16 Commits

Author SHA1 Message Date
c293c6c809 container.array: Fix assigning non-copyable values
Fix #59.
2018-12-18 05:37:52 +01:00
e93898d837 Update dmd to 2.083.1 2018-12-17 18:04:36 +01:00
49d7452b33 Make containers work with non-copyable elements
It is the first step. The containers can be at least created with
non-copyable structs without compilation errors now.
Fix #69.
2018-11-24 06:25:55 +01:00
884dc30953 Fix emplacing POD structs 2018-11-23 13:36:31 +01:00
e67a05138e range.primitive: Support non copyable elements
... in all ranges.
2018-11-19 21:37:58 +01:00
7585bf59e7 Add test.stub. Fix #51 2018-11-18 06:32:10 +01:00
0a121d9d19 Disable length when taking from a lengthless range
Fix #79.
2018-11-13 08:29:51 +01:00
9e6f5c3105 Add algorithm.mutation.rotate 2018-11-12 07:54:52 +01:00
3f66782368 Add support for DMD 2.083.0 2018-11-11 07:27:25 +01:00
3c8f6e3435 Merge remote-tracking branch 'n8sh/take-slice' 2018-11-07 07:08:52 +01:00
ee8b7ef719 Merge remote-tracking branch 'retro-retro' 2018-11-06 16:59:57 +01:00
6b22cd60df take(take(range,...),n) is take(range, n) and use slicing in take like in takeExactly
Also take!R is the same as takeExactly!R when isInfinite!R.
2018-11-05 22:49:10 -05:00
c290c85088 retro(retro(range)) is range 2018-11-05 18:43:58 -05:00
65e2e344df Use inout in tanya.range.array functions
This is to reduce distinct generated functions in final executable.
Also add `scope` and `return` to function parameters.
2018-11-05 16:40:48 -05:00
184d307e40 Add range primitive sameHead 2018-11-04 06:31:38 +01:00
8aec781e2a memory.op.equal: Fix parameter documentation 2018-10-30 12:57:09 +01:00
21 changed files with 1113 additions and 581 deletions

View File

@ -7,19 +7,27 @@ os:
language: d language: d
d: d:
- dmd-2.083.1
- dmd-2.082.1 - dmd-2.082.1
env: env:
global:
- LATEST=2.083.1
matrix: matrix:
- ARCH=x86_64 - ARCH=x86_64
- ARCH=x86 - ARCH=x86
matrix: matrix:
include: include:
- name: "D-Scanner" - name: D-Scanner
d: dmd-2.082.1 d: dmd-$LATEST
env: DSCANNER=0.5.11 env: DSCANNER=0.5.11
os: linux os: linux
- name: DDoc
d: dmd-$LATEST
env: DDOC=true
os: linux
addons: addons:
apt: apt:
@ -27,13 +35,15 @@ addons:
- gcc-multilib - gcc-multilib
before_script: before_script:
- if [ "`$DC --version | head -n 1 | grep 'v2.082.1'`" ] && - if [ "`$DC --version | head -n 1 | grep v$LATEST`" ] &&
[ -z "$DSCANNER" ]; then [ -z "$DSCANNER$DDOC" ]; then
export UNITTEST="unittest-cov"; export UNITTEST="unittest-cov";
fi fi
script: script:
- if [ -z "$DSCANNER" ]; then - if [ -n "$DDOC" ]; then
dub build -b ddox --compiler=$DC;
elif [ -z "$DSCANNER" ]; then
dub test -b ${UNITTEST:-unittest} --arch=$ARCH --compiler=$DC; dub test -b ${UNITTEST:-unittest} --arch=$ARCH --compiler=$DC;
else else
dub fetch dscanner --version=$DSCANNER; dub fetch dscanner --version=$DSCANNER;

View File

@ -175,8 +175,8 @@ parameter is used)
| DMD | GCC | | DMD | GCC |
|:-------:|:---------------:| |:-------:|:---------------:|
| 2.082.1 | gdc-8 (2.081.2) | | 2.083.1 | gdc-8 (2.081.2) |
| | gdc-7 (2.081.2) | | 2.082.1 | gdc-7 (2.081.2) |
### Release management ### Release management

View File

@ -3,6 +3,12 @@ os: Visual Studio 2015
environment: environment:
matrix: matrix:
- DC: dmd
DVersion: 2.083.1
arch: x64
- DC: dmd
DVersion: 2.083.1
arch: x86
- DC: dmd - DC: dmd
DVersion: 2.082.1 DVersion: 2.082.1
arch: x64 arch: x64

View File

@ -3,13 +3,13 @@
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/** /**
* Range adapters. * Iteration algorithms.
* *
* A range adapter wraps another range and modifies the way, how the original * These algorithms wrap other ranges and modify the way, how the original
* range is iterated, or the order in which its elements are accessed. * range is iterated, or the order in which its elements are accessed.
* *
* All adapters are lazy algorithms, they request the next element of the * All algorithms in this module are lazy, they request the next element of the
* adapted range on demand. * original range on demand.
* *
* Copyright: Eugene Wissner 2018. * Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/, * License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
@ -23,8 +23,9 @@ module tanya.algorithm.iteration;
import tanya.algorithm.comparison; import tanya.algorithm.comparison;
import tanya.algorithm.mutation; import tanya.algorithm.mutation;
import tanya.range; import tanya.range;
version (unittest) import tanya.test.stub;
private mixin template Take(R, bool exactly) private struct Take(R, bool exactly)
{ {
private R source; private R source;
size_t length_; size_t length_;
@ -73,13 +74,16 @@ private mixin template Take(R, bool exactly)
} }
else else
{ {
return length == 0 || this.source.empty; return this.length_ == 0 || this.source.empty;
} }
} }
@property size_t length() static if (exactly || hasLength!R)
{ {
return this.length_; @property size_t length()
{
return this.length_;
}
} }
static if (hasAssignableElements!R) static if (hasAssignableElements!R)
@ -187,6 +191,22 @@ private mixin template Take(R, bool exactly)
} }
} }
} }
static if (!exactly && hasSlicing!R)
{
auto opSlice(size_t i, size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
do
{
return typeof(this)(this.source[i .. j], length);
}
}
version (unittest) static assert(isInputRange!Take);
} }
/** /**
@ -212,25 +232,34 @@ private mixin template Take(R, bool exactly)
auto take(R)(R range, size_t n) auto take(R)(R range, size_t n)
if (isInputRange!R) if (isInputRange!R)
{ {
static struct Take static if (hasSlicing!R && hasLength!R)
{ {
mixin .Take!(R, false); if (range.length <= n)
return range;
static if (hasSlicing!R) else
{ return range[0 .. n];
auto opSlice(size_t i, size_t j) }
in // Special case: take(take(...), n)
{ else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
assert(i <= j); {
assert(j <= length); if (n > range.length_)
} n = range.length_;
do static if (exact)
{ // `take(takeExactly(r, n0), n)` is rewritten `takeExactly(r, min(n0, n))`.
return typeof(this)(this.source[i .. j], length); return Take!(RRange, true)(range.source, n);
} else
} // `take(take(r, n0), n)` is rewritten `take(r, min(n0, n))`.
return Take!(RRange, false)(range.source, n);
}
else static if (isInfinite!R)
{
// If the range is infinite then `take` is the same as `takeExactly`.
return Take!(R, true)(range, n);
}
else
{
return Take!(R, false)(range, n);
} }
return Take(range, n);
} }
/// ///
@ -290,6 +319,18 @@ if (isInputRange!R)
assert(t.empty); assert(t.empty);
} }
// length is unknown when taking from a range without length
@nogc nothrow pure @safe unittest
{
static struct R
{
mixin InputRangeStub;
}
auto actual = take(R(), 100);
static assert(!hasLength!(typeof(actual)));
}
/** /**
* Takes exactly $(D_PARAM n) elements from $(D_PARAM range). * Takes exactly $(D_PARAM n) elements from $(D_PARAM range).
* *
@ -315,13 +356,15 @@ if (isInputRange!R)
{ {
return range[0 .. n]; return range[0 .. n];
} }
// Special case: takeExactly(take(range, ...), n) is takeExactly(range, n)
else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
{
assert(n <= range.length_);
return Take!(RRange, true)(range.source, n);
}
else else
{ {
static struct TakeExactly return Take!(R, true)(range, n);
{
mixin Take!(R, true);
}
return TakeExactly(range, n);
} }
} }
@ -408,6 +451,114 @@ if (isInputRange!R)
} }
} }
// Reverse-access-order range returned by `retro`.
private struct Retro(Range)
{
Range source;
@disable this();
private this(Range source)
{
this.source = source;
}
Retro save()
{
return this;
}
@property auto ref front()
in (!empty)
{
return this.source.back;
}
void popFront()
in (!empty)
{
this.source.popBack();
}
@property auto ref back()
in (!empty)
{
return this.source.front;
}
void popBack()
in (!empty)
{
this.source.popFront();
}
@property bool empty()
{
return this.source.empty;
}
static if (hasLength!Range)
{
@property size_t length()
{
return this.source.length;
}
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
auto ref opIndex(size_t i)
in (i < length)
{
return this.source[$ - ++i];
}
}
static if (hasAssignableElements!Range)
{
@property void front(ref ElementType!Range value)
in (!empty)
{
this.source.back = value;
}
@property void front(ElementType!Range value)
in (!empty)
{
this.source.back = move(value);
}
@property void back(ref ElementType!Range value)
in (!empty)
{
this.source.front = value;
}
@property void back(ElementType!Range value)
in (!empty)
{
this.source.front = move(value);
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
void opIndexAssign(ref ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = value;
}
void opIndexAssign(ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = move(value);
}
}
}
version (unittest) static assert(isBidirectionalRange!Retro);
}
/** /**
* Iterates a bidirectional range backwards. * Iterates a bidirectional range backwards.
* *
@ -420,115 +571,14 @@ if (isInputRange!R)
* *
* Returns: Bidirectional range with the elements order reversed. * Returns: Bidirectional range with the elements order reversed.
*/ */
auto retro(Range)(Range range) auto retro(Range)(return Range range)
if (isBidirectionalRange!Range) if (isBidirectionalRange!Range)
{ {
static struct Retro // Special case: retro(retro(range)) is range
{ static if (is(Range == Retro!RRange, RRange))
Range source; return range.source;
else
@disable this(); return Retro!Range(range);
private this(Range source)
{
this.source = source;
}
Retro save()
{
return this;
}
@property auto ref front()
in (!empty)
{
return this.source.back;
}
void popFront()
in (!empty)
{
this.source.popBack();
}
@property auto ref back()
in (!empty)
{
return this.source.front;
}
void popBack()
in (!empty)
{
this.source.popFront();
}
@property bool empty()
{
return this.source.empty;
}
static if (hasLength!Range)
{
@property size_t length()
{
return this.source.length;
}
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
auto ref opIndex(size_t i)
in (i < length)
{
return this.source[$ - ++i];
}
}
static if (hasAssignableElements!Range)
{
@property void front(ref ElementType!Range value)
in (!empty)
{
this.source.back = value;
}
@property void front(ElementType!Range value)
in (!empty)
{
this.source.back = move(value);
}
@property void back(ref ElementType!Range value)
in (!empty)
{
this.source.front = value;
}
@property void back(ElementType!Range value)
in (!empty)
{
this.source.front = move(value);
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
void opIndexAssign(ref ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = value;
}
void opIndexAssign(ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = move(value);
}
}
}
}
return Retro(range);
} }
/// ///

View File

@ -19,6 +19,7 @@ static import tanya.memory.op;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range; import tanya.range;
version (unittest) import tanya.test.stub;
private void deinitialize(bool zero, T)(ref T value) private void deinitialize(bool zero, T)(ref T value)
{ {
@ -554,10 +555,6 @@ if (isInputRange!Range && hasLvalueElements!Range)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct NonCopyable
{
@disable this(this);
}
NonCopyable[] nonCopyable; NonCopyable[] nonCopyable;
initializeAll(nonCopyable); initializeAll(nonCopyable);
} }
@ -607,3 +604,89 @@ if (isInputRange!Range && hasLvalueElements!Range)
assert(counter == 2); assert(counter == 2);
} }
/**
* Rotates the elements of a union of two ranges.
*
* Performs a left rotation on the given ranges, as if it would be a signle
* range, so that [`front.front`, `back.front`$(RPAREN) is a valid range, that
* is $(D_PARAM back) would continue $(D_PARAM front).
*
* The elements are moved so, that the first element of $(D_PARAM back) becomes
* the first element of $(D_PARAM front) without changing the relative order of
* their elements.
*
* Params:
* Range = Range type.
* front = Left half.
* back = Right half.
*/
void rotate(Range)(Range front, Range back)
if (isForwardRange!Range && hasSwappableElements!Range)
{
auto next = back.save();
while (!front.empty && !next.empty && !sameHead(front, next))
{
swap(front.front, next.front);
front.popFront();
next.popFront();
if (next.empty)
{
next = back.save();
}
else if (front.empty)
{
front = back.save();
back = next.save();
}
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[7] expected = [1, 2, 3, 4, 5, 6, 7];
int[7] actual = [5, 6, 3, 4, 1, 2, 7];
rotate(actual[0 .. 2], actual[4 .. 6]);
assert(equal(actual[], expected[]));
}
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[5] expected = [1, 2, 3, 4, 5];
int[5] actual = [4, 5, 1, 2, 3];
rotate(actual[0 .. 2], actual[2 .. $]);
assert(equal(actual[], expected[]));
}
// Doesn't cause an infinite loop if back is shorter than the front
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[5] expected = [1, 2, 3, 4, 5];
int[5] actual = [3, 4, 5, 1, 2];
rotate(actual[0 .. 3], actual[3 .. $]);
assert(equal(actual[], expected[]));
}
// Doesn't call .front on an empty front
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[2] expected = [2, 8];
int[2] actual = expected;
rotate(actual[0 .. 0], actual[]);
assert(equal(actual[], expected[]));
}

View File

@ -15,14 +15,15 @@
module tanya.container.array; module tanya.container.array;
import core.checkedint; import core.checkedint;
import std.algorithm.mutation : bringToFront;
import tanya.algorithm.comparison; import tanya.algorithm.comparison;
import tanya.algorithm.mutation; import tanya.algorithm.mutation;
import tanya.exception; import tanya.exception;
import tanya.functional;
import tanya.memory; import tanya.memory;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range; import tanya.range;
version (unittest) import tanya.test.stub;
/** /**
* Random-access range for the $(D_PSYMBOL Array). * Random-access range for the $(D_PSYMBOL Array).
@ -294,7 +295,9 @@ struct Array(T)
* init = Initial value to fill the array with. * init = Initial value to fill the array with.
* allocator = Allocator. * allocator = Allocator.
*/ */
this(size_t len, T init, shared Allocator allocator = defaultAllocator) this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{ {
this(allocator); this(allocator);
reserve(len); reserve(len);
@ -349,15 +352,19 @@ struct Array(T)
(() @trusted => allocator.deallocate(slice(capacity)))(); (() @trusted => allocator.deallocate(slice(capacity)))();
} }
/** static if (isCopyable!T)
* Copies the array.
*/
this(this)
{ {
auto buf = slice(this.length); this(this)
this.length_ = capacity_ = 0; {
this.data = null; auto buf = slice(this.length);
insertBack(buf); this.length_ = capacity_ = 0;
this.data = null;
insertBack(buf);
}
}
else
{
@disable this(this);
} }
/** /**
@ -804,10 +811,11 @@ struct Array(T)
} }
do do
{ {
const oldLen = length; const oldLength = length;
const offset = r.end - this.data; const after = r.end - this.data;
const inserted = insertBack(el); const inserted = insertBack(el);
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]);
rotate(this.data[after .. oldLength], this.data[oldLength .. length]);
return inserted; return inserted;
} }
@ -846,7 +854,7 @@ struct Array(T)
{ {
moveBack(el); moveBack(el);
} }
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]); rotate(this.data[offset .. oldLen], this.data[oldLen .. length]);
return 1; return 1;
} }
@ -902,7 +910,7 @@ struct Array(T)
{ {
moveBack(el); moveBack(el);
} }
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]); rotate(this.data[offset .. oldLen], this.data[oldLen .. length]);
return 1; return 1;
} }
@ -993,7 +1001,7 @@ struct Array(T)
*/ */
ref T opIndexAssign(E : T)(auto ref E value, size_t pos) ref T opIndexAssign(E : T)(auto ref E value, size_t pos)
{ {
return opIndex(pos) = value; return opIndex(pos) = forward!value;
} }
/// ditto /// ditto
@ -1027,7 +1035,7 @@ struct Array(T)
} }
/// ditto /// ditto
Range opIndexAssign(Range value) Range opIndexAssign()(Range value)
{ {
return opSliceAssign(value, 0, length); return opSliceAssign(value, 0, length);
} }
@ -1321,7 +1329,7 @@ struct Array(T)
} }
/// ditto /// ditto
Range opSliceAssign(Range value, size_t i, size_t j) @trusted Range opSliceAssign()(Range value, size_t i, size_t j) @trusted
in in
{ {
assert(i <= j); assert(i <= j);
@ -1575,15 +1583,10 @@ struct Array(T)
assert(v7[].equal(v8[])); assert(v7[].equal(v8[]));
} }
// Destructor can destroy empty arrays
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct SWithDtor auto v = Array!WithDtor();
{
~this() @nogc nothrow pure @safe
{
}
}
auto v = Array!SWithDtor(); // Destructor can destroy empty arrays.
} }
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
@ -1594,7 +1597,6 @@ struct Array(T)
A a1, a2; A a1, a2;
auto v1 = Array!A([a1, a2]); auto v1 = Array!A([a1, a2]);
// Issue 232: https://issues.caraus.io/issues/232.
static assert(is(Array!(A*))); static assert(is(Array!(A*)));
} }
@ -1679,3 +1681,10 @@ struct Array(T)
} }
func(array); func(array);
} }
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(is(Array!NonCopyable));
static assert(is(typeof({ Array!NonCopyable.init[0] = NonCopyable(); })));
}

View File

@ -20,6 +20,7 @@ import tanya.memory.allocator;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.typecons; import tanya.typecons;
version (unittest) import tanya.test.stub;
package struct SEntry(T) package struct SEntry(T)
{ {
@ -59,12 +60,12 @@ package struct Bucket(K, V = void)
} }
BucketStatus status = BucketStatus.empty; BucketStatus status = BucketStatus.empty;
this(ref K key) this()(ref K key)
{ {
this.key = key; this.key = key;
} }
@property void key(ref K key) @property void key()(ref K key)
{ {
this.key() = key; this.key() = key;
this.status = BucketStatus.used; this.status = BucketStatus.used;
@ -170,7 +171,7 @@ package struct HashArray(alias hasher, K, V = void)
.swap(this.length, data.length); .swap(this.length, data.length);
} }
void opAssign(ref typeof(this) that) void opAssign()(ref typeof(this) that)
{ {
this.array = that.array; this.array = that.array;
this.lengthIndex = that.lengthIndex; this.lengthIndex = that.lengthIndex;
@ -326,3 +327,13 @@ package struct HashArray(alias hasher, K, V = void)
return false; return false;
} }
} }
// Can be constructed with non-copyable key/values
@nogc nothrow pure @safe unittest
{
static assert(is(Bucket!NonCopyable));
static assert(is(Bucket!(NonCopyable, NonCopyable)));
static assert(is(HashArray!((ref NonCopyable) => 0U, NonCopyable)));
static assert(is(HashArray!((ref NonCopyable) => 0U, NonCopyable, NonCopyable)));
}

View File

@ -22,6 +22,7 @@ import tanya.memory;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/** /**
* Bidirectional range whose element type is a tuple of a key and the * Bidirectional range whose element type is a tuple of a key and the
@ -68,7 +69,7 @@ struct Range(T)
return this.dataRange.empty(); return this.dataRange.empty();
} }
@property void popFront() void popFront()
in in
{ {
assert(!empty); assert(!empty);
@ -87,7 +88,7 @@ struct Range(T)
while (!empty && dataRange.front.status != BucketStatus.used); while (!empty && dataRange.front.status != BucketStatus.used);
} }
@property void popBack() void popBack()
in in
{ {
assert(!empty); assert(!empty);
@ -759,7 +760,7 @@ if (isHashFunction!(hasher, Key))
* *
* Returns: The number of the inserted elements with a unique key. * Returns: The number of the inserted elements with a unique key.
*/ */
size_t insert(ref KeyValue keyValue) size_t insert()(ref KeyValue keyValue)
{ {
auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key); auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key);
size_t inserted; size_t inserted;
@ -773,7 +774,7 @@ if (isHashFunction!(hasher, Key))
} }
/// ditto /// ditto
size_t insert(KeyValue keyValue) size_t insert()(KeyValue keyValue)
{ {
auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key); auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key);
size_t inserted; size_t inserted;
@ -1197,3 +1198,16 @@ if (isHashFunction!(hasher, Key))
static assert(is(typeof("asdf" in HashTable!(String, int)()))); static assert(is(typeof("asdf" in HashTable!(String, int)())));
static assert(is(typeof(HashTable!(String, int)()["asdf"]))); static assert(is(typeof(HashTable!(String, int)()["asdf"])));
} }
// Can have non-copyable keys and elements
@nogc nothrow pure @safe unittest
{
@NonCopyable @Hashable
static struct S
{
mixin StructStub;
}
static assert(is(HashTable!(S, int)));
static assert(is(HashTable!(int, S)));
static assert(is(HashTable!(S, S)));
}

View File

@ -23,6 +23,7 @@ import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range.array; import tanya.range.array;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/** /**
* Forward range for the $(D_PSYMBOL SList). * Forward range for the $(D_PSYMBOL SList).
@ -155,8 +156,9 @@ struct SList(T)
* init = Initial value to fill the list with. * init = Initial value to fill the list with.
* allocator = Allocator. * allocator = Allocator.
*/ */
this(size_t len, T init, shared Allocator allocator = defaultAllocator) this()(size_t len,
@trusted auto ref T init,
shared Allocator allocator = defaultAllocator)
{ {
this(allocator); this(allocator);
if (len == 0) if (len == 0)
@ -182,7 +184,18 @@ struct SList(T)
/// ditto /// ditto
this(size_t len, shared Allocator allocator = defaultAllocator) this(size_t len, shared Allocator allocator = defaultAllocator)
{ {
this(len, T.init, allocator); this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next = next.next;
}
} }
/// ///
@ -271,14 +284,18 @@ struct SList(T)
clear(); clear();
} }
/** static if (isCopyable!T)
* Copies the list.
*/
this(this)
{ {
auto list = typeof(this)(this[], this.allocator); this(this)
this.head = list.head; {
list.head = null; auto list = typeof(this)(this[], this.allocator);
this.head = list.head;
list.head = null;
}
}
else
{
@disable this(this);
} }
/// ///
@ -512,7 +529,7 @@ struct SList(T)
} }
/// ditto /// ditto
size_t insertBefore(Range r, ref T el) @trusted size_t insertBefore()(Range r, ref T el) @trusted
in in
{ {
assert(checkRangeBelonging(r)); assert(checkRangeBelonging(r));
@ -1120,8 +1137,9 @@ struct DList(T)
* init = Initial value to fill the list with. * init = Initial value to fill the list with.
* allocator = Allocator. * allocator = Allocator.
*/ */
this(size_t len, T init, shared Allocator allocator = defaultAllocator) this()(size_t len,
@trusted auto ref T init,
shared Allocator allocator = defaultAllocator)
{ {
this(allocator); this(allocator);
if (len == 0) if (len == 0)
@ -1150,7 +1168,20 @@ struct DList(T)
/// ditto /// ditto
this(size_t len, shared Allocator allocator = defaultAllocator) this(size_t len, shared Allocator allocator = defaultAllocator)
{ {
this(len, T.init, allocator); this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next.next.prev = next;
next = next.next;
}
this.tail = next;
} }
/// ///
@ -1242,15 +1273,19 @@ struct DList(T)
clear(); clear();
} }
/** static if (isCopyable!T)
* Copies the list.
*/
this(this)
{ {
auto list = typeof(this)(this[], this.allocator); this(this)
this.head = list.head; {
this.tail = list.tail; auto list = typeof(this)(this[], this.allocator);
list.head = list .tail = null; this.head = list.head;
this.tail = list.tail;
list.head = list .tail = null;
}
}
else
{
@disable this(this);
} }
/// ///
@ -1641,7 +1676,7 @@ struct DList(T)
} }
/// ditto /// ditto
size_t insertBefore(Range r, ref T el) @trusted size_t insertBefore()(Range r, ref T el) @trusted
in in
{ {
assert(checkRangeBelonging(r)); assert(checkRangeBelonging(r));
@ -1758,7 +1793,7 @@ struct DList(T)
} }
/// ditto /// ditto
size_t insertAfter(Range r, ref T el) @trusted size_t insertAfter()(Range r, ref T el) @trusted
in in
{ {
assert(checkRangeBelonging(r)); assert(checkRangeBelonging(r));
@ -2355,3 +2390,10 @@ struct DList(T)
assert(!l1.remove(r).empty); assert(!l1.remove(r).empty);
assert(l1 == l2); assert(l1 == l2);
} }
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(is(SList!NonCopyable));
static assert(is(DList!NonCopyable));
}

View File

@ -22,6 +22,7 @@ import tanya.memory;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/** /**
* Bidirectional range that iterates over the $(D_PSYMBOL Set)'s values. * Bidirectional range that iterates over the $(D_PSYMBOL Set)'s values.
@ -67,7 +68,7 @@ struct Range(T)
return this.dataRange.empty(); return this.dataRange.empty();
} }
@property void popFront() void popFront()
in in
{ {
assert(!empty); assert(!empty);
@ -86,7 +87,7 @@ struct Range(T)
while (!empty && dataRange.front.status != BucketStatus.used); while (!empty && dataRange.front.status != BucketStatus.used);
} }
@property void popBack() void popBack()
in in
{ {
assert(!empty); assert(!empty);
@ -459,7 +460,7 @@ if (isHashFunction!(hasher, T))
* *
* Returns: Amount of new elements inserted. * Returns: Amount of new elements inserted.
*/ */
size_t insert(ref T value) size_t insert()(ref T value)
{ {
auto e = ((ref v) @trusted => &this.data.insert(v))(value); auto e = ((ref v) @trusted => &this.data.insert(v))(value);
if (e.status != BucketStatus.used) if (e.status != BucketStatus.used)
@ -470,7 +471,7 @@ if (isHashFunction!(hasher, T))
return 0; return 0;
} }
size_t insert(T value) size_t insert()(T value)
{ {
auto e = ((ref v) @trusted => &this.data.insert(v))(value); auto e = ((ref v) @trusted => &this.data.insert(v))(value);
if (e.status != BucketStatus.used) if (e.status != BucketStatus.used)
@ -773,3 +774,14 @@ if (isHashFunction!(hasher, T))
{ {
static assert(is(Set!(int, (const ref x) => cast(size_t) x))); static assert(is(Set!(int, (const ref x) => cast(size_t) x)));
} }
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
@NonCopyable @Hashable
static struct S
{
mixin StructStub;
}
static assert(is(Set!S));
}

View File

@ -26,7 +26,6 @@
*/ */
module tanya.container.string; module tanya.container.string;
import std.algorithm.mutation : bringToFront;
import tanya.algorithm.comparison; import tanya.algorithm.comparison;
import tanya.algorithm.mutation; import tanya.algorithm.mutation;
import tanya.hash.lookup; import tanya.hash.lookup;
@ -1531,11 +1530,10 @@ struct String
do do
{ {
const oldLength = length; const oldLength = length;
const rangeEnd = r.end - this.data; const after = r.end - this.data;
const inserted = insertBack(el); const inserted = insertBack(el);
auto containerEnd = this.data + oldLength;
bringToFront(ByCodeUnit!char(this, this.data + rangeEnd, containerEnd), rotate(this.data[after .. oldLength], this.data[oldLength .. length]);
ByCodeUnit!char(this, containerEnd, this.data + length));
return inserted; return inserted;
} }

View File

@ -27,6 +27,7 @@ import tanya.range.primitive;
version (unittest) version (unittest)
{ {
import tanya.test.assertion; import tanya.test.assertion;
import tanya.test.stub;
} }
/** /**
@ -162,6 +163,24 @@ do
return result; return result;
} }
private void initializeOne(T)(ref void[] memory, ref T* result) @trusted
{
static if (!hasElaborateAssign!T && isAssignable!T)
{
*result = T.init;
}
else static if (__VERSION__ >= 2083 // __traits(isZeroInit) available.
&& __traits(isZeroInit, T))
{
memory.ptr[0 .. T.sizeof].fill!0;
}
else
{
static immutable T init = T.init;
copy((&init)[0 .. 1], memory);
}
}
/// ditto /// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args) T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isPolymorphicType!T && isAggregateType!T) if (!isPolymorphicType!T && isAggregateType!T)
@ -169,38 +188,22 @@ in(memory.length >= T.sizeof)
out(result; memory.ptr is result) out(result; memory.ptr is result)
{ {
auto result = (() @trusted => cast(T*) memory.ptr)(); auto result = (() @trusted => cast(T*) memory.ptr)();
alias trustedCopy = (ref arg) @trusted =>
copy((cast(void*) &arg)[0 .. T.sizeof], memory);
static if (Args.length == 0) static if (Args.length == 0)
{ {
static assert(is(typeof({ static T t; })), static assert(is(typeof({ static T t; })),
"Default constructor is disabled"); "Default constructor is disabled");
initializeOne(memory, result);
} }
else static if (is(typeof(result.__ctor(args)))) else static if (is(typeof(result.__ctor(args))))
{ {
static if (!hasElaborateAssign!T && isAssignable!T) initializeOne(memory, result);
{
*result = T.init;
}
else
{
static if (__VERSION__ >= 2083 // __traits(isZeroInit) available.
&& __traits(isZeroInit, T))
{
(() @trusted => memory.ptr[0 .. T.sizeof])().fill!0;
}
else
{
static immutable T init = T.init;
trustedCopy(init);
}
}
result.__ctor(args); result.__ctor(args);
} }
else static if (Args.length == 1 && is(typeof({ T t = args[0]; }))) else static if (Args.length == 1 && is(typeof({ T t = args[0]; })))
{ {
trustedCopy(args[0]); ((ref arg) @trusted =>
copy((cast(void*) &arg)[0 .. T.sizeof], memory))(args[0]);
} }
else static if (is(typeof({ T t = T(args); }))) else static if (is(typeof({ T t = T(args); })))
{ {
@ -257,35 +260,38 @@ out(result; memory.ptr is result)
// Can emplace structs without a constructor // Can emplace structs without a constructor
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct SWithDtor static assert(is(typeof(emplace!WithDtor(null, WithDtor()))));
{ static assert(is(typeof(emplace!WithDtor(null))));
~this() @nogc nothrow pure @safe
{
}
}
static assert(is(typeof(emplace!SWithDtor(null, SWithDtor()))));
static assert(is(typeof(emplace!SWithDtor(null))));
} }
// Doesn't call a destructor on uninitialized elements // Doesn't call a destructor on uninitialized elements
@nogc nothrow pure @system unittest @nogc nothrow pure @system unittest
{ {
static struct WithDtor static struct SWithDtor
{ {
private bool canBeInvoked = false; private bool canBeInvoked = false;
~this() @nogc nothrow pure @safe ~this() @nogc nothrow pure @safe
{ {
if (!this.canBeInvoked) assert(this.canBeInvoked);
{
assert(false);
}
} }
} }
void[WithDtor.sizeof] memory = void; void[SWithDtor.sizeof] memory = void;
auto actual = emplace!WithDtor(memory[], WithDtor(true)); auto actual = emplace!SWithDtor(memory[], SWithDtor(true));
assert(actual.canBeInvoked); assert(actual.canBeInvoked);
} }
// Initializes structs if no arguments are given
@nogc nothrow pure @safe unittest
{
static struct SEntry
{
byte content;
}
ubyte[1] mem = [3];
assert(emplace!SEntry(cast(void[]) mem[0 .. 1]).content == 0);
}
/** /**
* Thrown if a type conversion fails. * Thrown if a type conversion fails.
*/ */

View File

@ -16,6 +16,7 @@ module tanya.hash.lookup;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
private struct FNV private struct FNV
{ {
@ -146,14 +147,6 @@ version (unittest)
~ r10!x ~ r10!x ~ r10!x ~ r10!x ~ r10!x; ~ r10!x ~ r10!x ~ r10!x ~ r10!x ~ r10!x;
enum string r500(string x) = r100!x ~ r100!x ~ r100!x ~ r100!x ~ r100!x; enum string r500(string x) = r100!x ~ r100!x ~ r100!x ~ r100!x ~ r100!x;
private static struct ToHash
{
size_t toHash() const @nogc nothrow pure @safe
{
return 0;
}
}
private static struct HashRange private static struct HashRange
{ {
string fo = "fo"; string fo = "fo";
@ -178,9 +171,9 @@ version (unittest)
{ {
bool empty_; bool empty_;
@property ToHash front() const @nogc nothrow pure @safe @property Hashable front() const @nogc nothrow pure @safe
{ {
return ToHash(); return Hashable();
} }
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
@ -199,7 +192,7 @@ version (unittest)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
assert(hash(null) == 0); assert(hash(null) == 0);
assert(hash(ToHash()) == 0U); assert(hash(Hashable()) == 0U);
assert(hash('a') == 'a'); assert(hash('a') == 'a');
} }

View File

@ -419,8 +419,8 @@ do
* Compares two memory areas $(D_PARAM r1) and $(D_PARAM r2) for equality. * Compares two memory areas $(D_PARAM r1) and $(D_PARAM r2) for equality.
* *
* Params: * Params:
* haystack = First memory block. * r1 = First memory block.
* needle = First memory block. * r2 = Second memory block.
* *
* Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) are equal, * Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) are equal,
* $(D_KEYWORD false) otherwise. * $(D_KEYWORD false) otherwise.

View File

@ -30,6 +30,7 @@ import tanya.exception;
import tanya.memory; import tanya.memory;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
private template Payload(T) private template Payload(T)
{ {
@ -611,19 +612,11 @@ do
@nogc @system unittest @nogc @system unittest
{ {
static bool destroyed; size_t destroyed;
static struct F
{ {
~this() @nogc nothrow @safe auto rc = defaultAllocator.refCounted!WithDtor(destroyed);
{
destroyed = true;
}
} }
{ assert(destroyed == 1);
auto rc = defaultAllocator.refCounted!F();
}
assert(destroyed);
} }
/** /**

View File

@ -1493,6 +1493,8 @@ if (F.length == 1)
} }
/** /**
* Determines whether $(D_PARAM T) defines a symbol $(D_PARAM member).
*
* Params: * Params:
* T = Aggregate type. * T = Aggregate type.
* member = Symbol name. * member = Symbol name.
@ -2854,6 +2856,46 @@ template hasUDA(alias symbol, alias attr)
static assert(!hasUDA!(a, Attr2)); static assert(!hasUDA!(a, Attr2));
} }
/**
* If $(D_PARAM T) is a type, constructs its default value, otherwise
* $(D_PSYMBOL evalUDA) aliases itself to $(D_PARAM T).
*
* This template is useful when working with UDAs with default parameters,
* i.e. if an attribute can be given as `@Attr` or `@Attr("param")`,
* $(D_PSYMBOL evalUDA) makes `@Attr()` from `@Attr`, but returns
* `@Attr("param")` as is.
*
* $(D_PARAM T) (or its type if it isn't a type already) should have a default
* constructor.
*
* Params:
* T = User Defined Attribute.
*/
alias evalUDA(alias T) = T;
/// ditto
alias evalUDA(T) = Alias!(T());
///
@nogc nothrow pure @safe unittest
{
static struct Length
{
size_t length = 8;
}
@Length @Length(0) int i;
alias uda = AliasSeq!(__traits(getAttributes, i));
alias attr1 = evalUDA!(uda[0]);
alias attr2 = evalUDA!(uda[1]);
static assert(is(typeof(attr1) == Length));
static assert(is(typeof(attr2) == Length));
static assert(attr1.length == 8);
static assert(attr2.length == 0);
}
/** /**
* Tests whether $(D_PARAM T) is an inner class, i.e. a class nested inside * Tests whether $(D_PARAM T) is an inner class, i.e. a class nested inside
* another class. * another class.

View File

@ -54,7 +54,7 @@ module tanya.range.array;
* *
* Precondition: $(D_INLINECODE array.length > 0). * Precondition: $(D_INLINECODE array.length > 0).
*/ */
@property ref T front(T)(T[] array) @property ref inout(T) front(T)(return scope inout(T)[] array)
in in
{ {
assert(array.length > 0); assert(array.length > 0);
@ -94,7 +94,7 @@ do
* *
* Precondition: $(D_INLINECODE array.length > 0). * Precondition: $(D_INLINECODE array.length > 0).
*/ */
@property ref T back(T)(T[] array) @property ref inout(T) back(T)(return scope inout(T)[] array)
in in
{ {
assert(array.length > 0); assert(array.length > 0);
@ -133,7 +133,7 @@ do
* *
* Precondition: $(D_INLINECODE array.length > 0). * Precondition: $(D_INLINECODE array.length > 0).
*/ */
void popFront(T)(ref T[] array) void popFront(T)(scope ref inout(T)[] array)
in in
{ {
assert(array.length > 0); assert(array.length > 0);
@ -144,7 +144,7 @@ do
} }
/// ditto /// ditto
void popBack(T)(ref T[] array) void popBack(T)(scope ref inout(T)[] array)
in in
{ {
assert(array.length > 0); assert(array.length > 0);
@ -178,7 +178,7 @@ do
* Returns: $(D_KEYWORD true) if $(D_PARAM array) has no elements, * Returns: $(D_KEYWORD true) if $(D_PARAM array) has no elements,
* $(D_KEYWORD false) otherwise. * $(D_KEYWORD false) otherwise.
*/ */
@property bool empty(T)(const T[] array) @property bool empty(T)(scope const T[] array)
{ {
return array.length == 0; return array.length == 0;
} }
@ -203,7 +203,7 @@ do
* *
* Returns: A copy of the slice $(D_PARAM array). * Returns: A copy of the slice $(D_PARAM array).
*/ */
@property T[] save(T)(T[] array) @property inout(T)[] save(T)(return scope inout(T)[] array)
{ {
return array; return array;
} }

View File

@ -20,6 +20,19 @@ import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range.array; import tanya.range.array;
version (unittest)
{
import tanya.test.stub;
private struct AssertPostblit
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
}
/** /**
* Returns the element type of the range $(D_PARAM R). * Returns the element type of the range $(D_PARAM R).
* *
@ -73,10 +86,7 @@ template ElementType(R)
* *
* See_Also: $(D_PSYMBOL isInfinite). * See_Also: $(D_PSYMBOL isInfinite).
*/ */
template hasLength(R) enum bool hasLength(R) = is(ReturnType!((R r) => r.length) == size_t);
{
enum bool hasLength = is(ReturnType!((R r) => r.length) == size_t);
}
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
@ -294,34 +304,6 @@ template hasSlicing(R)
static assert(hasSlicing!D); static assert(hasSlicing!D);
} }
version (unittest)
{
mixin template InputRangeStub()
{
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property bool empty() const @nogc nothrow pure @safe
{
return false;
}
void popFront() @nogc nothrow pure @safe
{
}
}
mixin template BidirectionalRangeStub()
{
@property int back() @nogc nothrow pure @safe
{
return 0;
}
void popBack() @nogc nothrow pure @safe
{
}
}
}
private template isDynamicArrayRange(R) private template isDynamicArrayRange(R)
{ {
static if (is(R E : E[])) static if (is(R E : E[]))
@ -334,6 +316,26 @@ private template isDynamicArrayRange(R)
} }
} }
private struct Primitive(Candidate, string primitive)
{
auto ref returnType(Candidate candidate)
{
mixin("return candidate." ~ primitive ~ ";");
}
alias ReturnType = .ReturnType!returnType;
static assert(!is(ReturnType == void));
enum uint attributes = functionAttributes!returnType
& FunctionAttribute.ref_;
bool opEquals(That)(That) const
{
return is(ReturnType == That.ReturnType)
&& attributes == That.attributes;
}
}
/** /**
* Determines whether $(D_PARAM R) is an input range. * Determines whether $(D_PARAM R) is an input range.
* *
@ -353,11 +355,11 @@ private template isDynamicArrayRange(R)
*/ */
template isInputRange(R) template isInputRange(R)
{ {
static if (is(ReturnType!((R r) => r.front()) U) static if (is(Primitive!(R, "front()") U)
&& is(ReturnType!((R r) => r.empty) == bool) && is(ReturnType!((R r) => r.empty) == bool)
&& is(typeof(R.popFront()))) && is(typeof(R.popFront())))
{ {
enum bool isInputRange = !is(U == void); enum bool isInputRange = true;
} }
else else
{ {
@ -373,10 +375,12 @@ template isInputRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
int front() @nogc nothrow pure @safe int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
@ -391,13 +395,8 @@ template isInputRange(R)
{ {
static struct Range1(T) static struct Range1(T)
{ {
void popFront() mixin InputRangeStub;
{
}
int front()
{
return 0;
}
T empty() const T empty() const
{ {
return true; return true;
@ -408,50 +407,56 @@ template isInputRange(R)
static struct Range2 static struct Range2
{ {
mixin InputRangeStub;
int popFront() @nogc nothrow pure @safe int popFront() @nogc nothrow pure @safe
{ {
return 100; return 100;
} }
int front() @nogc nothrow pure @safe
{
return 100;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
} }
static assert(isInputRange!Range2); static assert(isInputRange!Range2);
static struct Range3 static struct Range3
{ {
void popFront() @nogc nothrow pure @safe mixin InputRangeStub;
{
}
void front() @nogc nothrow pure @safe void front() @nogc nothrow pure @safe
{ {
} }
bool empty() const @nogc nothrow pure @safe
{
return true;
}
} }
static assert(!isInputRange!Range3); static assert(!isInputRange!Range3);
static struct Range4 static struct Range4
{ {
void popFront() @nogc nothrow pure @safe mixin InputRangeStub;
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
enum bool empty = false; enum bool empty = false;
} }
static assert(isInputRange!Range4); static assert(isInputRange!Range4);
} }
// Ranges with non-copyable elements can be input ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin InputRangeStub!NonCopyable;
}
static assert(isInputRange!R);
}
// Ranges with const non-copyable elements can be input ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin InputRangeStub!(const(NonCopyable));
}
static assert(isInputRange!R);
}
/** /**
* Determines whether $(D_PARAM R) is a forward range. * Determines whether $(D_PARAM R) is a forward range.
* *
@ -489,14 +494,17 @@ template isForwardRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
int front() @nogc nothrow pure @safe int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
} }
typeof(this) save() @nogc nothrow pure @safe typeof(this) save() @nogc nothrow pure @safe
{ {
return this; return this;
@ -515,6 +523,7 @@ template isForwardRange(R)
static struct Range2 static struct Range2
{ {
mixin InputRangeStub; mixin InputRangeStub;
Range1 save() @nogc nothrow pure @safe Range1 save() @nogc nothrow pure @safe
{ {
return Range1(); return Range1();
@ -525,6 +534,7 @@ template isForwardRange(R)
static struct Range3 static struct Range3
{ {
mixin InputRangeStub; mixin InputRangeStub;
const(typeof(this)) save() const @nogc nothrow pure @safe const(typeof(this)) save() const @nogc nothrow pure @safe
{ {
return this; return this;
@ -553,11 +563,11 @@ template isForwardRange(R)
*/ */
template isBidirectionalRange(R) template isBidirectionalRange(R)
{ {
static if (is(ReturnType!((R r) => r.back()) U) static if (is(Primitive!(R, "back()") U)
&& is(typeof(R.popBack()))) && is(typeof(R.popBack())))
{ {
enum bool isBidirectionalRange = isForwardRange!R enum bool isBidirectionalRange = isForwardRange!R
&& is(U == ReturnType!((R r) => r.front())); && (U() == Primitive!(R, "front()")());
} }
else else
{ {
@ -573,21 +583,26 @@ template isBidirectionalRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
void popBack() @nogc nothrow pure @safe void popBack() @nogc nothrow pure @safe
{ {
} }
@property int front() @nogc nothrow pure @safe @property int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
@property int back() @nogc nothrow pure @safe @property int back() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
} }
Range save() @nogc nothrow pure @safe Range save() @nogc nothrow pure @safe
{ {
return this; return this;
@ -602,33 +617,33 @@ template isBidirectionalRange(R)
{ {
static struct Range(T, U) static struct Range(T, U)
{ {
void popFront() @nogc nothrow pure @safe mixin BidirectionalRangeStub;
{
}
void popBack() @nogc nothrow pure @safe
{
}
@property T front() @nogc nothrow pure @safe @property T front() @nogc nothrow pure @safe
{ {
return T.init; return T.init;
} }
@property U back() @nogc nothrow pure @safe @property U back() @nogc nothrow pure @safe
{ {
return U.init; return U.init;
} }
bool empty() const @nogc nothrow pure @safe
{
return true;
}
Range save() @nogc nothrow pure @safe
{
return this;
}
} }
static assert(!isBidirectionalRange!(Range!(int, uint))); static assert(!isBidirectionalRange!(Range!(int, uint)));
static assert(!isBidirectionalRange!(Range!(int, const int))); static assert(!isBidirectionalRange!(Range!(int, const int)));
} }
// Ranges with non-copyable elements can be bidirectional ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin BidirectionalRangeStub!NonCopyable;
}
static assert(isBidirectionalRange!R);
}
/** /**
* Determines whether $(D_PARAM R) is a random-access range. * Determines whether $(D_PARAM R) is a random-access range.
* *
@ -654,11 +669,11 @@ template isBidirectionalRange(R)
*/ */
template isRandomAccessRange(R) template isRandomAccessRange(R)
{ {
static if (is(ReturnType!((R r) => r.opIndex(size_t.init)) U)) static if (is(Primitive!(R, "opIndex(size_t.init)") U))
{ {
enum bool isRandomAccessRange = isInputRange!R enum bool isRandomAccessRange = isInputRange!R
&& (hasLength!R || isInfinite!R) && (hasLength!R || isInfinite!R)
&& is(U == ReturnType!((R r) => r.front())); && (U() == Primitive!(R, "front()")());
} }
else else
{ {
@ -674,29 +689,22 @@ template isRandomAccessRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
void popBack() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe @property int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
@property int back() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
} }
typeof(this) save() @nogc nothrow pure @safe
{ int opIndex(size_t) @nogc nothrow pure @safe
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
size_t length() const @nogc nothrow pure @safe size_t length() const @nogc nothrow pure @safe
{ {
return 0; return 0;
@ -711,15 +719,14 @@ template isRandomAccessRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
@property int front() @nogc nothrow pure @safe @property int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
enum bool empty = false; enum bool empty = false;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe int opIndex(const size_t pos) @nogc nothrow pure @safe
{ {
return 0; return 0;
@ -732,76 +739,43 @@ template isRandomAccessRange(R)
{ {
static struct Range1 static struct Range1
{ {
mixin InputRangeStub;
mixin BidirectionalRangeStub; mixin BidirectionalRangeStub;
mixin RandomAccessRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{
return 0;
}
} }
static assert(!isRandomAccessRange!Range1); static assert(!isRandomAccessRange!Range1);
@Length
static struct Range2(Args...) static struct Range2(Args...)
{ {
mixin InputRangeStub;
mixin BidirectionalRangeStub; mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(Args) @nogc nothrow pure @safe int opIndex(Args) @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
} }
static assert(isRandomAccessRange!(Range2!size_t)); static assert(isRandomAccessRange!(Range2!size_t));
static assert(!isRandomAccessRange!(Range2!())); static assert(!isRandomAccessRange!(Range2!()));
static assert(!isRandomAccessRange!(Range2!(size_t, size_t))); static assert(!isRandomAccessRange!(Range2!(size_t, size_t)));
@Length
static struct Range3 static struct Range3
{ {
mixin InputRangeStub;
mixin BidirectionalRangeStub; mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1, const size_t pos2 = 0) int opIndex(const size_t pos1, const size_t pos2 = 0)
@nogc nothrow pure @safe @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
} }
static assert(isRandomAccessRange!Range3); static assert(isRandomAccessRange!Range3);
static struct Range4 static struct Range4
{ {
mixin InputRangeStub;
mixin BidirectionalRangeStub; mixin BidirectionalRangeStub;
mixin RandomAccessRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1) @nogc nothrow pure @safe
{
return 0;
}
size_t opDollar() const @nogc nothrow pure @safe size_t opDollar() const @nogc nothrow pure @safe
{ {
return 0; return 0;
@ -810,6 +784,17 @@ template isRandomAccessRange(R)
static assert(!isRandomAccessRange!Range4); static assert(!isRandomAccessRange!Range4);
} }
// Ranges with non-copyable elements can be random-access ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements @Infinite
static struct R
{
mixin RandomAccessRangeStub!NonCopyable;
}
static assert(isRandomAccessRange!R);
}
/** /**
* Puts $(D_PARAM e) into the $(D_PARAM range). * Puts $(D_PARAM e) into the $(D_PARAM range).
* *
@ -1097,28 +1082,20 @@ template isInfinite(R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
@Infinite
static struct StaticConstRange static struct StaticConstRange
{ {
void popFront() @nogc nothrow pure @safe mixin InputRangeStub;
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
static bool empty = false; static bool empty = false;
} }
static assert(!isInfinite!StaticConstRange); static assert(!isInfinite!StaticConstRange);
@Infinite
static struct TrueRange static struct TrueRange
{ {
void popFront() @nogc nothrow pure @safe mixin InputRangeStub;
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
static const bool empty = true; static const bool empty = true;
} }
static assert(!isInfinite!TrueRange); static assert(!isInfinite!TrueRange);
@ -1348,15 +1325,12 @@ if (isBidirectionalRange!R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
@Infinite
static struct InfiniteRange static struct InfiniteRange
{ {
mixin ForwardRangeStub;
private int i; private int i;
InfiniteRange save() @nogc nothrow pure @safe
{
return this;
}
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
++this.i; ++this.i;
@ -1376,8 +1350,6 @@ if (isBidirectionalRange!R)
{ {
return this.i; return this.i;
} }
enum bool empty = false;
} }
{ {
InfiniteRange range; InfiniteRange range;
@ -1497,44 +1469,19 @@ if (isInputRange!R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference. // Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1 static struct R1
{ {
Element element; mixin InputRangeStub!AssertPostblit;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
} }
static assert(is(typeof(moveFront(R1())))); static assert(is(typeof(moveFront(R1()))));
// Returns elements with a postblit constructor by value. moveFront fails. // Returns elements with a postblit constructor by value. moveFront fails.
@Infinite
static struct R2 static struct R2
{ {
enum bool empty = false; mixin InputRangeStub!AssertPostblit;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
} }
static assert(!is(typeof(moveFront(R2())))); static assert(!is(typeof(moveFront(R2()))));
} }
@ -1582,58 +1529,19 @@ if (isBidirectionalRange!R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference. // Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1 static struct R1
{ {
Element element; mixin BidirectionalRangeStub!AssertPostblit;
enum bool empty = false;
ref Element back() @nogc nothrow pure @safe
{
return element;
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R1 save() @nogc nothrow pure @safe
{
return this;
}
} }
static assert(is(typeof(moveBack(R1())))); static assert(is(typeof(moveBack(R1()))));
// Returns elements with a postblit constructor by value. moveBack fails. // Returns elements with a postblit constructor by value. moveBack fails.
@Infinite
static struct R2 static struct R2
{ {
enum bool empty = false; mixin BidirectionalRangeStub!AssertPostblit;
Element back() @nogc nothrow pure @safe
{
return Element();
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R2 save() @nogc nothrow pure @safe
{
return this;
}
} }
static assert(!is(typeof(moveBack(R2())))); static assert(!is(typeof(moveBack(R2()))));
} }
@ -1680,54 +1588,19 @@ if (isRandomAccessRange!R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference. // Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1 static struct R1
{ {
Element element; mixin RandomAccessRangeStub!AssertPostblit;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
ref Element opIndex(size_t)
{
return element;
}
} }
static assert(is(typeof(moveAt(R1(), 0)))); static assert(is(typeof(moveAt(R1(), 0))));
// Returns elements with a postblit constructor by value. moveAt fails. // Returns elements with a postblit constructor by value. moveAt fails.
@Infinite
static struct R2 static struct R2
{ {
enum bool empty = false; mixin RandomAccessRangeStub!AssertPostblit;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
Element opIndex() @nogc nothrow pure @safe
{
return Element();
}
} }
static assert(!is(typeof(moveAt(R2(), 0)))); static assert(!is(typeof(moveAt(R2(), 0))));
} }
@ -1889,10 +1762,6 @@ template hasLvalueElements(R)
// Works with non-copyable elements // Works with non-copyable elements
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct NonCopyable
{
@disable this(this);
}
static assert(hasLvalueElements!(NonCopyable[])); static assert(hasLvalueElements!(NonCopyable[]));
} }
@ -2051,3 +1920,41 @@ template hasSwappableElements(R)
} }
static assert(!hasSwappableElements!R2); static assert(!hasSwappableElements!R2);
} }
/**
* Determines whether `r1.front` and `r2.front` point to the same element.
*
* Params:
* r1 = First range.
* r2 = Second range.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) have the same
* head, $(D_KEYWORD false) otherwise.
*/
bool sameHead(Range)(Range r1, Range r2) @trusted
if (isInputRange!Range && hasLvalueElements!Range)
{
return &r1.front is &r2.front;
}
///
@nogc nothrow pure @safe unittest
{
const int[2] array;
auto r1 = array[];
auto r2 = array[];
assert(sameHead(r1, r2));
}
///
@nogc nothrow pure @safe unittest
{
const int[2] array;
auto r1 = array[];
auto r2 = array[1 .. $];
assert(!sameHead(r1, r2));
}

View File

@ -15,3 +15,4 @@
module tanya.test; module tanya.test;
public import tanya.test.assertion; public import tanya.test.assertion;
public import tanya.test.stub;

373
source/tanya/test/stub.d Normal file
View File

@ -0,0 +1,373 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Range and generic type generators.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/test/stub.d,
* tanya/test/stub.d)
*/
module tanya.test.stub;
/**
* Attribute signalizing that the generated range should contain the given
* number of elements.
*
* $(D_PSYMBOL Count) should be always specified with some value and not as a
* type, so $(D_INLINECODE Count(1)) instead just $(D_INLINECODE Count),
* otherwise you can just omit $(D_PSYMBOL Count) and it will default to 0.
*
* $(D_PSYMBOL Count) doesn't generate `.length` property - use
* $(D_PSYMBOL Length) for that.
*
* If neither $(D_PSYMBOL Length) nor $(D_PSYMBOL Infinite) is given,
* $(D_ILNINECODE Count(0)) is assumed.
*
* This attribute conflicts with $(D_PSYMBOL Infinite) and $(D_PSYMBOL Length).
*/
struct Count
{
/// Original range length.
size_t count = 0;
@disable this();
/**
* Constructs the attribute with the given length.
*
* Params:
* count = Original range length.
*/
this(size_t count) @nogc nothrow pure @safe
{
this.count = count;
}
}
/**
* Attribute signalizing that the generated range should be infinite.
*
* This attribute conflicts with $(D_PSYMBOL Count) and $(D_PSYMBOL Length).
*/
struct Infinite
{
}
/**
* Generates `.length` property for the range.
*
* The length of the range can be specified as a constructor argument,
* otherwise it is 0.
*
* This attribute conflicts with $(D_PSYMBOL Count) and $(D_PSYMBOL Infinite).
*/
struct Length
{
/// Original range length.
size_t length = 0;
}
/**
* Attribute signalizing that the generated range should return values by
* reference.
*
* This atribute affects the return values of `.front`, `.back` and `[]`.
*/
struct WithLvalueElements
{
}
/**
* Generates an input range.
*
* Params:
* E = Element type.
*/
mixin template InputRangeStub(E = int)
{
import tanya.meta.metafunction : Alias;
import tanya.meta.trait : evalUDA, getUDAs, hasUDA;
/*
* Aliases for the attribute lookups to access them faster
*/
private enum bool infinite = hasUDA!(typeof(this), Infinite);
private enum bool withLvalueElements = hasUDA!(typeof(this),
WithLvalueElements);
private alias Count = getUDAs!(typeof(this), .Count);
private alias Length = getUDAs!(typeof(this), .Length);
static if (Count.length != 0)
{
private enum size_t count = Count[0].count;
static assert (!infinite,
"Range cannot have count and be infinite at the same time");
static assert (Length.length == 0,
"Range cannot have count and length at the same time");
}
else static if (Length.length != 0)
{
private enum size_t count = evalUDA!(Length[0]).length;
static assert (!infinite,
"Range cannot have length and be infinite at the same time");
}
else static if (!infinite)
{
private enum size_t count = 0;
}
/*
* Member generation
*/
static if (infinite)
{
enum bool empty = false;
}
else
{
private size_t length_ = count;
@property bool empty() const @nogc nothrow pure @safe
{
return this.length_ == 0;
}
}
static if (withLvalueElements)
{
private E* element; // Pointer to enable range copying in save()
}
void popFront() @nogc nothrow pure @safe
in (!empty)
{
static if (!infinite)
{
--this.length_;
}
}
static if (withLvalueElements)
{
ref E front() @nogc nothrow pure @safe
in (!empty)
{
return *this.element;
}
}
else
{
E front() @nogc nothrow pure @safe
in (!empty)
{
return E.init;
}
}
static if (Length.length != 0)
{
size_t length() const @nogc nothrow pure @safe
{
return this.length_;
}
}
}
/**
* Generates a forward range.
*
* This mixin includes input range primitives as well, but can be combined with
* $(D_PSYMBOL RandomAccessRangeStub).
*
* Params:
* E = Element type.
*/
mixin template ForwardRangeStub(E = int)
{
static if (!is(typeof(this.InputRangeMixin) == void))
{
mixin InputRangeStub!E InputRangeMixin;
}
auto save() @nogc nothrow pure @safe
{
return this;
}
}
/**
* Generates a bidirectional range.
*
* This mixin includes forward range primitives as well, but can be combined with
* $(D_PSYMBOL RandomAccessRangeStub).
*
* Params:
* E = Element type.
*/
mixin template BidirectionalRangeStub(E = int)
{
mixin ForwardRangeStub!E;
void popBack() @nogc nothrow pure @safe
in (!empty)
{
static if (!infinite)
{
--this.length_;
}
}
static if (withLvalueElements)
{
ref E back() @nogc nothrow pure @safe
in (!empty)
{
return *this.element;
}
}
else
{
E back() @nogc nothrow pure @safe
in (!empty)
{
return E.init;
}
}
}
/**
* Generates a random-access range.
*
* This mixin includes input range primitives as well, but can be combined with
* $(D_PSYMBOL ForwardRangeStub) or $(D_PSYMBOL BidirectionalRangeStub).
*
* Note that a random-access range also requires $(D_PSYMBOL Length) or
* $(D_PARAM Infinite) by definition.
*
* Params:
* E = Element type.
*/
mixin template RandomAccessRangeStub(E = int)
{
static if (!is(typeof(this.InputRangeMixin) == void))
{
mixin InputRangeStub!E InputRangeMixin;
}
static if (withLvalueElements)
{
ref E opIndex(size_t) @nogc nothrow pure @safe
{
return *this.element;
}
}
else
{
E opIndex(size_t) @nogc nothrow pure @safe
{
return E.init;
}
}
}
/**
* Struct with a disabled postblit constructor.
*
* $(D_PSYMBOL NonCopyable) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*/
struct NonCopyable
{
@disable this(this);
}
/**
* Struct with an elaborate destructor.
*
* $(D_PSYMBOL WithDtor) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*
* When used as a standalone object the constructor of $(D_PSYMBOL WithDtor)
* accepts an additional `counter` argument, which is incremented by the
* destructor. $(D_PSYMBOL WithDtor) stores a pointer to the passed variable,
* so the variable can be investigated after the struct isn't available
* anymore.
*/
struct WithDtor
{
size_t* counter;
this(ref size_t counter) @nogc nothrow pure @trusted
{
this.counter = &counter;
}
~this() @nogc nothrow pure @safe
{
if (this.counter !is null)
{
++*this.counter;
}
}
}
/**
* Struct supporting hashing.
*
* $(D_PSYMBOL Hashable) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*
* The constructor accepts an additional parameter, which is returned by the
* `toHash()`-function. `0U` is returned if no hash value is given.
*/
struct Hashable
{
size_t hash;
size_t toHash() const @nogc nothrow pure @safe
{
return this.hash;
}
}
/**
* Generates a $(D_KEYWORD struct) with common functionality.
*
* To specify the needed functionality use user-defined attributes on the
* $(D_KEYWORD struct) $(D_PSYMBOL StructStub) is mixed in.
*
* Supported attributes are: $(D_PSYMBOL NonCopyable), $(D_PSYMBOL Hashable),
* $(D_PSYMBOL WithDtor).
*/
mixin template StructStub()
{
import tanya.meta.trait : evalUDA, getUDAs, hasUDA;
static if (hasUDA!(typeof(this), NonCopyable))
{
@disable this(this);
}
private alias Hashable = getUDAs!(typeof(this), .Hashable);
static if (Hashable.length > 0)
{
size_t toHash() const @nogc nothrow pure @safe
{
return evalUDA!(Hashable[0]).hash;
}
}
static if (hasUDA!(typeof(this), WithDtor))
{
~this() @nogc nothrow pure @safe
{
}
}
}

View File

@ -22,6 +22,7 @@ import tanya.format;
import tanya.functional; import tanya.functional;
import tanya.meta.metafunction; import tanya.meta.metafunction;
import tanya.meta.trait; import tanya.meta.trait;
version (unittest) import tanya.test.stub;
/** /**
* $(D_PSYMBOL Tuple) can store two or more heterogeneous objects. * $(D_PSYMBOL Tuple) can store two or more heterogeneous objects.
@ -454,29 +455,24 @@ struct Option(T)
// Moving // Moving
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct NotCopyable static assert(is(typeof(Option!NonCopyable(NonCopyable()))));
{
@disable this(this);
}
static assert(is(typeof(Option!NotCopyable(NotCopyable()))));
// The value cannot be returned by reference because the default value // The value cannot be returned by reference because the default value
// isn't passed by reference // isn't passed by reference
static assert(!is(typeof(Option!DisabledPostblit().or(NotCopyable())))); static assert(!is(typeof(Option!DisabledPostblit().or(NonCopyable()))));
{ {
NotCopyable notCopyable; NonCopyable notCopyable;
static assert(is(typeof(Option!NotCopyable().or(notCopyable)))); static assert(is(typeof(Option!NonCopyable().or(notCopyable))));
} }
{ {
Option!NotCopyable option; Option!NonCopyable option;
assert(option.isNothing); assert(option.isNothing);
option = NotCopyable(); option = NonCopyable();
assert(!option.isNothing); assert(!option.isNothing);
} }
{ {
Option!NotCopyable option; Option!NonCopyable option;
assert(option.isNothing); assert(option.isNothing);
option = Option!NotCopyable(NotCopyable()); option = Option!NonCopyable(NonCopyable());
assert(!option.isNothing); assert(!option.isNothing);
} }
} }
@ -507,30 +503,16 @@ struct Option(T)
// Returns default value // Returns default value
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
{ int i = 5;
int i = 5; assert(((ref e) => e)(Option!int().or(i)) == 5);
assert(((ref e) => e)(Option!int().or(i)) == 5);
}
} }
// Implements toHash() for nothing // Implements toHash() for nothing
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct ToHash alias OptionT = Option!Hashable;
{ assert(OptionT().toHash() == 0U);
size_t toHash() const @nogc nothrow pure @safe assert(OptionT(Hashable(1U)).toHash() == 1U);
{
return 1U;
}
}
{
Option!ToHash toHash;
assert(toHash.toHash() == 0U);
}
{
auto toHash = Option!ToHash(ToHash());
assert(toHash.toHash() == 1U);
}
} }
/** /**