertBack(value);
assert(l.front == value);
assert(l.back == value);
value = 8;
l.insertBack(value);
assert(l.front == 5);
assert(l.back == value);
}
/// ditto
size_t insertBack(R)(R el) @trusted
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
{
Entry* begin, end;
const inserted = makeList(el, begin, end);
if (this.tail is null)
{
this.head = begin;
}
else
{
this.tail.next = begin;
}
if (begin !is null)
{
this.tail = end;
}
return inserted;
}
/// ditto
size_t insertBack(size_t R)(T[R] el)
{
return insertBack!(T[])(el[]);
}
///
@nogc nothrow pure @safe unittest
{
DList!int l1;
assert(l1.insertBack(8) == 1);
assert(l1.back == 8);
assert(l1.insertBack(9) == 1);
assert(l1.back == 9);
DList!int l2;
assert(l2.insertBack([25, 30, 15]) == 3);
assert(l2.back == 15);
l2.insertBack(l1[]);
assert(l2.back == 9);
}
/// ditto
alias insert = insertBack;
private bool checkRangeBelonging(ref const Range r) const
{
version (assert)
{
const(Entry)* pos = this.head;
for (; pos !is *r.head && pos !is null; pos = pos.next)
{
}
return pos is *r.head;
}
else
{
return true;
}
}
/**
* Inserts new elements before $(D_PARAM r).
*
* Params:
* R = Type of the inserted value(s).
* r = Range extracted from this list.
* el = New element(s).
*
* Returns: The number of elements inserted.
*
* Precondition: $(D_PARAM r) is extracted from this list.
*/
size_t insertBefore(R)(Range r, R el)
if (isImplicitlyConvertible!(R, T))
in
{
assert(checkRangeBelonging(r));
}
do
{
return moveFront(*r.head, el);
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([234, 5, 1]);
auto l2 = DList!int([5, 1]);
l2.insertBefore(l2[], 234);
assert(l1 == l2);
}
/// ditto
size_t insertBefore()(Range r, ref T el) @trusted
in
{
assert(checkRangeBelonging(r));
}
do
{
auto temp = allocator.make!Entry(el, *r.head);
if (this.tail is null)
{
this.tail = temp;
}
else
{
temp.prev = (*r.head).prev;
(*r.head).prev = temp;
}
*r.head = temp;
return 1;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([234, 5, 1]);
auto l2 = DList!int([5, 1]);
int var = 234;
l2.insertBefore(l2[], var);
assert(l1 == l2);
}
/// ditto
size_t insertBefore(R)(Range r, R el)
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
in
{
assert(checkRangeBelonging(r));
}
do
{
size_t inserted;
foreach (e; el)
{
inserted += insertBefore(r, e);
r.popFront();
}
return inserted;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 234, 30, 1]);
auto l2 = DList!int([5, 1]);
auto r = l2[];
r.popFront();
l2.insertBefore(r, [234, 30]);
assert(l1 == l2);
}
/**
* Inserts elements from a static array before $(D_PARAM r).
*
* Params:
* R = Static array size.
* r = Range extracted from this list.
* el = New elements.
*
* Returns: The number of elements inserted.
*
* Precondition: $(D_PARAM r) is extracted from this list.
*/
size_t insertBefore(size_t R)(Range r, T[R] el)
{
return insertBefore!(T[])(r, el[]);
}
/**
* Inserts new elements after $(D_PARAM r).
*
* Params:
* R = Type of the inserted value(s).
* r = Range extracted from this list.
* el = New element(s).
*
* Returns: The number of elements inserted.
*
* Precondition: $(D_PARAM r) is extracted from this list.
*/
size_t insertAfter(R)(Range r, R el) @trusted
if (isImplicitlyConvertible!(R, T))
in
{
assert(checkRangeBelonging(r));
}
do
{
return moveBack(*r.tail, el);
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 234, 1]);
auto l2 = DList!int([5, 1]);
auto r = l2[];
r.popBack();
l2.insertAfter(r, 234);
assert(l1 == l2);
}
/// ditto
size_t insertAfter()(Range r, ref T el) @trusted
in
{
assert(checkRangeBelonging(r));
}
do
{
auto temp = allocator.make!Entry(el, null, *r.tail);
if (this.head is null)
{
this.head = temp;
}
else
{
temp.next = (*r.tail).next;
(*r.tail).next = temp;
}
*r.tail = temp;
return 1;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 1, 234]);
auto l2 = DList!int([5, 1]);
int var = 234;
l2.insertAfter(l2[], var);
assert(l1 == l2);
}
/// ditto
size_t insertAfter(R)(Range r, R el)
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
in
{
assert(checkRangeBelonging(r));
}
do
{
size_t inserted;
foreach (e; el)
{
inserted += insertAfter(r, e);
}
return inserted;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 234, 30, 1]);
auto l2 = DList!int([5, 1]);
auto r = l2[];
r.popBack();
l2.insertAfter(r, [234, 30]);
assert(l1 == l2);
}
/**
* Inserts elements from a static array after $(D_PARAM r).
*
* Params:
* R = Static array size.
* r = Range extracted from this list.
* el = New elements.
*
* Returns: The number of elements inserted.
*
* Precondition: $(D_PARAM r) is extracted from this list.
*/
size_t insertAfter(size_t R)(Range r, T[R] el)
{
return insertAfter!(T[])(r, el[]);
}
/**
* Comparison for equality.
*
* Params:
* that = The list to compare with.
*
* Returns: $(D_KEYWORD true) if the lists are equal, $(D_KEYWORD false)
* otherwise.
*/
bool opEquals()(auto ref typeof(this) that) inout
{
return equal(this[], that[]);
}
///
@nogc nothrow pure @safe unittest
{
DList!int l1, l2;
l1.insertFront(8);
l1.insertFront(9);
l2.insertFront(8);
l2.insertFront(10);
assert(l1 != l2);
l1.removeFront();
assert(l1 != l2);
l2.removeFront();
assert(l1 == l2);
l1.removeFront();
assert(l1 != l2);
l2.removeFront();
assert(l1 == l2);
}
/**
* Returns: $(D_KEYWORD true) if the list is empty.
*/
@property bool empty() const
{
return this.head is null;
}
/**
* Removes the front or back element.
*
* Precondition: $(D_INLINECODE !empty)
*/
void removeFront()
in
{
assert(!empty);
}
do
{
auto n = this.head.next;
allocator.dispose(this.head);
this.head = n;
if (this.head is null)
{
this.tail = null;
}
else
{
this.head.prev = null;
}
}
///
@nogc nothrow pure @safe unittest
{
DList!int l;
l.insertFront(8);
l.insertFront(9);
assert(l.front == 9);
l.removeFront();
assert(l.front == 8);
l.removeFront();
assert(l.empty);
}
/// ditto
void removeBack()
in
{
assert(!empty);
}
do
{
auto n = this.tail.prev;
allocator.dispose(this.tail);
this.tail = n;
if (this.tail is null)
{
this.head = null;
}
else
{
this.tail.next = null;
}
}
///
@nogc nothrow pure @safe unittest
{
auto l = DList!int([9, 8]);
assert(l.back == 8);
l.removeBack();
assert(l.back == 9);
l.removeFront();
assert(l.empty);
}
/**
* Removes $(D_PARAM howMany) elements from the list.
*
* Unlike $(D_PSYMBOL removeFront()) and $(D_PSYMBOL removeBack()), this
* method doesn't fail, if it could not remove $(D_PARAM howMany) elements.
* Instead, if $(D_PARAM howMany) is greater than the list length, all
* elements are removed.
*
* Params:
* howMany = How many elements should be removed.
*
* Returns: The number of elements removed.
*/
size_t removeFront(size_t howMany)
out (removed)
{
assert(removed <= howMany);
}
do
{
size_t i;
for (; i < howMany && !empty; ++i)
{
removeFront();
}
return i;
}
///
@nogc nothrow pure @safe unittest
{
DList!int l = DList!int([8, 5, 4]);
assert(l.removeFront(0) == 0);
assert(l.removeFront(2) == 2);
assert(l.removeFront(3) == 1);
assert(l.removeFront(3) == 0);
}
/// ditto
size_t removeBack(size_t howMany)
out (removed)
{
assert(removed <= howMany);
}
do
{
size_t i;
for (; i < howMany && !empty; ++i)
{
removeBack();
}
return i;
}
///
@nogc nothrow pure @safe unittest
{
DList!int l = DList!int([8, 5, 4]);
assert(l.removeBack(0) == 0);
assert(l.removeBack(2) == 2);
assert(l.removeBack(3) == 1);
assert(l.removeBack(3) == 0);
}
/**
* Removes $(D_PARAM r) from the list.
*
* Params:
* r = The range to remove.
*
* Returns: Range spanning the elements just after $(D_PARAM r).
*
* Precondition: $(D_PARAM r) is extracted from this list.
*/
Range remove(Range r)
in
{
assert(checkRangeBelonging(r));
}
do
{
// Save references to the elements before and after the range.
Entry* headPrev;
Entry** tailNext;
if (*r.tail !is null)
{
tailNext = &(*r.tail).next;
}
if (*r.head !is null)
{
headPrev = (*r.head).prev;
}
// Remove the elements.
Entry* e = *r.head;
while (e !is *tailNext)
{
auto next = e.next;
allocator.dispose(e);
e = next;
}
// Connect the elements before and after the removed range.
if (*tailNext !is null)
{
(*tailNext).prev = headPrev;
}
else
{
this.tail = headPrev;
}
if (headPrev !is null)
{
headPrev.next = *tailNext;
}
else
{
this.head = *tailNext;
}
r.head = tailNext;
r.tail = &this.tail;
return r;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 234, 30, 1]);
auto l2 = DList!int([5]);
auto r = l1[];
r.popFront();
assert(l1.remove(r).empty);
assert(l1 == l2);
}
/**
* Removes the front or back element of the $(D_PARAM range) from the list
* respectively.
*
* Params:
* range = Range whose element should be removed.
*
* Returns: $(D_PSYMBOL range) with its front or back element removed.
*
* Precondition: $(D_INLINECODE !range.empty).
* $(D_PARAM range) is extracted from this list.
*/
Range popFirstOf(Range range)
in
{
assert(!range.empty);
}
do
{
remove(Range(*range.head, *range.head));
return range;
}
/// ditto
Range popLastOf(Range range)
in
{
assert(!range.empty);
}
do
{
remove(Range(*range.tail, *range.tail));
return range;
}
///
@nogc nothrow pure @safe unittest
{
auto list = DList!int([5, 234, 30]);
auto range = list[];
range.popFront();
range = list.popFirstOf(range);
assert(range.front == 30);
assert(range.back == 30);
assert(list.popLastOf(range).empty);
assert(list[].front == 5);
assert(list[].back == 5);
}
/**
* Returns: Range that iterates over all elements of the container, in
* forward order.
*/
Range opIndex()
{
return typeof(return)(this.head, this.tail);
}
/// ditto
ConstRange opIndex() const
{
return typeof(return)(this.head, this.tail);
}
/**
* Assigns another list.
*
* If $(D_PARAM that) is passed by value, it won't be copied, but moved.
* This list will take the ownership over $(D_PARAM that)'s storage and
* the allocator.
*
* If $(D_PARAM that) is passed by reference, it will be copied.
*
* Params:
* R = Content type.
* that = The value should be assigned.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(R)(ref R that)
if (is(Unqual!R == DList))
{
return this = that[];
}
/// ditto
ref typeof(this) opAssign(R)(R that)
if (is(R == DList))
{
swap(this.head, that.head);
swap(this.tail, that.tail);
swap(this.allocator_, that.allocator_);
return this;
}
/**
* Assigns an input range.
*
* Params:
* R = Type of the initial range.
* that = Values to initialize the list with.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(R)(R that) @trusted
if (!isInfinite!R
&& isInputRange!R
&& isImplicitlyConvertible!(ElementType!R, T))
{
Entry** next = &this.head;
while (!that.empty && *next !is null)
{
(*next).content = that.front;
next = &(*next).next;
that.popFront();
}
if (that.empty)
{
remove(Range(*next, this.tail));
}
else
{
insertBack(that);
}
return this;
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 4, 9]);
auto l2 = DList!int([9, 4]);
l1 = l2[];
assert(l1 == l2);
}
/**
* Assigns a static array.
*
* Params:
* R = Static array size.
* that = Values to initialize the list with.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(size_t R)(T[R] that)
{
return opAssign!(T[])(that[]);
}
///
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 4, 9]);
auto l2 = DList!int([9, 4]);
l1 = [9, 4];
assert(l1 == l2);
}
mixin DefaultAllocator;
}
///
@nogc nothrow pure @safe unittest
{
DList!int l;
size_t i;
l.insertFront(5);
l.insertFront(4);
l.insertFront(9);
foreach (e; l)
{
assert(i != 0 || e == 9);
assert(i != 1 || e == 4);
assert(i != 2 || e == 5);
++i;
}
assert(i == 3);
}
@nogc nothrow pure @safe unittest
{
class A
{
}
static assert(is(SList!(A*)));
static assert(is(DList!(A*)));
}
// Removes all elements
@nogc nothrow pure @safe unittest
{
auto l = DList!int([5]);
assert(l.remove(l[]).empty);
}
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 234, 30, 1]);
auto l2 = DList!int([5, 1]);
auto r = l1[];
r.popFront();
r.popBack();
assert(r.front == 234);
assert(r.back == 30);
assert(!l1.remove(r).empty);
assert(l1 == l2);
}
@nogc nothrow pure @safe unittest
{
auto l = DList!int(0, 0);
assert(l.empty);
}
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 234]);
assert(l1.head is l1.head.next.prev);
}
@nogc nothrow pure @safe unittest
{
DList!int l;
l.insertAfter(l[], 234);
assert(l.front == 234);
assert(l.back == 234);
}
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int();
auto l2 = DList!int([9, 4]);
l1 = l2[];
assert(l1 == l2);
}
// Sets the new head
@nogc nothrow pure @safe unittest
{
auto l1 = DList!int([5, 234, 30, 1]);
auto l2 = DList!int([1]);
auto r = l1[];
r.popBack();
assert(!l1.remove(r).empty);
assert(l1 == l2);
}
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(is(SList!NonCopyable));
static assert(is(DList!NonCopyable));
}