Make allocator shared and fix some RefCounted bugs

This commit is contained in:
Eugen Wissner 2016-12-06 21:29:08 +01:00
parent b3fdd6fd4a
commit fa607141e4
19 changed files with 2682 additions and 2717 deletions

View File

@ -107,7 +107,7 @@ class EpollLoop : SelectorLoop
{
if (errno != EINTR)
{
throw theAllocator.make!BadLoopException();
throw defaultAllocator.make!BadLoopException();
}
return;
}

View File

@ -45,7 +45,7 @@ class IOCPStreamTransport : StreamTransport
body
{
socket_ = socket;
input = MmapPool.instance.make!WriteBuffer();
input = MmapPool.instance.make!WriteBuffer(8192, MmapPool.instance);
}
~this()
@ -101,7 +101,8 @@ class IOCPStreamTransport : StreamTransport
completionPort = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 0);
if (!completionPort)
{
throw theAllocator.make!BadLoopException("Creating completion port failed");
throw make!BadLoopException(defaultAllocator,
"Creating completion port failed");
}
}
@ -141,7 +142,7 @@ class IOCPStreamTransport : StreamTransport
catch (SocketException e)
{
MmapPool.instance.dispose(overlapped);
theAllocator.dispose(e);
defaultAllocator.dispose(e);
return false;
}
}
@ -173,7 +174,7 @@ class IOCPStreamTransport : StreamTransport
catch (SocketException e)
{
MmapPool.instance.dispose(overlapped);
theAllocator.dispose(e);
defaultAllocator.dispose(e);
return false;
}
}

View File

@ -250,7 +250,7 @@ class KqueueLoop : SelectorLoop
{
if (errno != EINTR)
{
throw theAllocator.make!BadLoopException();
throw defaultAllocatorAllocator.make!BadLoopException();
}
return;
}

View File

@ -46,7 +46,7 @@ class SelectorStreamTransport : StreamTransport
{
socket_ = socket;
this.loop = loop;
input = MmapPool.instance.make!WriteBuffer();
input = MmapPool.instance.make!WriteBuffer(8192, MmapPool.instance);
}
/**
@ -224,7 +224,7 @@ abstract class SelectorLoop : Loop
}
catch (SocketException e)
{
theAllocator.dispose(e);
defaultAllocator.dispose(e);
break;
}
if (client is null)

View File

@ -34,31 +34,31 @@
*
* void main()
* {
* auto address = theAllocator.make!InternetAddress("127.0.0.1", cast(ushort) 8192);
* auto address = defaultAllocator.make!InternetAddress("127.0.0.1", cast(ushort) 8192);
*
* version (Windows)
* {
* auto sock = theAllocator.make!OverlappedStreamSocket(AddressFamily.INET);
* auto sock = defaultAllocator.make!OverlappedStreamSocket(AddressFamily.INET);
* }
* else
* {
* auto sock = theAllocator.make!StreamSocket(AddressFamily.INET);
* auto sock = defaultAllocator.make!StreamSocket(AddressFamily.INET);
* sock.blocking = false;
* }
*
* sock.bind(address);
* sock.listen(5);
*
* auto io = theAllocator.make!ConnectionWatcher(sock);
* auto io = defaultAllocator.make!ConnectionWatcher(sock);
* io.setProtocol!EchoProtocol;
*
* defaultLoop.start(io);
* defaultLoop.run();
*
* sock.shutdown();
* theAllocator.dispose(io);
* theAllocator.dispose(sock);
* theAllocator.dispose(address);
* defaultAllocator.dispose(io);
* defaultAllocator.dispose(sock);
* defaultAllocator.dispose(address);
* }
* ---
*/
@ -278,7 +278,7 @@ abstract class Loop
protected void kill(IOWatcher watcher, SocketException exception)
{
watcher.socket.shutdown();
theAllocator.dispose(watcher.socket);
defaultAllocator.dispose(watcher.socket);
MmapPool.instance.dispose(watcher.transport);
watcher.exception = exception;
swapPendings.insertBack(watcher);

View File

@ -157,7 +157,7 @@ class IOWatcher : ConnectionWatcher
super();
transport_ = transport;
protocol_ = protocol;
output = MmapPool.instance.make!ReadBuffer();
output = MmapPool.instance.make!ReadBuffer(8192, 1024, MmapPool.instance);
active = true;
}

View File

@ -108,30 +108,36 @@ class ReadBuffer : Buffer
/// Size by which the buffer will grow.
protected immutable size_t blockSize;
/// Allocator.
protected shared Allocator allocator;
invariant
{
assert(length_ <= buffer_.length);
assert(blockSize > 0);
assert(minAvailable > 0);
assert(allocator !is null);
}
/**
* Creates a new read buffer.
*
* Params:
* size = Initial buffer size and the size by which the buffer
* will grow.
* minAvailable = minimal size should be always available to fill.
* So it will reallocate if $(D_INLINECODE
* $(D_PSYMBOL free) < $(D_PARAM minAvailable)
* ).
* size = Initial buffer size and the size by which the buffer
* will grow.
* minAvailable = minimal size should be always available to fill.
* So it will reallocate if $(D_INLINECODE
* $(D_PSYMBOL free) < $(D_PARAM minAvailable)).
* allocator = Allocator.
*/
this(size_t size = 8192,
size_t minAvailable = 1024)
size_t minAvailable = 1024,
shared Allocator allocator = defaultAllocator)
{
this.minAvailable = minAvailable;
this.blockSize = size;
theAllocator.resizeArray!ubyte(buffer_, size);
this.allocator = allocator;
allocator.resizeArray!ubyte(buffer_, size);
}
/**
@ -139,17 +145,17 @@ class ReadBuffer : Buffer
*/
~this()
{
theAllocator.dispose(buffer_);
allocator.dispose(buffer_);
}
///
unittest
{
auto b = theAllocator.make!ReadBuffer;
auto b = defaultAllocator.make!ReadBuffer;
assert(b.capacity == 8192);
assert(b.length == 0);
theAllocator.dispose(b);
defaultAllocator.dispose(b);
}
/**
@ -190,7 +196,7 @@ class ReadBuffer : Buffer
///
unittest
{
auto b = theAllocator.make!ReadBuffer;
auto b = defaultAllocator.make!ReadBuffer;
size_t numberRead;
// Fills the buffer with values 0..10
@ -202,7 +208,7 @@ class ReadBuffer : Buffer
b.clear();
assert(b.free == b.blockSize);
theAllocator.dispose(b);
defaultAllocator.dispose(b);
}
/**
@ -224,7 +230,7 @@ class ReadBuffer : Buffer
///
unittest
{
auto b = theAllocator.make!ReadBuffer;
auto b = defaultAllocator.make!ReadBuffer;
size_t numberRead;
ubyte[] result;
@ -252,7 +258,7 @@ class ReadBuffer : Buffer
assert(result[10] == 20);
assert(result[14] == 24);
theAllocator.dispose(b);
defaultAllocator.dispose(b);
}
/**
@ -294,7 +300,7 @@ class ReadBuffer : Buffer
{
if (capacity - length < minAvailable)
{
theAllocator.resizeArray!ubyte(buffer_, capacity + blockSize);
allocator.resizeArray!ubyte(buffer_, capacity + blockSize);
}
ring = length_;
return buffer_[length_..$];
@ -304,7 +310,7 @@ class ReadBuffer : Buffer
///
unittest
{
auto b = theAllocator.make!ReadBuffer;
auto b = defaultAllocator.make!ReadBuffer;
size_t numberRead;
ubyte[] result;
@ -319,7 +325,7 @@ class ReadBuffer : Buffer
b.clear();
assert(b.length == 0);
theAllocator.dispose(b);
defaultAllocator.dispose(b);
}
}
@ -349,23 +355,29 @@ class WriteBuffer : Buffer
/// The position of the free area in the buffer.
protected size_t position;
/// Allocator.
protected shared Allocator allocator;
invariant
{
assert(blockSize > 0);
// position can refer to an element outside the buffer if the buffer is full.
assert(position <= buffer_.length);
assert(allocator !is null);
}
/**
* Params:
* size = Initial buffer size and the size by which the buffer
* will grow.
* size = Initial buffer size and the size by which the buffer will
* grow.
* allocator = Allocator.
*/
this(size_t size = 8192)
this(size_t size = 8192, shared Allocator allocator = defaultAllocator)
{
this.allocator = allocator;
blockSize = size;
ring = size - 1;
theAllocator.resizeArray!ubyte(buffer_, size);
allocator.resizeArray!ubyte(buffer_, size);
}
/**
@ -373,7 +385,7 @@ class WriteBuffer : Buffer
*/
~this()
{
theAllocator.dispose(buffer_);
allocator.dispose(buffer_);
}
/**
@ -415,7 +427,7 @@ class WriteBuffer : Buffer
///
unittest
{
auto b = theAllocator.make!WriteBuffer(4);
auto b = defaultAllocator.make!WriteBuffer(4);
ubyte[3] buf = [48, 23, 255];
b ~= buf;
@ -433,7 +445,7 @@ class WriteBuffer : Buffer
b += b.length;
assert(b.length == 0);
theAllocator.dispose(b);
defaultAllocator.dispose(b);
}
/**
@ -498,7 +510,7 @@ class WriteBuffer : Buffer
{
auto newSize = end / blockSize * blockSize + blockSize;
theAllocator.resizeArray!ubyte(buffer_, newSize);
allocator.resizeArray!ubyte(buffer_, newSize);
}
buffer_[position..end] = buffer[start..$];
position = end;
@ -514,7 +526,7 @@ class WriteBuffer : Buffer
///
unittest
{
auto b = theAllocator.make!WriteBuffer(4);
auto b = defaultAllocator.make!WriteBuffer(4);
ubyte[3] buf = [48, 23, 255];
b ~= buf;
@ -533,9 +545,9 @@ class WriteBuffer : Buffer
assert(b.buffer_[0] == 23 && b.buffer_[1] == 255
&& b.buffer_[2] == 48 && b.buffer_[3] == 23 && b.buffer_[4] == 255);
theAllocator.dispose(b);
defaultAllocator.dispose(b);
b = make!WriteBuffer(theAllocator, 2);
b = make!WriteBuffer(defaultAllocator, 2);
b ~= buf;
assert(b.start == 0);
@ -543,7 +555,7 @@ class WriteBuffer : Buffer
assert(b.ring == 3);
assert(b.position == 3);
theAllocator.dispose(b);
defaultAllocator.dispose(b);
}
/**
@ -620,7 +632,7 @@ class WriteBuffer : Buffer
///
unittest
{
auto b = theAllocator.make!WriteBuffer;
auto b = defaultAllocator.make!WriteBuffer;
ubyte[6] buf = [23, 23, 255, 128, 127, 9];
b ~= buf;
@ -630,7 +642,7 @@ class WriteBuffer : Buffer
b += 4;
assert(b.length == 0);
theAllocator.dispose(b);
defaultAllocator.dispose(b);
}
/**
@ -663,7 +675,7 @@ class WriteBuffer : Buffer
///
unittest
{
auto b = theAllocator.make!WriteBuffer(6);
auto b = defaultAllocator.make!WriteBuffer(6);
ubyte[6] buf = [23, 23, 255, 128, 127, 9];
b ~= buf;
@ -679,7 +691,7 @@ class WriteBuffer : Buffer
assert(b[0..$] == buf[0..6]);
b += b.length;
theAllocator.dispose(b);
defaultAllocator.dispose(b);
}
/**

View File

@ -27,7 +27,7 @@ class SList(T)
* allocator = The allocator should be used for the element
* allocations.
*/
this(IAllocator allocator = theAllocator)
this(shared Allocator allocator = defaultAllocator)
{
this.allocator = allocator;
}
@ -54,14 +54,14 @@ class SList(T)
///
unittest
{
auto l = make!(SList!int)(theAllocator);
auto l = make!(SList!int)(defaultAllocator);
l.insertFront(8);
l.insertFront(5);
l.clear();
assert(l.empty);
dispose(theAllocator, l);
dispose(defaultAllocator, l);
}
/**
@ -98,14 +98,14 @@ class SList(T)
///
unittest
{
auto l = make!(SList!int)(theAllocator);
auto l = make!(SList!int)(defaultAllocator);
l.insertFront(8);
assert(l.front == 8);
l.insertFront(9);
assert(l.front == 9);
dispose(theAllocator, l);
dispose(defaultAllocator, l);
}
/**
@ -140,7 +140,7 @@ class SList(T)
///
unittest
{
auto l = make!(SList!int)(theAllocator);
auto l = make!(SList!int)(defaultAllocator);
l.insertFront(8);
l.insertFront(9);
@ -148,7 +148,7 @@ class SList(T)
l.popFront();
assert(l.front == 8);
dispose(theAllocator, l);
dispose(defaultAllocator, l);
}
/**
@ -179,7 +179,7 @@ class SList(T)
///
unittest
{
auto l = make!(SList!int)(theAllocator);
auto l = make!(SList!int)(defaultAllocator);
l.insertFront(8);
l.insertFront(5);
@ -189,7 +189,7 @@ class SList(T)
assert(l.removeFront(3) == 1);
assert(l.removeFront(3) == 0);
dispose(theAllocator, l);
dispose(defaultAllocator, l);
}
/**
@ -235,7 +235,7 @@ class SList(T)
///
unittest
{
auto l = make!(SList!int)(theAllocator);
auto l = make!(SList!int)(defaultAllocator);
l.insertFront(5);
l.insertFront(4);
@ -246,7 +246,7 @@ class SList(T)
assert(i != 1 || e == 4);
assert(i != 2 || e == 5);
}
dispose(theAllocator, l);
dispose(defaultAllocator, l);
}
/**
@ -265,13 +265,13 @@ class SList(T)
protected Entry first;
/// Allocator.
protected IAllocator allocator;
protected shared Allocator allocator;
}
///
unittest
{
auto l = make!(SList!int)(theAllocator);
auto l = make!(SList!int)(defaultAllocator);
size_t i;
l.insertFront(5);
@ -286,7 +286,7 @@ unittest
}
assert(i == 3);
dispose(theAllocator, l);
dispose(defaultAllocator, l);
}
private unittest
@ -295,7 +295,7 @@ private unittest
{
}
auto l = make!(SList!Stuff)(theAllocator);
auto l = make!(SList!Stuff)(defaultAllocator);
dispose(theAllocator, l);
dispose(defaultAllocator, l);
}

View File

@ -27,7 +27,7 @@ class Queue(T)
* allocator = The allocator should be used for the element
* allocations.
*/
this(IAllocator allocator = theAllocator)
this(shared Allocator allocator = defaultAllocator)
{
this.allocator = allocator;
}
@ -54,7 +54,7 @@ class Queue(T)
///
unittest
{
auto q = theAllocator.make!(Queue!int);
auto q = defaultAllocator.make!(Queue!int);
assert(q.empty);
q.insertBack(8);
@ -62,7 +62,7 @@ class Queue(T)
q.clear();
assert(q.empty);
theAllocator.dispose(q);
defaultAllocator.dispose(q);
}
/**
@ -107,7 +107,7 @@ class Queue(T)
///
unittest
{
auto q = make!(Queue!int)(theAllocator);
auto q = make!(Queue!int)(defaultAllocator);
assert(q.empty);
q.insertBack(8);
@ -115,7 +115,7 @@ class Queue(T)
q.insertBack(9);
assert(q.front == 8);
dispose(theAllocator, q);
dispose(defaultAllocator, q);
}
/**
@ -129,14 +129,14 @@ class Queue(T)
///
unittest
{
auto q = make!(Queue!int)(theAllocator);
auto q = make!(Queue!int)(defaultAllocator);
int value = 7;
assert(q.empty);
q.insertBack(value);
assert(!q.empty);
dispose(theAllocator, q);
dispose(defaultAllocator, q);
}
/**
@ -158,7 +158,7 @@ class Queue(T)
///
unittest
{
auto q = make!(Queue!int)(theAllocator);
auto q = make!(Queue!int)(defaultAllocator);
q.insertBack(8);
q.insertBack(9);
@ -166,7 +166,7 @@ class Queue(T)
q.popFront();
assert(q.front == 9);
dispose(theAllocator, q);
dispose(defaultAllocator, q);
}
/**
@ -210,7 +210,7 @@ class Queue(T)
///
unittest
{
auto q = theAllocator.make!(Queue!int);
auto q = defaultAllocator.make!(Queue!int);
size_t j;
q.insertBack(5);
@ -240,7 +240,7 @@ class Queue(T)
assert(j == 3);
assert(q.empty);
dispose(theAllocator, q);
dispose(defaultAllocator, q);
}
/**
@ -262,13 +262,13 @@ class Queue(T)
protected Entry* rear;
/// The allocator.
protected IAllocator allocator;
protected shared Allocator allocator;
}
///
unittest
{
auto q = theAllocator.make!(Queue!int);
auto q = defaultAllocator.make!(Queue!int);
q.insertBack(5);
assert(!q.empty);
@ -289,5 +289,5 @@ unittest
}
assert(q.empty);
theAllocator.dispose(q);
defaultAllocator.dispose(q);
}

View File

@ -200,7 +200,7 @@ class Vector(T)
* allocator = The allocator should be used for the element
* allocations.
*/
this(IAllocator allocator = theAllocator)
this(shared Allocator allocator = defaultAllocator)
{
this.allocator = allocator;
}
@ -211,18 +211,18 @@ class Vector(T)
* Params:
* U = Variadic template for the constructor parameters.
* params = Values to initialize the array with. The last parameter can
* be an allocator, if not, $(D_PSYMBOL theAllocator) is used.
* be an allocator, if not, $(D_PSYMBOL defaultAllocator) is used.
*/
this(U...)(U params)
{
static if (isImplicitlyConvertible!(typeof(params[$ - 1]), IAllocator))
static if (isImplicitlyConvertible!(typeof(params[$ - 1]), Allocator))
{
allocator = params[$ - 1];
auto values = params[0 .. $ - 1];
}
else
{
allocator = theAllocator;
allocator = defaultAllocator;
alias values = params;
}
@ -252,7 +252,7 @@ class Vector(T)
///
unittest
{
auto v = theAllocator.make!(Vector!int)(18, 20, 15);
auto v = defaultAllocator.make!(Vector!int)(18, 20, 15);
v.clear();
assert(v.length == 0);
@ -286,7 +286,7 @@ class Vector(T)
///
unittest
{
auto v = theAllocator.make!(Vector!int);
auto v = defaultAllocator.make!(Vector!int);
v.length = 5;
assert(v.length == 5);
@ -337,14 +337,14 @@ class Vector(T)
///
unittest
{
auto v = theAllocator.make!(Vector!int)(5, 18, 17);
auto v = defaultAllocator.make!(Vector!int)(5, 18, 17);
assert(v.removeBack(0) == 0);
assert(v.removeBack(2) == 2);
assert(v.removeBack(3) == 1);
assert(v.removeBack(3) == 0);
theAllocator.dispose(v);
defaultAllocator.dispose(v);
}
/**
@ -377,14 +377,14 @@ class Vector(T)
///
unittest
{
auto v1 = theAllocator.make!(Vector!int)(12, 1, 7);
auto v1 = defaultAllocator.make!(Vector!int)(12, 1, 7);
v1[] = 3;
assert(v1[0] == 3);
assert(v1[1] == 3);
assert(v1[2] == 3);
theAllocator.dispose(v1);
defaultAllocator.dispose(v1);
}
@ -406,14 +406,14 @@ class Vector(T)
///
unittest
{
auto v = theAllocator.make!(Vector!int)(6, 123, 34, 5);
auto v = defaultAllocator.make!(Vector!int)(6, 123, 34, 5);
assert(v[0] == 6);
assert(v[1] == 123);
assert(v[2] == 34);
assert(v[3] == 5);
theAllocator.dispose(v);
defaultAllocator.dispose(v);
}
/**
@ -435,8 +435,8 @@ class Vector(T)
///
unittest
{
auto v1 = theAllocator.make!(Vector!int);
auto v2 = theAllocator.make!(Vector!int);
auto v1 = defaultAllocator.make!(Vector!int);
auto v2 = defaultAllocator.make!(Vector!int);
assert(v1 == v2);
@ -453,8 +453,8 @@ class Vector(T)
v2[1] = 3;
assert(v1 == v2);
theAllocator.dispose(v1);
theAllocator.dispose(v2);
defaultAllocator.dispose(v1);
defaultAllocator.dispose(v2);
}
/**
@ -495,7 +495,7 @@ class Vector(T)
///
unittest
{
auto v = theAllocator.make!(Vector!int)(5, 15, 8);
auto v = defaultAllocator.make!(Vector!int)(5, 15, 8);
size_t i;
foreach (j, ref e; v)
@ -510,7 +510,7 @@ class Vector(T)
assert(j != 1 || e == 15);
assert(j != 2 || e == 8);
}
theAllocator.dispose(v);
defaultAllocator.dispose(v);
}
/**
@ -551,7 +551,7 @@ class Vector(T)
///
unittest
{
auto v = theAllocator.make!(Vector!int)(5, 15, 8);
auto v = defaultAllocator.make!(Vector!int)(5, 15, 8);
size_t i;
foreach_reverse (j, ref e; v)
@ -566,7 +566,7 @@ class Vector(T)
assert(j != 1 || e == 15);
assert(j != 0 || e == 5);
}
theAllocator.dispose(v);
defaultAllocator.dispose(v);
}
/**
@ -587,7 +587,7 @@ class Vector(T)
///
unittest
{
auto v = theAllocator.make!(Vector!int)(5);
auto v = defaultAllocator.make!(Vector!int)(5);
assert(v.front == 5);
@ -595,7 +595,7 @@ class Vector(T)
v[1] = 15;
assert(v.front == 5);
theAllocator.dispose(v);
defaultAllocator.dispose(v);
}
/**
@ -616,7 +616,7 @@ class Vector(T)
///
unittest
{
auto v = theAllocator.make!(Vector!int)(5);
auto v = defaultAllocator.make!(Vector!int)(5);
assert(v.back == 5);
@ -624,7 +624,7 @@ class Vector(T)
v[1] = 15;
assert(v.back == 15);
theAllocator.dispose(v);
defaultAllocator.dispose(v);
}
/**
@ -745,8 +745,8 @@ class Vector(T)
///
unittest
{
auto v1 = theAllocator.make!(Vector!int)(3, 3, 3);
auto v2 = theAllocator.make!(Vector!int)(1, 2);
auto v1 = defaultAllocator.make!(Vector!int)(3, 3, 3);
auto v2 = defaultAllocator.make!(Vector!int)(1, 2);
v1[0..2] = 286;
assert(v1[0] == 286);
@ -757,25 +757,25 @@ class Vector(T)
assert(v2[0] == 286);
assert(v2[1] == 3);
theAllocator.dispose(v2);
theAllocator.dispose(v1);
defaultAllocator.dispose(v2);
defaultAllocator.dispose(v1);
}
/// Internal representation.
protected T[] vector;
/// The allocator.
protected IAllocator allocator;
protected shared Allocator allocator;
}
///
unittest
{
auto v = theAllocator.make!(Vector!int)(5, 15, 8);
auto v = defaultAllocator.make!(Vector!int)(5, 15, 8);
assert(v.front == 5);
assert(v[1] == 15);
assert(v.back == 8);
theAllocator.dispose(v);
defaultAllocator.dispose(v);
}

View File

@ -20,260 +20,260 @@ import std.typecons;
* Supported padding mode.
*
* See_Also:
* $(D_PSYMBOL pad)
* $(D_PSYMBOL pad)
*/
enum PaddingMode
{
zero,
pkcs7,
ansiX923,
zero,
pkcs7,
ansiX923,
}
/**
* Params:
* input = Sequence that should be padded.
* mode = Padding mode.
* blockSize = Block size.
* allocator = Allocator was used to allocate $(D_PARAM input).
* input = Sequence that should be padded.
* mode = Padding mode.
* blockSize = Block size.
* allocator = Allocator was used to allocate $(D_PARAM input).
*
* Returns: The function modifies the initial array and returns it.
*
* See_Also:
* $(D_PSYMBOL PaddingMode)
* $(D_PSYMBOL PaddingMode)
*/
ubyte[] pad(ref ubyte[] input,
in PaddingMode mode,
in ushort blockSize,
IAllocator allocator = theAllocator)
shared Allocator allocator = defaultAllocator)
in
{
assert(blockSize > 0 && blockSize <= 256);
assert(blockSize % 64 == 0);
assert(input.length > 0);
assert(blockSize > 0 && blockSize <= 256);
assert(blockSize % 64 == 0);
assert(input.length > 0);
}
body
{
immutable rest = cast(ubyte) input.length % blockSize;
immutable size_t lastBlock = input.length - (rest > 0 ? rest : blockSize);
immutable needed = cast(ubyte) (rest > 0 ? blockSize - rest : 0);
immutable rest = cast(ubyte) input.length % blockSize;
immutable size_t lastBlock = input.length - (rest > 0 ? rest : blockSize);
immutable needed = cast(ubyte) (rest > 0 ? blockSize - rest : 0);
final switch (mode) with (PaddingMode)
{
case zero:
allocator.expandArray(input, needed);
break;
case pkcs7:
if (needed)
{
allocator.expandArray(input, needed);
input[input.length - needed ..$].each!((ref e) => e = needed);
}
else
{
allocator.expandArray(input, blockSize);
}
break;
case ansiX923:
allocator.expandArray(input, needed ? needed : blockSize);
input[$ - 1] = needed;
break;
}
final switch (mode) with (PaddingMode)
{
case zero:
allocator.expandArray(input, needed);
break;
case pkcs7:
if (needed)
{
allocator.expandArray(input, needed);
input[input.length - needed ..$].each!((ref e) => e = needed);
}
else
{
allocator.expandArray(input, blockSize);
}
break;
case ansiX923:
allocator.expandArray(input, needed ? needed : blockSize);
input[$ - 1] = needed;
break;
}
return input;
return input;
}
///
unittest
{
{ // Zeros
auto input = theAllocator.makeArray!ubyte(50);
{ // Zeros
auto input = defaultAllocator.makeArray!ubyte(50);
pad(input, PaddingMode.zero, 64);
assert(input.length == 64);
pad(input, PaddingMode.zero, 64);
assert(input.length == 64);
pad(input, PaddingMode.zero, 64);
assert(input.length == 64);
assert(input[63] == 0);
pad(input, PaddingMode.zero, 64);
assert(input.length == 64);
assert(input[63] == 0);
theAllocator.dispose(input);
}
{ // PKCS#7
auto input = theAllocator.makeArray!ubyte(50);
for (ubyte i; i < 40; ++i)
{
input[i] = i;
}
defaultAllocator.dispose(input);
}
{ // PKCS#7
auto input = defaultAllocator.makeArray!ubyte(50);
for (ubyte i; i < 40; ++i)
{
input[i] = i;
}
pad(input, PaddingMode.pkcs7, 64);
assert(input.length == 64);
for (ubyte i; i < 64; ++i)
{
if (i >= 40 && i < 50)
{
assert(input[i] == 0);
}
else if (i >= 50)
{
assert(input[i] == 14);
}
else
{
assert(input[i] == i);
}
}
pad(input, PaddingMode.pkcs7, 64);
assert(input.length == 64);
for (ubyte i; i < 64; ++i)
{
if (i >= 40 && i < 50)
{
assert(input[i] == 0);
}
else if (i >= 50)
{
assert(input[i] == 14);
}
else
{
assert(input[i] == i);
}
}
pad(input, PaddingMode.pkcs7, 64);
assert(input.length == 128);
for (ubyte i; i < 128; ++i)
{
if (i >= 64 || (i >= 40 && i < 50))
{
assert(input[i] == 0);
}
else if (i >= 50 && i < 64)
{
assert(input[i] == 14);
}
else
{
assert(input[i] == i);
}
}
pad(input, PaddingMode.pkcs7, 64);
assert(input.length == 128);
for (ubyte i; i < 128; ++i)
{
if (i >= 64 || (i >= 40 && i < 50))
{
assert(input[i] == 0);
}
else if (i >= 50 && i < 64)
{
assert(input[i] == 14);
}
else
{
assert(input[i] == i);
}
}
theAllocator.dispose(input);
}
{ // ANSI X.923
auto input = theAllocator.makeArray!ubyte(50);
for (ubyte i; i < 40; ++i)
{
input[i] = i;
}
defaultAllocator.dispose(input);
}
{ // ANSI X.923
auto input = defaultAllocator.makeArray!ubyte(50);
for (ubyte i; i < 40; ++i)
{
input[i] = i;
}
pad(input, PaddingMode.ansiX923, 64);
assert(input.length == 64);
for (ubyte i; i < 64; ++i)
{
if (i < 40)
{
assert(input[i] == i);
}
else if (i == 63)
{
assert(input[i] == 14);
}
else
{
assert(input[i] == 0);
}
}
pad(input, PaddingMode.ansiX923, 64);
assert(input.length == 64);
for (ubyte i; i < 64; ++i)
{
if (i < 40)
{
assert(input[i] == i);
}
else if (i == 63)
{
assert(input[i] == 14);
}
else
{
assert(input[i] == 0);
}
}
pad(input, PaddingMode.pkcs7, 64);
assert(input.length == 128);
for (ubyte i = 0; i < 128; ++i)
{
if (i < 40)
{
assert(input[i] == i);
}
else if (i == 63)
{
assert(input[i] == 14);
}
else
{
assert(input[i] == 0);
}
}
pad(input, PaddingMode.pkcs7, 64);
assert(input.length == 128);
for (ubyte i = 0; i < 128; ++i)
{
if (i < 40)
{
assert(input[i] == i);
}
else if (i == 63)
{
assert(input[i] == 14);
}
else
{
assert(input[i] == 0);
}
}
theAllocator.dispose(input);
}
defaultAllocator.dispose(input);
}
}
/**
* Params:
* input = Sequence that should be padded.
* mode = Padding mode.
* blockSize = Block size.
* allocator = Allocator was used to allocate $(D_PARAM input).
* input = Sequence that should be padded.
* mode = Padding mode.
* blockSize = Block size.
* allocator = Allocator was used to allocate $(D_PARAM input).
*
* Returns: The function modifies the initial array and returns it.
*
* See_Also:
* $(D_PSYMBOL pad)
* $(D_PSYMBOL pad)
*/
ref ubyte[] unpad(ref ubyte[] input,
in PaddingMode mode,
in ushort blockSize,
IAllocator allocator = theAllocator)
shared Allocator allocator = defaultAllocator)
in
{
assert(input.length != 0);
assert(input.length % 64 == 0);
assert(input.length != 0);
assert(input.length % 64 == 0);
}
body
{
final switch (mode) with (PaddingMode)
{
case zero:
break;
case pkcs7:
case ansiX923:
immutable last = input[$ - 1];
final switch (mode) with (PaddingMode)
{
case zero:
break;
case pkcs7:
case ansiX923:
immutable last = input[$ - 1];
allocator.shrinkArray(input, last ? last : blockSize);
break;
}
allocator.shrinkArray(input, last ? last : blockSize);
break;
}
return input;
return input;
}
///
unittest
{
{ // Zeros
auto input = theAllocator.makeArray!ubyte(50);
auto inputDup = theAllocator.makeArray!ubyte(50);
{ // Zeros
auto input = defaultAllocator.makeArray!ubyte(50);
auto inputDup = defaultAllocator.makeArray!ubyte(50);
pad(input, PaddingMode.zero, 64);
pad(inputDup, PaddingMode.zero, 64);
pad(input, PaddingMode.zero, 64);
pad(inputDup, PaddingMode.zero, 64);
unpad(input, PaddingMode.zero, 64);
assert(input == inputDup);
unpad(input, PaddingMode.zero, 64);
assert(input == inputDup);
theAllocator.dispose(input);
theAllocator.dispose(inputDup);
defaultAllocator.dispose(input);
defaultAllocator.dispose(inputDup);
}
{ // PKCS#7
auto input = theAllocator.makeArray!ubyte(50);
auto inputDup = theAllocator.makeArray!ubyte(50);
for (ubyte i; i < 40; ++i)
{
input[i] = i;
inputDup[i] = i;
}
}
{ // PKCS#7
auto input = defaultAllocator.makeArray!ubyte(50);
auto inputDup = defaultAllocator.makeArray!ubyte(50);
for (ubyte i; i < 40; ++i)
{
input[i] = i;
inputDup[i] = i;
}
pad(input, PaddingMode.pkcs7, 64);
unpad(input, PaddingMode.pkcs7, 64);
assert(input == inputDup);
pad(input, PaddingMode.pkcs7, 64);
unpad(input, PaddingMode.pkcs7, 64);
assert(input == inputDup);
theAllocator.dispose(input);
theAllocator.dispose(inputDup);
}
{ // ANSI X.923
auto input = theAllocator.makeArray!ubyte(50);
auto inputDup = theAllocator.makeArray!ubyte(50);
for (ubyte i; i < 40; ++i)
{
input[i] = i;
inputDup[i] = i;
}
defaultAllocator.dispose(input);
defaultAllocator.dispose(inputDup);
}
{ // ANSI X.923
auto input = defaultAllocator.makeArray!ubyte(50);
auto inputDup = defaultAllocator.makeArray!ubyte(50);
for (ubyte i; i < 40; ++i)
{
input[i] = i;
inputDup[i] = i;
}
pad(input, PaddingMode.pkcs7, 64);
unpad(input, PaddingMode.pkcs7, 64);
assert(input == inputDup);
pad(input, PaddingMode.pkcs7, 64);
unpad(input, PaddingMode.pkcs7, 64);
assert(input == inputDup);
theAllocator.dispose(input);
theAllocator.dispose(inputDup);
}
defaultAllocator.dispose(input);
defaultAllocator.dispose(inputDup);
}
}

View File

@ -13,17 +13,16 @@ module tanya.math.mp;
import std.algorithm.iteration;
import std.algorithm.searching;
import std.algorithm.mutation;
import std.experimental.allocator;
import std.math;
import std.range;
import std.traits;
import tanya.memory.allocator;
import tanya.memory.types;
import tanya.memory;
struct Integer
{
private RefCounted!(ubyte[]) rep;
private bool sign;
private shared Allocator allocator;
invariant
{
@ -34,10 +33,11 @@ struct Integer
* Creates a multiple precision integer.
*
* Params:
* T = Value type.
* value = Initial value.
* allocator = Allocator.
*/
this(T)(in T value, IAllocator allocator = theAllocator)
this(T)(in T value, shared Allocator allocator = defaultAllocator)
if (isIntegral!T)
in
{
@ -47,21 +47,30 @@ struct Integer
{
this(allocator);
immutable size = calculateSizeFromInt(value);
T absolute = value;
immutable size = calculateSizeFromInt(absolute);
allocator.resizeArray(rep, size);
assignInt(value);
assignInt(absolute);
}
///
unittest
{
auto h = Integer(79);
assert(h.length == 1);
assert(h.rep[0] == 79);
{
auto h = Integer(79);
assert(h.length == 1);
assert(h.rep[0] == 79);
}
{
auto h = Integer(-2);
assert(h.length == 1);
assert(h.rep[0] == 2);
assert(h.sign);
}
}
/// Ditto.
this(in Integer value, IAllocator allocator = theAllocator)
this(in Integer value, shared Allocator allocator = defaultAllocator)
in
{
assert(allocator !is null);
@ -76,21 +85,35 @@ struct Integer
}
/// Ditto.
this(IAllocator allocator)
this(shared Allocator allocator)
{
this.allocator = allocator;
rep = RefCounted!(ubyte[])(allocator);
}
/*
* Figure out the minimum amount of space this value will take
* up in bytes.
* Figures out the minimum amount of space this value will take
* up in bytes. Set the sign.
*/
pragma(inline, true)
private ubyte calculateSizeFromInt(in ulong value)
const pure nothrow @safe @nogc
private ubyte calculateSizeFromInt(T)(ref T value)
pure nothrow @safe @nogc
in
{
static assert(isIntegral!T);
}
body
{
ubyte size = ulong.sizeof;
static if (isSigned!T)
{
sign = value < 0 ? true : false;
value = abs(value);
}
else
{
sign = false;
}
for (ulong mask = 0xff00000000000000; mask >= 0xff; mask >>= 8)
{
if (value & mask)
@ -107,40 +130,42 @@ struct Integer
* (up to the first 0 byte) and copy it into the internal
* representation in big-endian format.
*/
pragma(inline, true)
private void assignInt(T)(ref in T value)
private void assignInt(in ulong value)
pure nothrow @safe @nogc
in
{
static assert(isIntegral!T);
}
body
{
uint mask = 0xff, shift;
immutable absolute = abs(value);
sign = value < 0 ? true : false;
for (auto i = length; i; --i)
{
rep[i - 1] = cast(ubyte) ((absolute & mask) >> shift);
rep[i - 1] = cast(ubyte) ((value & mask) >> shift);
mask <<= 8;
shift += 8;
}
}
/**
* Assigns a new value.
*
* Params:
* T = Value type.
* value = Value.
*
* Returns: $(D_KEYWORD this).
*/
ref Integer opAssign(T)(in T value)
if (isIntegral!T)
{
immutable size = calculateSizeFromInt(value);
T absolute = value;
immutable size = calculateSizeFromInt(absolute);
checkAllocator();
allocator.resizeArray(rep.get, size);
assignInt(value);
assignInt(absolute);
return this;
}
/// Ditto.
ref Integer opAssign(in Integer value)
{
checkAllocator();
@ -251,23 +276,11 @@ struct Integer
assert(h1 > h2);
}
/**
* Assignment operators with another $(D_PSYMBOL Integer).
*
* Params:
* op = Operation.
* h = The second integer.
*
* Returns: $(D_KEYWORD this).
*/
ref Integer opOpAssign(string op)(in Integer h)
if (op == "+")
private void add(in ref RefCounted!(ubyte[]) h)
{
uint sum;
uint carry = 0;
checkAllocator();
// Adding h2 to h1. If h2 is > h1 to begin with, resize h1
if (h.length > length)
@ -286,7 +299,7 @@ struct Integer
if (j)
{
--j;
sum = rep[i] + h.rep[j] + carry;
sum = rep[i] + h[j] + carry;
}
else
{
@ -305,36 +318,15 @@ struct Integer
tmp[0] = 0x01;
rep = tmp;
}
return this;
}
///
unittest
{
auto h1 = Integer(1019);
auto h2 = Integer(3337);
h1 += h2;
assert(h1.rep == [0x11, 0x04]);
h2 = 2_147_483_647;
h1 += h2;
assert(h1.rep == [0x80, 0x00, 0x11, 0x03]);
h1 += h2;
assert(h1.rep == [0x01, 0x00, 0x00, 0x11, 0x02]);
}
/// Ditto.
ref Integer opOpAssign(string op)(in Integer h)
if (op == "-")
private void subtract(in ref RefCounted!(ubyte[]) h)
{
auto i = rep.length;
auto j = h.rep.length;
auto j = h.length;
uint borrow = 0;
checkAllocator();
do
{
int difference;
@ -343,7 +335,7 @@ struct Integer
if (j)
{
--j;
difference = rep[i] - h.rep[j] - borrow;
difference = rep[i] - h[j] - borrow;
}
else
{
@ -371,11 +363,49 @@ struct Integer
{
allocator.resizeArray(rep, 0);
}
}
/**
* Assignment operators with another $(D_PSYMBOL Integer).
*
* Params:
* op = Operation.
* h = The second integer.
*
* Returns: $(D_KEYWORD this).
*/
ref Integer opOpAssign(string op)(in Integer h)
if ((op == "+") || (op == "-"))
{
checkAllocator();
static if (op == "+")
{
add(h.rep);
}
else
{
subtract(h.rep);
}
return this;
}
///
unittest
private unittest
{
auto h1 = Integer(1019);
auto h2 = Integer(3337);
h1 += h2;
assert(h1.rep == [0x11, 0x04]);
h2 = 2_147_483_647;
h1 += h2;
assert(h1.rep == [0x80, 0x00, 0x11, 0x03]);
h1 += h2;
assert(h1.rep == [0x01, 0x00, 0x00, 0x11, 0x02]);
}
private unittest
{
auto h1 = Integer(4294967295);
auto h2 = Integer(4294967295);
@ -417,8 +447,7 @@ struct Integer
}
do
{
--i;
--j;
--i, --j;
immutable oldCarry = carry;
carry = rep[i] >> delta;
rep[j] = cast(ubyte) ((rep[i] << bit) | oldCarry);
@ -546,6 +575,11 @@ struct Integer
/// Ditto.
ref Integer opOpAssign(string op)(in Integer h)
if ((op == "/") || (op == "%"))
in
{
assert(h.length > 0, "Division by zero.");
}
body
{
checkAllocator();
@ -715,6 +749,40 @@ struct Integer
assert(h2.rep[0] == ~cast(ubyte) 79);
}
private void decrement()
{
immutable size = rep.get.retro.countUntil!((const ref a) => a != 0);
if (rep[0] == 1)
{
allocator.resizeArray(rep, rep.length - 1);
rep[0 .. $] = typeof(rep[0]).max;
}
else
{
--rep[$ - size - 1];
rep[$ - size .. $] = typeof(rep[0]).max;
}
}
private void increment()
{
auto size = rep
.get
.retro
.countUntil!((const ref a) => a != typeof(rep[0]).max);
if (size == -1)
{
size = length;
allocator.resizeArray(rep.get, rep.length + 1);
rep[0] = 1;
}
else
{
++rep[$ - size - 1];
}
rep[$ - size .. $] = 0;
}
/**
* Increment/decrement.
*
@ -728,45 +796,28 @@ struct Integer
{
checkAllocator();
if (op == "++" || sign || length == 0)
static if (op == "++")
{
static if (op == "--")
if (sign)
{
sign = true;
}
auto size = rep
.get
.retro
.countUntil!((const ref a) => a != typeof(rep[0]).max);
if (size == -1)
{
size = length;
allocator.resizeArray(rep.get, rep.length + 1);
rep[0] = 1;
decrement();
if (length == 0)
{
sign = false;
}
}
else
{
++rep[$ - size - 1];
increment();
}
rep[$ - size .. $] = 0;
}
else if (sign)
{
increment();
}
else
{
immutable size = rep.get.retro.countUntil!((const ref a) => a != 0);
if (rep[0] == 1)
{
allocator.resizeArray(rep, rep.length - 1);
rep[0 .. $] = typeof(rep[0]).max;
}
else
{
--rep[$ - size - 1];
rep[$ - size .. $] = typeof(rep[0]).max;
}
if (rep.length == 0)
{
sign = false;
}
decrement();
}
return this;
}
@ -803,7 +854,17 @@ struct Integer
--h;
assert(h.rep == [0xff, 0xff]);
h = -2;
++h;
assert(h.rep == [0x01]);
}
mixin StructAllocator;
private void checkAllocator() nothrow @safe @nogc
{
if (allocator is null)
{
allocator = defaultAllocator;
}
}
}

View File

@ -10,214 +10,42 @@
*/
module tanya.memory.allocator;
import std.algorithm.mutation;
import std.experimental.allocator;
import std.typecons;
/**
* Abstract class implementing a basic allocator.
*/
abstract class Allocator : IAllocator
interface Allocator
{
/**
* Not supported.
*
* Returns: $(D_KEYWORD false).
*/
bool deallocateAll() const @nogc @safe pure nothrow
{
return false;
}
@nogc:
@property uint alignment() const shared pure nothrow @safe;
/**
* Not supported.
*
* Returns $(D_PSYMBOL Ternary.unknown).
*/
Ternary empty() const @nogc @safe pure nothrow
{
return Ternary.unknown;
}
/**
* Allocates $(D_PARAM size) bytes of memory.
*
* Params:
* size = Amount of memory to allocate.
*
* Returns: The pointer to the new allocated memory.
*/
void[] allocate(size_t size, TypeInfo ti = null) shared nothrow @safe;
/**
* Not supported.
*
* Params:
* b = Memory block.
*
* Returns: $(D_PSYMBOL Ternary.unknown).
*/
Ternary owns(void[] b) const @nogc @safe pure nothrow
{
return Ternary.unknown;
}
/**
* Deallocates a memory block.
*
* Params:
* p = A pointer to the memory block to be freed.
*
* Returns: Whether the deallocation was successful.
*/
bool deallocate(void[] p) shared nothrow @safe;
/**
* Not supported.
*
* Params:
* p = Pointer to a memory block.
* result = Full block allocated.
*
* Returns: $(D_PSYMBOL Ternary.unknown).
*/
Ternary resolveInternalPointer(void* p, ref void[] result)
const @nogc @safe pure nothrow
{
return Ternary.unknown;
}
/**
* Params:
* size = Amount of memory to allocate.
*
* Returns: The good allocation size that guarantees zero internal
* fragmentation.
*/
size_t goodAllocSize(size_t s)
{
auto rem = s % alignment;
return rem ? s + alignment - rem : s;
}
/**
* Not supported.
*
* Returns: $(D_KEYWORD null).
*
*/
void[] allocateAll() const @nogc @safe pure nothrow
{
return null;
}
/**
* Not supported.
*
* Params:
* b = Block to be expanded.
* s = New size.
*
* Returns: $(D_KEYWORD false).
*/
bool expand(ref void[] b, size_t s) const @nogc @safe pure nothrow
{
return false;
}
/**
* Not supported.
*
* Params:
* n = Amount of memory to allocate.
* a = Alignment.
*
* Returns: $(D_KEYWORD null).
*/
void[] alignedAllocate(size_t n, uint a) const @nogc @safe pure nothrow
{
return null;
}
/**
* Not supported.
*
* Params:
* n = Amount of memory to allocate.
* a = Alignment.
*
* Returns: $(D_KEYWORD false).
*/
bool alignedReallocate(ref void[] b, size_t size, uint alignment)
const @nogc @safe pure nothrow
{
return false;
}
}
/**
* Params:
* T = Element type of the array being created.
* allocator = The allocator used for getting memory.
* array = A reference to the array being changed.
* length = New array length.
* init = The value to fill the new part of the array with if it becomes
* larger.
*
* Returns: $(D_KEYWORD true) upon success, $(D_KEYWORD false) if memory could
* not be reallocated. In the latter
*/
bool resizeArray(T)(IAllocator allocator,
ref T[] array,
in size_t length,
T init = T.init)
{
void[] buf = array;
immutable oldLength = array.length;
if (!allocator.reallocate(buf, length * T.sizeof))
{
return false;
}
array = cast(T[]) buf;
if (oldLength < length)
{
array[oldLength .. $].uninitializedFill(init);
}
return true;
}
///
unittest
{
int[] p;
theAllocator.resizeArray(p, 20);
assert(p.length == 20);
theAllocator.resizeArray(p, 30);
assert(p.length == 30);
theAllocator.resizeArray(p, 10);
assert(p.length == 10);
theAllocator.resizeArray(p, 0);
assert(p is null);
}
/**
* Mixin to get around the impossibility to define a default constructor for
* structs. It can be used for the structs that don't disable the default
* constructor and don't wan't to force passing the allocator each time to
* the constructor.
*
* It defines the private property `allocator`, a constructor that accepts only
* an allocator instance and the method `checkAllocator` that checks if an
* allocator is set and sets it to ` $(D_PSYMBOL theAllocator) if not.
*
* `checkAllocator` should be used at beginning of functions that
* allocate/free memory.
*/
mixin template StructAllocator()
{
private IAllocator allocator;
this(IAllocator allocator) pure nothrow @safe @nogc
in
{
assert(allocator !is null);
}
body
{
this.allocator = allocator;
}
pragma(inline, true)
private void checkAllocator() nothrow @safe @nogc
{
if (allocator is null)
{
allocator = theAllocator;
}
}
/**
* Increases or decreases the size of a memory block.
*
* Params:
* p = A pointer to the memory block.
* size = Size of the reallocated block.
*
* Returns: Whether the reallocation was successful.
*/
bool reallocate(ref void[] p, size_t size) shared nothrow @safe;
}

View File

@ -16,14 +16,14 @@ import core.exception;
version (Posix)
{
import core.stdc.errno;
import core.sys.posix.sys.mman;
import core.sys.posix.unistd;
import core.stdc.errno;
import core.sys.posix.sys.mman;
import core.sys.posix.unistd;
}
else version (Windows)
{
import core.sys.windows.winbase;
import core.sys.windows.windows;
import core.sys.windows.winbase;
import core.sys.windows.windows;
}
/**
@ -49,437 +49,436 @@ else version (Windows)
* --------------------------------------------------- ------------------------
*
* TODO:
* $(UL
* $(LI Thread safety (core.atomic.cas))
* $(LI If two neighbour blocks are free, they can be merged)
* $(LI Reallocation shoud check if there is enough free space in the
* next block instead of always moving the memory)
* $(LI Make 64 KB regions mininmal region size on Linux)
* )
* $(UL
* $(LI Thread safety (core.atomic.cas))
* $(LI If two neighbour blocks are free, they can be merged)
* $(LI Reallocation shoud check if there is enough free space in the
* next block instead of always moving the memory)
* $(LI Make 64 KB regions mininmal region size on Linux)
* )
*/
class MmapPool : Allocator
{
@disable this();
@nogc:
shared static this()
{
version (Posix)
{
pageSize = sysconf(_SC_PAGE_SIZE);
}
else version (Windows)
{
SYSTEM_INFO si;
GetSystemInfo(&si);
pageSize = si.dwPageSize;
}
}
shared static this()
{
version (Posix)
{
pageSize = sysconf(_SC_PAGE_SIZE);
}
else version (Windows)
{
SYSTEM_INFO si;
GetSystemInfo(&si);
pageSize = si.dwPageSize;
}
}
/**
* Allocates $(D_PARAM size) bytes of memory.
*
* Params:
* size = Amount of memory to allocate.
*
* Returns: The pointer to the new allocated memory.
*/
void[] allocate(size_t size, TypeInfo ti = null) shared nothrow @trusted
{
if (!size)
{
return null;
}
immutable dataSize = addAlignment(size);
/**
* Allocates $(D_PARAM size) bytes of memory.
*
* Params:
* size = Amount of memory to allocate.
*
* Returns: The pointer to the new allocated memory.
*/
void[] allocate(size_t size, TypeInfo ti = null) @nogc @trusted nothrow
{
if (!size)
{
return null;
}
immutable dataSize = addAlignment(size);
void* data = findBlock(dataSize);
if (data is null)
{
data = initializeRegion(dataSize);
}
void* data = findBlock(dataSize);
if (data is null)
{
data = initializeRegion(dataSize);
}
return data is null ? null : data[0..size];
}
return data is null ? null : data[0..size];
}
///
@safe nothrow unittest
{
auto p = MmapPool.instance.allocate(20);
///
@nogc @safe nothrow unittest
{
auto p = MmapPool.instance.allocate(20);
assert(p);
assert(p);
MmapPool.instance.deallocate(p);
}
MmapPool.instance.deallocate(p);
}
/**
* Search for a block large enough to keep $(D_PARAM size) and split it
* into two blocks if the block is too large.
*
* Params:
* size = Minimum size the block should have.
*
* Returns: Data the block points to or $(D_KEYWORD null).
*/
private void* findBlock(size_t size) shared nothrow
{
Block block1;
RegionLoop: for (auto r = head; r !is null; r = r.next)
{
block1 = cast(Block) (cast(void*) r + regionEntrySize);
do
{
if (block1.free && block1.size >= size)
{
break RegionLoop;
}
}
while ((block1 = block1.next) !is null);
}
if (block1 is null)
{
return null;
}
else if (block1.size >= size + alignment + blockEntrySize)
{ // Split the block if needed
Block block2 = cast(Block) (cast(void*) block1 + blockEntrySize + size);
block2.prev = block1;
if (block1.next is null)
{
block2.next = null;
}
else
{
block2.next = block1.next.next;
}
block1.next = block2;
/**
* Search for a block large enough to keep $(D_PARAM size) and split it
* into two blocks if the block is too large.
*
* Params:
* size = Minimum size the block should have.
*
* Returns: Data the block points to or $(D_KEYWORD null).
*/
private void* findBlock(size_t size) @nogc nothrow
{
Block block1;
RegionLoop: for (auto r = head; r !is null; r = r.next)
{
block1 = cast(Block) (cast(void*) r + regionEntrySize);
do
{
if (block1.free && block1.size >= size)
{
break RegionLoop;
}
}
while ((block1 = block1.next) !is null);
}
if (block1 is null)
{
return null;
}
else if (block1.size >= size + alignment + blockEntrySize)
{ // Split the block if needed
Block block2 = cast(Block) (cast(void*) block1 + blockEntrySize + size);
block2.prev = block1;
if (block1.next is null)
{
block2.next = null;
}
else
{
block2.next = block1.next.next;
}
block1.next = block2;
block1.free = false;
block2.free = true;
block1.free = false;
block2.free = true;
block2.size = block1.size - blockEntrySize - size;
block1.size = size;
block2.size = block1.size - blockEntrySize - size;
block1.size = size;
block2.region = block1.region;
atomicOp!"+="(block1.region.blocks, 1);
}
else
{
block1.free = false;
atomicOp!"+="(block1.region.blocks, 1);
}
return cast(void*) block1 + blockEntrySize;
}
block2.region = block1.region;
atomicOp!"+="(block1.region.blocks, 1);
}
else
{
block1.free = false;
atomicOp!"+="(block1.region.blocks, 1);
}
return cast(void*) block1 + blockEntrySize;
}
/**
* Deallocates a memory block.
*
* Params:
* p = A pointer to the memory block to be freed.
*
* Returns: Whether the deallocation was successful.
*/
bool deallocate(void[] p) shared nothrow @trusted
{
if (p is null)
{
return true;
}
/**
* Deallocates a memory block.
*
* Params:
* p = A pointer to the memory block to be freed.
*
* Returns: Whether the deallocation was successful.
*/
bool deallocate(void[] p) @nogc @trusted nothrow
{
if (p is null)
{
return true;
}
Block block = cast(Block) (p.ptr - blockEntrySize);
if (block.region.blocks <= 1)
{
if (block.region.prev !is null)
{
block.region.prev.next = block.region.next;
}
else // Replace the list head. It is being deallocated
{
head = block.region.next;
}
if (block.region.next !is null)
{
block.region.next.prev = block.region.prev;
}
version (Posix)
{
return munmap(cast(void*) block.region, block.region.size) == 0;
}
version (Windows)
{
return VirtualFree(cast(void*) block.region, 0, MEM_RELEASE) == 0;
}
}
else
{
block.free = true;
atomicOp!"-="(block.region.blocks, 1);
return true;
}
}
Block block = cast(Block) (p.ptr - blockEntrySize);
if (block.region.blocks <= 1)
{
if (block.region.prev !is null)
{
block.region.prev.next = block.region.next;
}
else // Replace the list head. It is being deallocated
{
head = block.region.next;
}
if (block.region.next !is null)
{
block.region.next.prev = block.region.prev;
}
version (Posix)
{
return munmap(cast(void*) block.region, block.region.size) == 0;
}
version (Windows)
{
return VirtualFree(cast(void*) block.region, 0, MEM_RELEASE) == 0;
}
}
else
{
block.free = true;
atomicOp!"-="(block.region.blocks, 1);
return true;
}
}
///
@safe nothrow unittest
{
auto p = MmapPool.instance.allocate(20);
///
@nogc @safe nothrow unittest
{
auto p = MmapPool.instance.allocate(20);
assert(MmapPool.instance.deallocate(p));
}
assert(MmapPool.instance.deallocate(p));
}
/**
* Increases or decreases the size of a memory block.
*
* Params:
* p = A pointer to the memory block.
* size = Size of the reallocated block.
*
* Returns: Whether the reallocation was successful.
*/
bool reallocate(ref void[] p, size_t size) shared nothrow @trusted
{
void[] reallocP;
/**
* Increases or decreases the size of a memory block.
*
* Params:
* p = A pointer to the memory block.
* size = Size of the reallocated block.
*
* Returns: Whether the reallocation was successful.
*/
bool reallocate(ref void[] p, size_t size) @nogc @trusted nothrow
{
void[] reallocP;
if (size == p.length)
{
return true;
}
else if (size > 0)
{
reallocP = allocate(size);
if (reallocP is null)
{
return false;
}
}
if (size == p.length)
{
return true;
}
else if (size > 0)
{
reallocP = allocate(size);
if (reallocP is null)
{
return false;
}
}
if (p !is null)
{
if (size > p.length)
{
reallocP[0..p.length] = p[0..$];
}
else if (size > 0)
{
reallocP[0..size] = p[0..size];
}
deallocate(p);
}
p = reallocP;
if (p !is null)
{
if (size > p.length)
{
reallocP[0..p.length] = p[0..$];
}
else if (size > 0)
{
reallocP[0..size] = p[0..size];
}
deallocate(p);
}
p = reallocP;
return true;
}
return true;
}
///
nothrow unittest
{
void[] p;
MmapPool.instance.reallocate(p, 10 * int.sizeof);
(cast(int[]) p)[7] = 123;
///
@nogc nothrow unittest
{
void[] p;
MmapPool.instance.reallocate(p, 10 * int.sizeof);
(cast(int[]) p)[7] = 123;
assert(p.length == 40);
assert(p.length == 40);
MmapPool.instance.reallocate(p, 8 * int.sizeof);
MmapPool.instance.reallocate(p, 8 * int.sizeof);
assert(p.length == 32);
assert((cast(int[]) p)[7] == 123);
assert(p.length == 32);
assert((cast(int[]) p)[7] == 123);
MmapPool.instance.reallocate(p, 20 * int.sizeof);
(cast(int[]) p)[15] = 8;
MmapPool.instance.reallocate(p, 20 * int.sizeof);
(cast(int[]) p)[15] = 8;
assert(p.length == 80);
assert((cast(int[]) p)[15] == 8);
assert((cast(int[]) p)[7] == 123);
assert(p.length == 80);
assert((cast(int[]) p)[15] == 8);
assert((cast(int[]) p)[7] == 123);
MmapPool.instance.reallocate(p, 8 * int.sizeof);
MmapPool.instance.reallocate(p, 8 * int.sizeof);
assert(p.length == 32);
assert((cast(int[]) p)[7] == 123);
assert(p.length == 32);
assert((cast(int[]) p)[7] == 123);
MmapPool.instance.deallocate(p);
}
MmapPool.instance.deallocate(p);
}
/**
* Static allocator instance and initializer.
*
* Returns: Global $(D_PSYMBOL MmapPool) instance.
*/
static @property ref shared(MmapPool) instance() nothrow @trusted
{
if (instance_ is null)
{
immutable instanceSize = addAlignment(__traits(classInstanceSize, MmapPool));
/**
* Static allocator instance and initializer.
*
* Returns: Global $(D_PSYMBOL MmapPool) instance.
*/
static @property ref MmapPool instance() @nogc @trusted nothrow
{
if (instance_ is null)
{
immutable instanceSize = addAlignment(__traits(classInstanceSize, MmapPool));
Region head; // Will become soon our region list head
void* data = initializeRegion(instanceSize, head);
if (data !is null)
{
data[0..instanceSize] = typeid(MmapPool).initializer[];
instance_ = cast(shared MmapPool) data;
instance_.head = head;
}
}
return instance_;
}
Region head; // Will become soon our region list head
void* data = initializeRegion(instanceSize, head);
if (data !is null)
{
data[0..instanceSize] = typeid(MmapPool).initializer[];
instance_ = cast(MmapPool) data;
instance_.head = head;
}
}
return instance_;
}
///
@safe nothrow unittest
{
assert(instance is instance);
}
///
@nogc @safe nothrow unittest
{
assert(instance is instance);
}
/**
* Initializes a region for one element.
*
* Params:
* size = Aligned size of the first data block in the region.
* head = Region list head.
*
* Returns: A pointer to the data.
*/
private static void* initializeRegion(size_t size,
ref Region head) nothrow
{
immutable regionSize = calculateRegionSize(size);
version (Posix)
{
void* p = mmap(null,
regionSize,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON,
-1,
0);
if (p is MAP_FAILED)
{
if (errno == ENOMEM)
{
onOutOfMemoryError();
}
return null;
}
}
else version (Windows)
{
void* p = VirtualAlloc(null,
regionSize,
MEM_COMMIT,
PAGE_READWRITE);
if (p is null)
{
if (GetLastError() == ERROR_NOT_ENOUGH_MEMORY)
{
onOutOfMemoryError();
}
return null;
}
}
/**
* Initializes a region for one element.
*
* Params:
* size = Aligned size of the first data block in the region.
* head = Region list head.
*
* Returns: A pointer to the data.
*/
private static void* initializeRegion(size_t size,
ref Region head) @nogc nothrow
{
immutable regionSize = calculateRegionSize(size);
version (Posix)
{
void* p = mmap(null,
regionSize,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON,
-1,
0);
if (p is MAP_FAILED)
{
if (errno == ENOMEM)
{
onOutOfMemoryError();
}
return null;
}
}
else version (Windows)
{
void* p = VirtualAlloc(null,
regionSize,
MEM_COMMIT,
PAGE_READWRITE);
if (p is null)
{
if (GetLastError() == ERROR_NOT_ENOUGH_MEMORY)
{
onOutOfMemoryError();
}
return null;
}
}
Region region = cast(Region) p;
region.blocks = 1;
region.size = regionSize;
Region region = cast(Region) p;
region.blocks = 1;
region.size = regionSize;
// Set the pointer to the head of the region list
if (head !is null)
{
head.prev = region;
}
region.next = head;
region.prev = null;
head = region;
// Set the pointer to the head of the region list
if (head !is null)
{
head.prev = region;
}
region.next = head;
region.prev = null;
head = region;
// Initialize the data block
void* memoryPointer = p + regionEntrySize;
Block block1 = cast(Block) memoryPointer;
block1.size = size;
block1.free = false;
// Initialize the data block
void* memoryPointer = p + regionEntrySize;
Block block1 = cast(Block) memoryPointer;
block1.size = size;
block1.free = false;
// It is what we want to return
void* data = memoryPointer + blockEntrySize;
// It is what we want to return
void* data = memoryPointer + blockEntrySize;
// Free block after data
memoryPointer = data + size;
Block block2 = cast(Block) memoryPointer;
block1.prev = block2.next = null;
block1.next = block2;
block2.prev = block1;
block2.size = regionSize - size - regionEntrySize - blockEntrySize * 2;
block2.free = true;
block1.region = block2.region = region;
// Free block after data
memoryPointer = data + size;
Block block2 = cast(Block) memoryPointer;
block1.prev = block2.next = null;
block1.next = block2;
block2.prev = block1;
block2.size = regionSize - size - regionEntrySize - blockEntrySize * 2;
block2.free = true;
block1.region = block2.region = region;
return data;
}
return data;
}
/// Ditto.
private void* initializeRegion(size_t size) shared nothrow
{
return initializeRegion(size, head);
}
/// Ditto.
private void* initializeRegion(size_t size) @nogc nothrow
{
return initializeRegion(size, head);
}
/**
* Params:
* x = Space to be aligned.
*
* Returns: Aligned size of $(D_PARAM x).
*/
pragma(inline)
private static immutable(size_t) addAlignment(size_t x)
@safe pure nothrow
out (result)
{
assert(result > 0);
}
body
{
return (x - 1) / alignment_ * alignment_ + alignment_;
}
/**
* Params:
* x = Space to be aligned.
*
* Returns: Aligned size of $(D_PARAM x).
*/
pragma(inline)
private static immutable(size_t) addAlignment(size_t x)
@nogc @safe pure nothrow
out (result)
{
assert(result > 0);
}
body
{
return (x - 1) / alignment_ * alignment_ + alignment_;
}
/**
* Params:
* x = Required space.
*
* Returns: Minimum region size (a multiple of $(D_PSYMBOL pageSize)).
*/
pragma(inline)
private static immutable(size_t) calculateRegionSize(size_t x)
@safe pure nothrow
out (result)
{
assert(result > 0);
}
body
{
x += regionEntrySize + blockEntrySize * 2;
return x / pageSize * pageSize + pageSize;
}
/**
* Params:
* x = Required space.
*
* Returns: Minimum region size (a multiple of $(D_PSYMBOL pageSize)).
*/
pragma(inline)
private static immutable(size_t) calculateRegionSize(size_t x)
@nogc @safe pure nothrow
out (result)
{
assert(result > 0);
}
body
{
x += regionEntrySize + blockEntrySize * 2;
return x / pageSize * pageSize + pageSize;
}
@property uint alignment() shared const pure nothrow @safe
{
return alignment_;
}
private enum alignment_ = 8;
@property uint alignment() const @nogc @safe pure nothrow
{
return alignment_;
}
private enum alignment_ = 8;
private static shared MmapPool instance_;
private static MmapPool instance_;
private shared static immutable size_t pageSize;
private shared static immutable size_t pageSize;
private shared struct RegionEntry
{
Region prev;
Region next;
uint blocks;
size_t size;
}
private alias Region = shared RegionEntry*;
private enum regionEntrySize = 32;
private shared struct RegionEntry
{
Region prev;
Region next;
uint blocks;
size_t size;
}
private alias Region = shared RegionEntry*;
private enum regionEntrySize = 32;
private shared Region head;
private shared Region head;
private shared struct BlockEntry
{
Block prev;
Block next;
bool free;
size_t size;
Region region;
}
private alias Block = shared BlockEntry*;
private enum blockEntrySize = 40;
private shared struct BlockEntry
{
Block prev;
Block next;
bool free;
size_t size;
Region region;
}
private alias Block = shared BlockEntry*;
private enum blockEntrySize = 40;
}

View File

@ -10,6 +10,75 @@
*/
module tanya.memory;
import std.algorithm.mutation;
public import std.experimental.allocator;
public import tanya.memory.allocator;
public import tanya.memory.types;
shared Allocator allocator;
shared static this() nothrow @safe @nogc
{
import tanya.memory.mmappool;
allocator = MmapPool.instance;
}
@property ref shared(Allocator) defaultAllocator() nothrow @safe @nogc
{
return allocator;
}
@property void defaultAllocator(shared(Allocator) allocator) nothrow @safe @nogc
{
.allocator = allocator;
}
/**
* Params:
* T = Element type of the array being created.
* allocator = The allocator used for getting memory.
* array = A reference to the array being changed.
* length = New array length.
* init = The value to fill the new part of the array with if it becomes
* larger.
*
* Returns: $(D_KEYWORD true) upon success, $(D_KEYWORD false) if memory could
* not be reallocated. In the latter
*/
bool resizeArray(T)(shared Allocator allocator,
ref T[] array,
in size_t length,
T init = T.init)
{
void[] buf = array;
immutable oldLength = array.length;
if (!allocator.reallocate(buf, length * T.sizeof))
{
return false;
}
array = cast(T[]) buf;
if (oldLength < length)
{
array[oldLength .. $].uninitializedFill(init);
}
return true;
}
///
unittest
{
int[] p;
defaultAllocator.resizeArray(p, 20);
assert(p.length == 20);
defaultAllocator.resizeArray(p, 30);
assert(p.length == 30);
defaultAllocator.resizeArray(p, 10);
assert(p.length == 10);
defaultAllocator.resizeArray(p, 0);
assert(p is null);
}

View File

@ -37,13 +37,15 @@ struct RefCounted(T)
private T* payload;
}
private uint *counter;
private uint counter;
invariant
{
assert(counter is null || allocator !is null);
assert(counter == 0 || allocator !is null);
}
private shared Allocator allocator;
/**
* Takes ownership over $(D_PARAM value), setting the counter to 1.
*
@ -54,20 +56,29 @@ struct RefCounted(T)
* Precondition: $(D_INLINECODE allocator !is null)
*/
this(T value, IAllocator allocator = theAllocator)
this(T value, shared Allocator allocator = defaultAllocator)
in
{
assert(allocator !is null);
}
body
{
this.allocator = allocator;
initialize();
move(value, get);
this(allocator);
static if (!isReference!T)
{
payload = cast(T*) allocator.allocate(stateSize!T).ptr;
move(value, *payload);
counter = 1;
}
else if (value !is null)
{
move(value, payload);
counter = 1;
}
}
/// Ditto.
this(IAllocator allocator)
this(shared Allocator allocator) pure nothrow @safe @nogc
in
{
assert(allocator !is null);
@ -77,28 +88,6 @@ struct RefCounted(T)
this.allocator = allocator;
}
/**
* Allocates the internal storage.
*/
private void initialize()
{
static if (isReference!T)
{
counter = allocator.make!uint(1);
}
else
{
// Allocate for the counter and the payload together.
auto p = allocator.allocate(uint.sizeof + T.sizeof);
if (p is null)
{
onOutOfMemoryError();
}
counter = emplace(cast(uint*) p.ptr, 1);
payload = cast(T*) p[uint.sizeof .. $].ptr;
}
}
/**
* Increases the reference counter by one.
*/
@ -106,7 +95,7 @@ struct RefCounted(T)
{
if (isInitialized)
{
++(*counter);
++counter;
}
}
@ -117,15 +106,14 @@ struct RefCounted(T)
*/
~this()
{
if (!isInitialized || (--(*counter)))
if (isInitialized && !--counter)
{
return;
static if (isReference!T)
{
allocator.dispose(payload);
payload = null;
}
}
allocator.dispose(payload);
payload = null;
allocator.dispose(counter);
counter = null;
}
/**
@ -135,7 +123,7 @@ struct RefCounted(T)
* If it is the last reference of the previously owned object,
* it will be destroyed.
*
* If the allocator wasn't set before, $(D_PSYMBOL theAllocator) will
* If the allocator wasn't set before, $(D_PSYMBOL defaultAllocator) will
* be used. If you need a different allocator, create a new
* $(D_PSYMBOL RefCounted).
*
@ -144,21 +132,18 @@ struct RefCounted(T)
*/
ref T opAssign(T rhs)
{
checkAllocator();
if (isInitialized)
if (allocator is null)
{
static if (isReference!T)
{
if (!--(*counter))
{
allocator.dispose(payload);
*counter = 1;
}
}
allocator = defaultAllocator;
}
else
static if (isReference!T)
{
initialize();
counter == 1 ? allocator.dispose(payload) : --counter;
}
else if (!isInitialized)
{
payload = cast(T*) allocator.allocate(stateSize!T).ptr;
counter = 1;
}
move(rhs, get);
return get;
@ -212,7 +197,7 @@ struct RefCounted(T)
*/
@property uint count() const pure nothrow @safe @nogc
{
return counter is null ? 0 : *counter;
return counter;
}
/**
@ -220,11 +205,9 @@ struct RefCounted(T)
*/
@property bool isInitialized() const pure nothrow @safe @nogc
{
return counter !is null;
return counter != 0;
}
mixin StructAllocator;
alias get this;
}
@ -247,9 +230,11 @@ version (unittest)
struct B
{
int prop;
@disable this();
this(int param1)
{
prop = param1;
}
}
}
@ -269,7 +254,7 @@ unittest
}
}
auto arr = theAllocator.makeArray!ubyte(2);
auto arr = defaultAllocator.makeArray!ubyte(2);
{
auto a = S(arr);
assert(a.member.count == 1);
@ -288,7 +273,7 @@ unittest
private unittest
{
uint destroyed;
auto a = theAllocator.make!A(destroyed);
auto a = defaultAllocator.make!A(destroyed);
assert(destroyed == 0);
{
@ -323,6 +308,7 @@ private unittest
static assert(!is(typeof(cast(int) (RefCounted!A()))));
static assert(is(RefCounted!B));
static assert(is(RefCounted!A));
}
/**
@ -341,40 +327,26 @@ private unittest
*
* Returns: Newly created $(D_PSYMBOL RefCounted!T).
*/
RefCounted!T refCounted(T, A...)(IAllocator allocator, auto ref A args)
RefCounted!T refCounted(T, A...)(shared Allocator allocator, auto ref A args)
if (!is(T == interface) && !isAbstractClass!T)
{
auto rc = typeof(return)(allocator);
immutable toAllocate = max(stateSize!T, 1) + uint.sizeof;
auto p = allocator.allocate(toAllocate);
if (p is null)
static if (isReference!T)
{
onOutOfMemoryError();
}
scope (failure)
{
allocator.deallocate(p);
}
rc.counter = emplace(cast(uint*) p.ptr, 1);
static if (is(T == class))
{
rc.payload = emplace!T(p[uint.sizeof .. $], args);
return typeof(return)(allocator.make!T(args), allocator);
}
else
{
rc.payload = emplace(cast(T*) p[uint.sizeof .. $].ptr, args);
auto rc = typeof(return)(allocator);
rc.counter = 1;
rc.payload = allocator.make!T(args);
return rc;
}
return rc;
}
///
unittest
{
auto rc = theAllocator.refCounted!int(5);
auto rc = defaultAllocator.refCounted!int(5);
assert(rc.count == 1);
void func(RefCounted!int param)
@ -395,7 +367,21 @@ unittest
private unittest
{
static assert(!is(theAllocator.refCounted!A));
static assert(!is(typeof(theAllocator.refCounted!B())));
static assert(is(typeof(theAllocator.refCounted!B(5))));
struct E
{
}
static assert(is(typeof(defaultAllocator.refCounted!bool(false))));
static assert(is(typeof(defaultAllocator.refCounted!B(5))));
static assert(!is(typeof(defaultAllocator.refCounted!B())));
static assert(is(typeof(defaultAllocator.refCounted!E())));
static assert(!is(typeof(defaultAllocator.refCounted!E(5))));
{
auto rc = defaultAllocator.refCounted!B(3);
assert(rc.get.prop == 3);
}
{
auto rc = defaultAllocator.refCounted!E();
assert(rc.isInitialized);
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -10,9 +10,10 @@
*/
module tanya.random;
import tanya.memory;
import std.experimental.allocator;
import std.digest.sha;
import std.typecons;
import tanya.memory;
/// Block size of entropy accumulator (SHA-512).
enum blockSize = 64;
@ -148,13 +149,13 @@ version (linux)
/**
* Pseudorandom number generator.
* ---
* auto entropy = theAllocator.make!Entropy;
* auto entropy = defaultAllocator.make!Entropy();
*
* ubyte[blockSize] output;
*
* output = entropy.random;
*
* theAllocator.finalize(entropy);
* defaultAllocator.finalize(entropy);
* ---
*/
class Entropy
@ -175,7 +176,7 @@ class Entropy
* allocator = Allocator to allocate entropy sources available on the
* system.
*/
this(size_t maxSources = 20, IAllocator allocator = theAllocator)
this(size_t maxSources = 20, shared Allocator allocator = defaultAllocator)
in
{
assert(maxSources > 0 && maxSources <= ubyte.max);