Files
elna/boot/stage8.elna

1980 lines
39 KiB
Plaintext

# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
# Stage 8 compiler.
#
# - Procedure calls in expressions.
# - Comments between (* and *) are supported. These are still single line
# comments and they should be on a separate line.
const
symbol_builtin_name_int := "Int";
symbol_builtin_name_word := "Word";
symbol_builtin_name_pointer := "Pointer";
symbol_builtin_name_char := "Char";
symbol_builtin_name_bool := "Bool";
# Every type info starts with a word describing what type it is.
#
# PRIMITIVE_TYPE = 1
#
# Primitive types have only type size.
symbol_builtin_type_int := S(1, 4);
symbol_builtin_type_word := S(1, 4);
symbol_builtin_type_pointer := S(1, 4);
symbol_builtin_type_char := S(1, 1);
symbol_builtin_type_bool := S(1, 1);
# Info objects start with a word describing its type.
#
# INFO_TYPE = 1
#
# Type info has the type it belongs to.
symbol_type_info_int := S(1, @symbol_builtin_type_int);
symbol_type_info_word := S(1, @symbol_builtin_type_word);
symbol_type_info_pointer := S(1, @symbol_builtin_type_pointer);
symbol_type_info_char := S(1, @symbol_builtin_type_char);
symbol_type_info_bool := S(1, @symbol_builtin_type_bool);
var
source_code: Array;
compiler_strings: Array;
symbol_table_global: Array;
symbol_table_local: Array;
classification: Array;
compiler_strings_position: Pointer := @compiler_strings;
compiler_strings_length: Word := 0;
source_code_position: Pointer := @source_code;
# Calculates and returns the string token length between quotes, including the
# escaping slash characters.
#
# Parameters:
# a0 - String token pointer.
#
# Returns the length in a0.
proc _string_length();
begin
# Reset the counter.
v0 := 0;
.string_length_loop:
v88 := v88 + 1;
lw t0, 88(sp)
lb t0, (t0)
li t1, '"'
beq t0, t1, .string_length_end
v0 := v0 + 1;
goto .string_length_loop;
.string_length_end:
return v0
end;
# Adds a string to the global, read-only string storage.
#
# Parameters:
# a0 - String token.
#
# Returns the offset from the beginning of the storage to the new string in a0.
proc _add_string();
begin
v0 := v88 + 1;
v4 := compiler_strings_length;
.add_string_loop:
lw t0, 0(sp)
lb t1, (t0)
li t2, '"'
beq t1, t2, .add_string_end
la t2, compiler_strings_position
lw t3, (t2)
sb t1, (t3)
addi t3, t3, 1
sw t3, (t2)
addi t0, t0, 1
sw t0, 0(sp)
li t2, '\\'
bne t1, t2, .add_string_increment
goto .add_string_loop;
.add_string_increment:
la t2, compiler_strings_length
lw t4, (t2)
addi t4, t4, 1
sw t4, (t2)
goto .add_string_loop;
.add_string_end:
return v4
end;
# Reads standard input into a buffer.
# a0 - Buffer pointer.
# a1 - Buffer size.
#
# Returns the amount of bytes written in a0.
proc _read_file();
begin
mv a2, a1
mv a1, a0
# STDIN.
li a0, 0
# SYS_READ.
li a7, 63
ecall
end;
# Writes to the standard output.
#
# Parameters:
# a0 - Buffer.
# a1 - Buffer length.
proc _write_s();
begin
mv a2, a1
mv a1, a0
# STDOUT.
li a0, 1
# SYS_WRITE.
li a7, 64
ecall
end;
# Writes a number to a string buffer.
#
# t0 - Local buffer.
# t1 - Constant 10.
# t2 - Current character.
# t3 - Whether the number is negative.
#
# Parameters:
# a0 - Whole number.
# a1 - Buffer pointer.
#
# Sets a0 to the length of the written number.
proc _print_i();
begin
li t1, 10
addi t0, s0, -9
li t3, 0
bgez a0, .print_i_digit10
li t3, 1
neg a0, a0
.print_i_digit10:
rem t2, a0, t1
addi t2, t2, '0'
sb t2, 0(t0)
div a0, a0, t1
addi t0, t0, -1
bne zero, a0, .print_i_digit10
beq zero, t3, .print_i_write_call
addi t2, zero, '-'
sb t2, 0(t0)
addi t0, t0, -1
.print_i_write_call:
mv a0, a1
addi a1, t0, 1
sub a2, s0, t0
addi a2, a2, -9
sw a2, 0(sp)
_memcpy();
return v0
end;
# Writes a number to the standard output.
#
# Parameters:
# a0 - Whole number.
proc _write_i();
begin
_print_i(v88, @v0);
mv a1, a0
addi a0, sp, 0
_write_s();
end;
# Writes a character from a0 into the standard output.
proc _write_c();
begin
_write_s(@v88, 1);
end;
# Write null terminated string.
#
# Parameters:
# a0 - String.
proc _write_z();
begin
.write_z_loop:
# Check for 0 character.
lw a0, 88(sp)
lb a0, (a0)
beqz a0, .write_z_end
# Print a character.
_write_c();
# Advance the input string by one byte.
v88 := v88 + 1;
goto .write_z_loop;
.write_z_end:
end;
# Detects if a0 is an uppercase character. Sets a0 to 1 if so, otherwise to 0.
proc _is_upper();
begin
v0 := v88 >= 'A';
v4 := v88 <= 'Z';
return v0 & v4
end;
# Detects if a0 is an lowercase character. Sets a0 to 1 if so, otherwise to 0.
proc _is_lower();
begin
v0 := v88 >= 'a';
v4 := v88 <= 'z';
return v0 & v4
end;
# Detects if the passed character is a 7-bit alpha character or an underscore.
#
# Paramters:
# a0 - Tested character.
#
# Sets a0 to 1 if the character is an alpha character or underscore, sets it to 0 otherwise.
proc _is_alpha();
begin
sw a0, 0(sp)
_is_upper();
sw a0, 4(sp)
_is_lower(v0);
lw t0, 0(sp)
xori t1, t0, '_'
seqz t1, t1
lw t0, 4(sp)
or a0, a0, t0
or a0, a0, t1
end;
# Detects whether the passed character is a digit
# (a value between 0 and 9).
#
# Parameters:
# a0 - Exemined value.
#
# Sets a0 to 1 if it is a digit, to 0 otherwise.
proc _is_digit();
begin
v0 := v88 >= '0';
v4 := v88 <= '9';
return v0 & v4
end;
proc _is_alnum();
begin
sw a0, 4(sp)
_is_alpha();
sw a0, 0(sp)
_is_digit(v4);
lw a1, 0(sp)
or a0, a0, a1
end;
# Reads the next token.
#
# Returns token length in a0.
proc _read_token();
begin
# Current token position.
v0 := source_code_position;
# Token length.
v4 := 0;
.read_token_loop:
lw t0, 0(sp)
# Current character.
lb t0, (t0)
# First we try to read a derictive.
# A derictive can contain a dot and characters.
li t1, '.'
beq t0, t1, .read_token_next
lw a0, 0(sp)
lb a0, (a0)
_is_alnum();
bnez a0, .read_token_next
goto .read_token_end;
.read_token_next:
# Advance the source code position and token length.
v4 := v4 + 1;
v0 := v0 + 1;
goto .read_token_loop;
.read_token_end:
return v4
end;
# a0 - First pointer.
# a1 - Second pointer.
# a2 - The length to compare.
#
# Returns 0 in a0 if memory regions are equal.
proc _memcmp();
begin
mv t0, a0
li a0, 0
.memcmp_loop:
beqz a2, .memcmp_end
lbu t1, (t0)
lbu t2, (a1)
sub a0, t1, t2
bnez a0, .memcmp_end
addi t0, t0, 1
addi a1, a1, 1
addi a2, a2, -1
goto .memcmp_loop;
.memcmp_end:
end;
# Copies memory.
#
# Parameters:
# a0 - Destination.
# a1 - Source.
# a2 - Size.
#
# Preserves a0.
proc _memcpy();
begin
mv t0, a0
.memcpy_loop:
beqz a2, .memcpy_end
lbu t1, (a1)
sb t1, (a0)
addi a0, a0, 1
addi a1, a1, 1
addi a2, a2, -1
goto .memcpy_loop
.memcpy_end:
mv a0, t0
end;
# Advances the token stream by a0 bytes.
proc _advance_token();
begin
la t0, source_code_position
lw t1, (t0)
add t1, t1, a0
sw t1, (t0)
end;
# Prints the current token.
#
# Parameters:
# a0 - Token length.
#
# Returns a0 unchanged.
proc _write_token();
begin
_write_s(source_code_position, v88);
return v88
end;
# Prints and skips a line.
proc _compile_line();
begin
.compile_line_loop:
la a0, source_code_position
lw a1, (a0)
lb t0, (a1)
li t1, '\n'
beq t0, t1, .compile_line_end
# Print a character.
lw a0, (a1)
_write_c();
# Advance the input string by one byte.
_advance_token(1);
goto .compile_line_loop;
.compile_line_end:
_write_c('\n');
_advance_token(1);
end;
proc _compile_integer_literal();
begin
_write_z("\tli t0, \0");
_read_token();
_write_token();
_advance_token();
_write_c('\n');
end;
proc _compile_character_literal();
begin
_write_z("\tli t0, \0");
_write_c('\'');
_advance_token(1);
la t0, source_code_position
lw t0, (t0)
lb a0, (t0)
li t1, '\\'
bne a0, t1, .compile_character_literal_end
_write_c('\\');
_advance_token(1);
.compile_character_literal_end:
la t0, source_code_position
lw t0, (t0)
lb a0, (t0)
_write_c();
_write_c('\'');
_write_c('\n');
_advance_token(2);
end;
proc _compile_variable_expression();
begin
_compile_designator();
_write_z("\tlw t0, (t0)\n\0");
end;
proc _compile_address_expression();
begin
# Skip the "@" sign.
_advance_token(1);
_compile_designator();
end;
proc _compile_negate_expression();
begin
# Skip the "-" sign.
_advance_token(1);
_compile_term();
_write_z("\tneg t0, t0\n\0");
end;
proc _compile_not_expression();
begin
# Skip the "~" sign.
_advance_token(1);
_compile_term();
_write_z("\tnot t0, t0\n\0");
end;
proc _compile_string_literal();
begin
_string_length(source_code_position);
sw a0, 0(sp)
_add_string(source_code_position);
sw a0, 4(sp)
_advance_token(v0 + 2);
_write_z("\tla t0, strings\n\0");
_write_z("\tli t1, \0");
_write_i(v4);
_write_c('\n');
_write_z("\tadd t0, t0, t1\n\0");
end;
proc _compile_term();
begin
la t0, source_code_position
lw t0, (t0)
lb a0, (t0)
sw a0, 0(sp)
li t1, '\''
beq a0, t1, .compile_term_character_literal
li t1, '@'
beq a0, t1, .compile_term_address
li t1, '-'
beq a0, t1, .compile_term_negation
li t1, '~'
beq a0, t1, .compile_term_not
li t1, '"'
beq a0, t1, .compile_term_string_literal
li t1, '_'
beq a0, t1, .compile_term_call
_is_digit(v0);
bnez a0, .compile_term_integer_literal
goto .compile_term_variable;
.compile_term_character_literal:
_compile_character_literal();
goto .compile_term_end;
.compile_term_integer_literal:
_compile_integer_literal();
goto .compile_term_end;
.compile_term_address:
_compile_address_expression();
goto .compile_term_end;
.compile_term_negation:
_compile_negate_expression();
goto .compile_term_end;
.compile_term_not:
_compile_not_expression();
goto .compile_term_end;
.compile_term_string_literal:
_compile_string_literal();
goto .compile_term_end;
.compile_term_call:
_compile_call();
_write_z("\nmv t0, a0\n\0");
goto .compile_term_end;
.compile_term_variable:
_compile_variable_expression();
goto .compile_term_end;
.compile_term_end:
end;
proc _compile_binary_rhs();
begin
# Skip the whitespace after the binary operator.
_advance_token(1);
_compile_term();
# Load the left expression from the stack;
_write_z("\tlw t1, 24(sp)\n\0");
end;
proc _compile_expression();
begin
_compile_term();
la t0, source_code_position
lw t0, (t0)
lb a0, (t0)
li t1, ' '
bne a0, t1, .compile_expression_end
# It is a binary expression.
# Save the value of the left expression on the stack.
_write_z("sw t0, 24(sp)\n\0");
# Skip surrounding whitespace in front of the operator.
_advance_token(1);
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, '+'
beq t0, t1, .compile_expression_add
li t1, '*'
beq t0, t1, .compile_expression_mul
li t1, '&'
beq t0, t1, .compile_expression_and
li t1, 'o'
beq t0, t1, .compile_expression_or
li t1, 'x'
beq t0, t1, .compile_expression_xor
li t1, '='
beq t0, t1, .compile_expression_equals
li t1, '<'
beq t0, t1, .compile_expression_less
li t1, '>'
beq t0, t1, .compile_expression_greater
# Unknown binary operator.
unimp
.compile_expression_add:
_advance_token(1);
_compile_binary_rhs();
# Execute the operation.
_write_z("add t0, t0, t1\n\0");
goto .compile_expression_end;
.compile_expression_mul:
_advance_token(1);
_compile_binary_rhs();
# Execute the operation.
_write_z("\tmul t0, t0, t1\n\0");
goto .compile_expression_end;
.compile_expression_and:
_advance_token(1);
_compile_binary_rhs();
# Execute the operation.
_write_z("\tand t0, t0, t1\n\0");
goto .compile_expression_end;
.compile_expression_or:
_advance_token(2);
_compile_binary_rhs();
# Execute the operation.
_write_z("or t0, t0, t1\n\0");
goto .compile_expression_end;
.compile_expression_xor:
_advance_token(3);
_compile_binary_rhs();
# Execute the operation.
_write_z("xor t0, t0, t1\n\0");
goto .compile_expression_end;
.compile_expression_equals:
_advance_token(1);
_compile_binary_rhs();
# Execute the operation.
_write_z("xor t0, t0, t1\nseqz t0, t0\n\0");
goto .compile_expression_end;
.compile_expression_less:
_advance_token(1);
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, '>'
beq t0, t1, .compile_expression_not_equal
li t1, '='
beq t0, t1, .compile_expression_less_equal
_compile_binary_rhs();
# Execute the operation.
_write_z("slt t0, t0, t1\n\0");
goto .compile_expression_end;
.compile_expression_not_equal:
_advance_token(1);
_compile_binary_rhs();
# Execute the operation.
_write_z("\txor t0, t0, t1\nsnez t0, t0\n\0");
goto .compile_expression_end;
.compile_expression_less_equal:
_advance_token(1);
_compile_binary_rhs();
# Execute the operation.
_write_z("\tslt t0, t0, t1\nxori t0, t0, 1\n\0");
goto .compile_expression_end;
.compile_expression_greater:
_advance_token(1);
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, '='
beq t0, t1, .compile_expression_greater_equal
_compile_binary_rhs();
# Execute the operation.
_write_z("\tslt t0, t1, t0\n\0");
goto .compile_expression_end;
.compile_expression_greater_equal:
_advance_token(1);
_compile_binary_rhs();
# Execute the operation.
_write_z("\tslt t0, t1, t0\nxori t0, t0, 1\n\0");
goto .compile_expression_end;
.compile_expression_end:
end;
proc _compile_call();
begin
# Stack variables:
# v0 - Procedure name length.
# v4 - Procedure name pointer.
# v8 - Argument count.
_read_token();
sw a0, 0(sp)
v4 := source_code_position;
v8 := 0;
# Skip the identifier and left paren.
_advance_token(v0 + 1);
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, ')'
beq t0, t1, .compile_call_finalize
.compile_call_loop:
_compile_expression();
# Save the argument on the stack.
_write_z("\tsw t0, \0");
# Calculate the stack offset: 116 - (4 * argument_counter)
v12 := v8 * 4;
v12 := 116 + -v12;
_write_i(v12);
_write_z("(sp)\n\0");
# Add one to the argument counter.
v8 := v8 + 1;
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, ','
bne t0, t1, .compile_call_finalize
_advance_token(2);
goto .compile_call_loop;
.compile_call_finalize:
# Load the argument from the stack.
lw t0, 8(sp)
beqz t0, .compile_call_end
# Decrement the argument counter.
v8 := v8 + -1;
_write_z("\tlw a\0");
_write_i(v8);
_write_z(", \0");
# Calculate the stack offset: 116 - (4 * argument_counter)
v12 := v8 * 4;
v12 := 116 + -v12;
_write_i(v12);
_write_z("(sp)\n\0");
goto .compile_call_finalize;
.compile_call_end:
_write_z("\tcall \0");
_write_s(v4, v0);
# Skip the right paren.
_advance_token(1);
end;
proc _compile_goto();
begin
_advance_token(5);
_read_token();
sw a0, 0(sp)
_write_z("\tj \0");
_write_token(v0);
_advance_token();
end;
proc _compile_local_designator();
begin
# Skip "v" in the local variable name.
_advance_token(1);
_write_z("\t addi t0, sp, \0");
# Read local variable stack offset and save it.
_read_token();
_write_token();
_advance_token();
_write_c('\n');
end;
proc _compile_global_designator();
begin
_write_z("\tla t0, \0");
_read_token();
_write_token();
_advance_token();
_write_c('\n');
end;
proc _compile_designator();
begin
la t0, source_code_position
lw t0, (t0)
lb a0, (t0)
li t1, 'v'
beq a0, t1, .compile_designator_local
goto .compile_designator_global;
.compile_designator_local:
_compile_local_designator();
goto .compile_designator_end;
.compile_designator_global:
_compile_global_designator();
goto .compile_designator_end;
.compile_designator_end:
end;
proc _compile_assignment();
begin
_compile_designator();
# Save the assignee address on the stack.
_write_z("\tsw t0, 20(sp)\n\0");
# Skip the assignment sign (:=) with surrounding whitespaces.
_advance_token(4);
# Compile the assignment.
_compile_expression();
_write_z("\tlw t1, 20(sp)\nsw t0, (t1)\n\0");
end;
proc _compile_return_statement();
begin
# Skip "return" keyword and whitespace after it.
_advance_token(7);
_compile_expression();
_write_z("mv a0, t0\n\0");
end;
proc _compile_statement();
begin
# This is a call if the statement starts with an underscore.
la t0, source_code_position
lw t0, (t0)
# First character after alignment tab.
addi t0, t0, 1
lb t0, (t0)
li t1, '_'
beq t0, t1, .compile_statement_call
li t1, 'g'
beq t0, t1, .compile_statement_goto
li t1, 'v'
beq t0, t1, .compile_statement_assignment
# keyword_ret contains "\tret", so it's 4 bytes long.
_memcmp(source_code_position, "\treturn", 7);
beqz a0, .compile_statement_return
_compile_line();
goto .compile_statement_end;
.compile_statement_call:
_advance_token(1);
_compile_call();
goto .compile_statement_semicolon;
.compile_statement_goto:
_advance_token(1);
_compile_goto();
goto .compile_statement_semicolon;
.compile_statement_assignment:
_advance_token(1);
_compile_assignment();
goto .compile_statement_semicolon;
.compile_statement_return:
_advance_token(1);
_compile_return_statement();
_write_c('\n');
goto .compile_statement_end;
.compile_statement_semicolon:
_advance_token(2);
_write_c('\n');
.compile_statement_end:
end;
proc _compile_procedure_body();
begin
.compile_procedure_body_loop:
_skip_empty_lines();
# 3 is "end" length.
_memcmp(source_code_position, "end", 3);
beqz a0, .compile_procedure_body_epilogue
_compile_statement();
goto .compile_procedure_body_loop;
.compile_procedure_body_epilogue:
end;
# Writes a regster name to the standard output.
#
# Parameters:
# a0 - Register character.
# a1 - Register number.
proc _write_register();
begin
_write_c(v88);
v84 := v84 + '0';
_write_c(v84);
end;
proc _compile_procedure_prologue();
begin
_write_z("\taddi sp, sp, -128\n\tsw ra, 124(sp)\n\tsw s0, 120(sp)\n\taddi s0, sp, 128\n\0");
v0 := 0;
.compile_procedure_prologue_loop:
_write_z("\tsw a\0");
_write_i(v0);
_write_z(", \0");
# Calculate the stack offset: 88 - (4 * parameter_counter)
v4 := v0 * 4;
v4 := 88 + -v4;
_write_i(v4);
_write_z("(sp)\n\0");
v0 := v0 + 1;
lw a0, 0(sp)
li t0, 8
bne a0, t0, .compile_procedure_prologue_loop
end;
proc _compile_procedure();
begin
# Skip "proc ".
_advance_token(5);
_read_token();
# Save the procedure name length.
sw a0, 0(sp)
# Write .type _procedure_name, @function.
_write_z(".type \0");
_write_token(v0);
_write_z(", @function\n\0");
# Write procedure label, _procedure_name:
_write_token(v0);
_write_z(":\n\0");
# Skip the function name and trailing parens, semicolon, "begin" and newline.
_advance_token(v0 + 10);
_compile_procedure_prologue();
_compile_procedure_body();
# Write the epilogue.
_write_z("\tlw ra, 124(sp)\n\tlw s0, 120(sp)\n\taddi sp, sp, 128\n\tret\n\0");
# Skip the "end" keyword, semicolon and newline.
_advance_token(5);
end;
proc _skip_newlines();
begin
# Skip newlines.
la t0, source_code_position
lw t1, (t0)
.skip_newlines_loop:
lb t2, (t1)
li t3, '\n'
bne t2, t3, .skip_newlines_end
beqz t2, .skip_newlines_end
addi t1, t1, 1
sw t1, (t0)
goto .skip_newlines_loop;
.skip_newlines_end:
end;
# Prints and skips a line.
proc _skip_comment();
begin
la t0, source_code_position
lw t1, (t0)
.skip_comment_loop:
# Check for newline character.
lb t2, (t1)
li t3, '\n'
beq t2, t3, .skip_comment_end
# Advance the input string by one byte.
addi t1, t1, 1
sw t1, (t0)
goto .skip_comment_loop;
.skip_comment_end:
# Skip the newline.
addi t1, t1, 1
sw t1, (t0)
end;
# Skip newlines and comments.
proc _skip_empty_lines();
begin
.skip_empty_lines_rerun:
la t0, source_code_position
lw t0, (t0)
sw t0, 0(sp)
.skip_empty_lines_loop:
lw t2, 0(sp)
lb t0, (t2)
li t1, '#'
beq t0, t1, .skip_empty_lines_comment
li t1, '\n'
beq t0, t1, .skip_empty_lines_newline
li t1, '\t'
beq t0, t1, .skip_empty_lines_tab
li t1, '('
bne t0, t1, .skip_empty_lines_end
addi t2, t2, 1
lb t0, (t2)
li t1, '*'
beq t0, t1, .skip_empty_lines_comment
goto .skip_empty_lines_end;
.skip_empty_lines_comment:
la t0, source_code_position
lw t1, 0(sp)
sw t1, (t0)
_skip_comment();
goto .skip_empty_lines_rerun;
.skip_empty_lines_newline:
la t0, source_code_position
lw t1, 0(sp)
addi t1, t1, 1
sw t1, (t0)
goto .skip_empty_lines_rerun;
.skip_empty_lines_tab:
v0 := v0 + 1;
goto .skip_empty_lines_loop
.skip_empty_lines_end:
end;
proc _compile_global_initializer();
begin
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, '"'
beq t0, t1, .compile_global_initializer_string
li t1, 'S'
beq t0, t1, .compile_global_initializer_record
li t1, '@'
beq t0, t1, .compile_global_initializer_pointer
la a0, source_code_position
lw a0, (a0)
lb a0, (a0)
_is_digit();
bnez a0, .compile_global_initializer_number
unimp
.compile_global_initializer_pointer:
# Skip @.
_advance_token(1);
_write_z("\n\t.word \0");
_read_token();
_write_token();
_advance_token();
goto .compile_global_initializer_end;
.compile_global_initializer_number:
_write_z("\n\t.word \0");
_read_token();
_write_token();
_advance_token(1);
goto .compile_global_initializer_end;
.compile_global_initializer_record:
# Skip "S(".
_advance_token(2);
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, ')'
beq t0, t1, .compile_global_initializer_closing
.compile_global_initializer_loop:
_compile_global_initializer();
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, ')'
beq t0, t1, .compile_global_initializer_closing
# Skip comma and whitespace after it.
_advance_token(2);
goto .compile_global_initializer_loop;
.compile_global_initializer_closing:
# Skip ")"
_advance_token(1);
goto .compile_global_initializer_end;
.compile_global_initializer_string:
_write_z("\n\t.word strings + \0");
_string_length(source_code_position);
sw a0, 4(sp)
_add_string(source_code_position);
_write_i();
# Skip the quoted string.
_advance_token(v4 + 2);
goto .compile_global_initializer_end;
.compile_global_initializer_end:
end;
proc _compile_constant_declaration();
begin
_read_token();
sw a0, 0(sp)
_write_z(".type \0");
_write_token(v0);
_write_z(", @object\n\0");
_write_token(v0);
_write_c(':');
# Skip the constant name with assignment sign and surrounding whitespaces.
_advance_token(v0 + 4);
_compile_global_initializer();
# Skip semicolon and newline.
_advance_token(2);
_write_c('\n');
end;
proc _compile_const_part();
begin
_skip_empty_lines();
_memcmp(source_code_position, "const\0", 5);
bnez a0, .compile_const_part_end
# Skip "const" with the newline after it.
_advance_token(6);
_write_z(".section .rodata # Compiled from const section.\n\n\0");
.compile_const_part_loop:
_skip_empty_lines();
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
# If the character at the line beginning is not indentation,
# it is probably the next code section.
li t1, '\t'
bne t0, t1, .compile_const_part_end
_advance_token(1);
_compile_constant_declaration();
goto .compile_const_part_loop;
.compile_const_part_end:
end;
proc _compile_variable_declaration();
begin
_read_token();
sw a0, 0(sp)
_write_z(".type \0");
_write_token(v0);
_write_z(", @object\n\0");
_write_token(v0);
_write_c(':');
# Skip the variable name and colon with space before the type.
_advance_token(v0 + 2);
# Skip the type name.
_read_token();
_advance_token();
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, ' '
beq t0, t1, .compile_variable_declaration_initializer
# Else we assume this is a zeroed 81920 bytes big array.
_write_z(" .zero 81920\0");
goto .compile_variable_declaration_finalize;
.compile_variable_declaration_initializer:
# Skip the assignment sign with surrounding whitespaces.
_advance_token(4);
_compile_global_initializer();
goto .compile_variable_declaration_finalize;
.compile_variable_declaration_finalize:
# Skip semicolon and newline.
_advance_token(2);
_write_c('\n');
end;
proc _compile_var_part();
begin
_memcmp(source_code_position, "var\0", 3);
bnez a0, .compile_var_part_end
# Skip "var" and newline.
_advance_token(4);
_write_z(".section .data\n\0");
.compile_var_part_loop:
_skip_empty_lines();
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
li t1, '\t'
beq t0, t1, .compile_var_part_declaration
goto .compile_var_part_end;
.compile_var_part_declaration:
_advance_token(1);
_compile_variable_declaration();
goto .compile_var_part_loop;
.compile_var_part_end:
end;
# Process the source code and print the generated code.
proc _compile_module();
begin
_compile_const_part();
_skip_empty_lines();
_compile_var_part();
_write_z(".section .text\n\0");
.compile_module_loop:
_skip_empty_lines();
la t0, source_code_position
lw t0, (t0)
lb t0, (t0)
beqz t0, .compile_module_end
# 5 is "proc " length. Space is needed to distinguish from "procedure".
_memcmp(source_code_position, "proc ", 5);
beqz a0, .compile_module_procedure
# Not a known token, exit.
goto .compile_module_end;
.compile_module_procedure:
_compile_procedure();
goto .compile_module_loop;
.compile_module_end:
end;
proc _compile();
begin
_write_z(".globl _start\n\n\0");
_compile_module();
_write_z(".section .rodata\n.type strings, @object\nstrings: .ascii \0");
_write_c('"');
la t0, compiler_strings
sw t0, 0(sp)
.compile_loop:
lw t0, 0(sp)
la t1, compiler_strings_position
lw t1, (t1)
bge t0, t1, .compile_end
lb a0, (t0)
addi t0, t0, 1
sw t0, 0(sp)
_write_c();
j .compile_loop
.compile_end:
_write_c('"');
_write_c('\n');
end;
# Terminates the program. a0 contains the return code.
#
# Parameters:
# a0 - Status code.
proc _exit();
begin
li a7, 93 # SYS_EXIT
ecall
end;
# Inserts a symbol into the table.
#
# Parameters:
# a0 - Symbol pointer.
# a1 - Symbol name length.
# a2 - Symbol name pointer.
# a3 - Symbol table.
proc _symbol_table_enter();
begin
# The first word in the symbol table is its length, get it.
lw a0, 76(sp)
lw a0, (a0)
sw a0, 0(sp)
# Calculate the offset for the new symbol.
v4 := v0 * 4;
v4 := v4 + 4;
v4 := v76 + 4;
_memcpy(v4, @v80, 12);
# Increment the symbol table length.
v0 := v0 + 1;
lw t0, 0(sp)
lw t1, 76(sp)
sw t0, (t1)
end;
proc _symbol_table_build();
begin
_symbol_table_enter(@symbol_type_info_int, 3, symbol_builtin_name_int, @symbol_table_global);
_symbol_table_enter(@symbol_type_info_word, 4, symbol_builtin_name_word, @symbol_table_global);
_symbol_table_enter(@symbol_type_info_pointer, 7, symbol_builtin_name_pointer, @symbol_table_global);
_symbol_table_enter(@symbol_type_info_char, 4, symbol_builtin_name_char, @symbol_table_global);
_symbol_table_enter(@symbol_type_info_bool, 4, symbol_builtin_name_bool, @symbol_table_global);
end;
#
# Classification table assigns each possible character to a group (class). All
# characters of the same group a handled equivalently.
#
# Classification:
#
# TransitionClass = (
# transitionClassInvalid = 1,
# transitionClassDigit = 2,
# transitionClassAlpha = 3,
# transitionClassSpace = 4,
# transitionClassColon = 5,
# transitionClassEquals = 6,
# transitionClassLeftParen = 7,
# transitionClassRightParen = 8,
# transitionClassAsterisk = 9,
# transitionClassUnderscore = 10,
# transitionClassSingle = 11,
# transitionClassHex = 12,
# transitionClassZero = 13,
# transitionClassX = 14,
# transitionClassEof = 15,
# transitionClassDot = 16,
# transitionClassMinus = 17,
# transitionClassSingleQuote = 18,
# transitionClassDoubleQuote = 19,
# transitionClassGreater = 20,
# transitionClassLess = 21,
# transitionClassOther = 22
# );
# TransitionState = (
# transitionStateStart = 1,
# transitionStateColon = 2,
# transitionStateIdentifier = 3,
# transitionStateDecimal = 4,
# transitionStateGreater = 5,
# transitionStateMinus = 6,
# transitionStateLeftParen = 7,
# transitionStateLess = 8,
# transitionStateDot = 9,
# transitionStateComment = 10,
# transitionStateClosingComment = 11,
# transitionStateCharacter = 12,
# transitionStateString = 13,
# transitionStateLeadingZero = 14,
# transitionStateDecimalSuffix = 15,
# transitionStateEnd = 16
# );
# Transition = record
# action: TransitionAction;
# next_state: TransitionState
# end;
# TransitionAction = (
# none = 1,
# accumulate = 2,
# skip = 3,
# single = 4,
# eof = 5,
# finalize = 6,
# composite = 7,
# key_id = 8,
# integer = 9,
# delimited = 10
# );
# Assigns some value to at array index.
#
# Parameters:
# a0 - Array pointer.
# a1 - Index (word offset into the array).
# a2 - Data to assign.
proc _assign_at();
begin
v0 := v84 + -1;
v0 := v0 * 4;
v0 := v88 + v0;
lw t0, 0(sp)
lw t1, 80(sp)
sw t1, (t0)
end;
proc _initialize_classification();
begin
_assign_at(@classification, 1, 15);
_assign_at(@classification, 2, 1);
_assign_at(@classification, 3, 1);
_assign_at(@classification, 4, 1);
_assign_at(@classification, 5, 1);
_assign_at(@classification, 6, 1);
_assign_at(@classification, 7, 1);
_assign_at(@classification, 8, 1);
_assign_at(@classification, 9, 1);
_assign_at(@classification, 10, 4);
_assign_at(@classification, 11, 4);
_assign_at(@classification, 12, 1);
_assign_at(@classification, 13, 1);
_assign_at(@classification, 14, 4);
_assign_at(@classification, 15, 1);
_assign_at(@classification, 16, 1);
_assign_at(@classification, 17, 1);
_assign_at(@classification, 18, 1);
_assign_at(@classification, 19, 1);
_assign_at(@classification, 20, 1);
_assign_at(@classification, 21, 1);
_assign_at(@classification, 22, 1);
_assign_at(@classification, 23, 1);
_assign_at(@classification, 24, 1);
_assign_at(@classification, 25, 1);
_assign_at(@classification, 26, 1);
_assign_at(@classification, 27, 1);
_assign_at(@classification, 28, 1);
_assign_at(@classification, 29, 1);
_assign_at(@classification, 30, 1);
_assign_at(@classification, 31, 1);
_assign_at(@classification, 32, 1);
_assign_at(@classification, 33, 4);
_assign_at(@classification, 34, 11);
_assign_at(@classification, 35, 19);
_assign_at(@classification, 36, 22);
_assign_at(@classification, 37, 22);
_assign_at(@classification, 38, 11);
_assign_at(@classification, 39, 11);
_assign_at(@classification, 40, 18);
_assign_at(@classification, 41, 7);
_assign_at(@classification, 42, 8);
_assign_at(@classification, 43, 9);
_assign_at(@classification, 44, 11);
_assign_at(@classification, 45, 11);
_assign_at(@classification, 46, 17);
_assign_at(@classification, 47, 16);
_assign_at(@classification, 48, 11);
_assign_at(@classification, 49, 13);
_assign_at(@classification, 50, 2);
_assign_at(@classification, 51, 2);
_assign_at(@classification, 52, 2);
_assign_at(@classification, 53, 2);
_assign_at(@classification, 54, 2);
_assign_at(@classification, 55, 2);
_assign_at(@classification, 56, 2);
_assign_at(@classification, 57, 2);
_assign_at(@classification, 58, 2);
_assign_at(@classification, 59, 5);
_assign_at(@classification, 60, 11);
_assign_at(@classification, 61, 21);
_assign_at(@classification, 62, 6);
_assign_at(@classification, 63, 20);
_assign_at(@classification, 64, 22);
_assign_at(@classification, 65, 11);
_assign_at(@classification, 66, 3);
_assign_at(@classification, 67, 3);
_assign_at(@classification, 68, 3);
_assign_at(@classification, 69, 3);
_assign_at(@classification, 70, 3);
_assign_at(@classification, 71, 3);
_assign_at(@classification, 72, 3);
_assign_at(@classification, 73, 3);
_assign_at(@classification, 74, 3);
_assign_at(@classification, 75, 3);
_assign_at(@classification, 76, 3);
_assign_at(@classification, 77, 3);
_assign_at(@classification, 78, 3);
_assign_at(@classification, 79, 3);
_assign_at(@classification, 80, 3);
_assign_at(@classification, 81, 3);
_assign_at(@classification, 82, 3);
_assign_at(@classification, 83, 3);
_assign_at(@classification, 84, 3);
_assign_at(@classification, 85, 3);
_assign_at(@classification, 86, 3);
_assign_at(@classification, 87, 3);
_assign_at(@classification, 88, 3);
_assign_at(@classification, 89, 3);
_assign_at(@classification, 90, 3);
_assign_at(@classification, 91, 3);
_assign_at(@classification, 92, 11);
_assign_at(@classification, 93, 22);
_assign_at(@classification, 94, 11);
_assign_at(@classification, 95, 11);
_assign_at(@classification, 96, 10);
_assign_at(@classification, 97, 22);
_assign_at(@classification, 98, 12);
_assign_at(@classification, 99, 12);
_assign_at(@classification, 100, 12);
_assign_at(@classification, 101, 12);
_assign_at(@classification, 102, 12);
_assign_at(@classification, 103, 12);
_assign_at(@classification, 104, 3);
_assign_at(@classification, 105, 3);
_assign_at(@classification, 106, 3);
_assign_at(@classification, 107, 3);
_assign_at(@classification, 108, 3);
_assign_at(@classification, 109, 3);
_assign_at(@classification, 110, 3);
_assign_at(@classification, 111, 3);
_assign_at(@classification, 112, 3);
_assign_at(@classification, 113, 3);
_assign_at(@classification, 114, 3);
_assign_at(@classification, 115, 3);
_assign_at(@classification, 116, 3);
_assign_at(@classification, 117, 3);
_assign_at(@classification, 118, 3);
_assign_at(@classification, 119, 3);
_assign_at(@classification, 120, 3);
_assign_at(@classification, 121, 14);
_assign_at(@classification, 122, 3);
_assign_at(@classification, 123, 3);
_assign_at(@classification, 124, 22);
_assign_at(@classification, 125, 11);
_assign_at(@classification, 126, 22);
_assign_at(@classification, 127, 11);
_assign_at(@classification, 128, 1);
v0 := 129;
# Set the remaining 129 - 256 bytes to transitionClassOther.
.initialize_classification_loop:
_assign_at(@classification, v0, 22);
v0 := v0 + 1;
lw t0, 0(sp)
li t1, 257
blt t0, t1, .initialize_classification_loop
end;
# Parameters:
# a0 - Current state (first index into transitions table).
# a1 - Transition (second index into transitions table)..
# a2 - Action to assign.
# a3 - Next state to assign.
proc _set_transition();
begin
# Transitions start at offset in classification array. Save the transitions start in v0.
la t0, classification
addi t0, t0, 256
sw t0, 0(sp)
# Each state is 8 bytes long (2 words: action and next state).
# There are 16 transition classes, so a transition 8 * 16 = 128 bytes long.
v4 := v88 + -1;
v4 := v4 * 128;
v8 := v84 + -1;
v8 := v8 * 8;
v12 := v0 + v4;
v12 := v12 + v8;
lw t0, 12(sp)
lw t1, 80(sp)
lw t2, 76(sp)
sw t1, (t0)
addi t0, t0, 4
sw t2, (t0)
end;
# Parameters:
# a0 - Current state (Transition state enumeration).
# a1 - Default action (Callback).
# a2 - Next state (Transition state enumeration).
proc _set_default_transition();
begin
_set_transition(v88, 1, v84, v80);
_set_transition(v88, 2, v84, v80);
_set_transition(v88, 3, v84, v80);
_set_transition(v88, 4, v84, v80);
_set_transition(v88, 5, v84, v80);
_set_transition(v88, 6, v84, v80);
_set_transition(v88, 7, v84, v80);
_set_transition(v88, 8, v84, v80);
_set_transition(v88, 9, v84, v80);
_set_transition(v88, 10, v84, v80);
_set_transition(v88, 11, v84, v80);
_set_transition(v88, 12, v84, v80);
_set_transition(v88, 13, v84, v80);
_set_transition(v88, 14, v84, v80);
_set_transition(v88, 15, v84, v80);
_set_transition(v88, 16, v84, v80);
_set_transition(v88, 17, v84, v80);
_set_transition(v88, 18, v84, v80);
_set_transition(v88, 19, v84, v80);
_set_transition(v88, 20, v84, v80);
_set_transition(v88, 21, v84, v80);
_set_transition(v88, 22, v84, v80);
end;
# The transition table describes transitions from one state to another, given
# a symbol (character class).
#
# The table has m rows and n columns, where m is the amount of states and n is
# the amount of classes. So given the current state and a classified character
# the table can be used to look up the next state.
#
# Each cell is a word long.
# - The least significant byte of the word is a row number (beginning with 0).
# It specifies the target state. "ff" means that this is an end state and no
# transition is possible.
# - The next byte is the action that should be performed when transitioning.
# For the meaning of actions see labels in the lex_next function, which
# handles each action.
proc _initialize_transitions();
begin
# Start state.
_set_transition(1, 1, 1, 16);
_set_transition(1, 2, 2, 4);
_set_transition(1, 3, 2, 3);
_set_transition(1, 4, 3, 1);
_set_transition(1, 5, 2, 5);
_set_transition(1, 6, 4, 16);
_set_transition(1, 7, 2, 7);
_set_transition(1, 8, 4, 16);
_set_transition(1, 9, 4, 16);
_set_transition(1, 10, 2, 3);
_set_transition(1, 11, 4, 16);
_set_transition(1, 12, 2, 3);
_set_transition(1, 13, 2, 14);
_set_transition(1, 14, 2, 3);
_set_transition(1, 15, 5, 16);
_set_transition(1, 16, 2, 9);
_set_transition(1, 17, 2, 6);
_set_transition(1, 18, 2, 12);
_set_transition(1, 19, 2, 13);
_set_transition(1, 20, 2, 5);
_set_transition(1, 21, 2, 8);
_set_transition(1, 22, 1, 16);
# Colon state.
_set_default_transition(2, 6, 16);
_set_transition(2, 6, 7, 16);
# Identifier state.
_set_default_transition(3, 8, 16);
_set_transition(3, 2, 2, 3);
_set_transition(3, 3, 2, 3);
_set_transition(3, 10, 2, 3);
_set_transition(3, 12, 2, 3);
_set_transition(3, 13, 2, 3);
_set_transition(3, 14, 2, 3);
# Decimal state.
_set_default_transition(4, 9, 16);
_set_transition(4, 2, 2, 4);
_set_transition(4, 3, 2, 15);
_set_transition(4, 10, 1, 16);
_set_transition(4, 12, 2, 15);
_set_transition(4, 13, 2, 4);
_set_transition(4, 14, 2, 15);
# Greater state.
_set_default_transition(5, 6, 16);
_set_transition(5, 6, 7, 16);
# Minus state.
_set_default_transition(6, 6, 16);
_set_transition(6, 20, 7, 16);
# Left paren state.
_set_default_transition(7, 6, 16);
_set_transition(7, 9, 2, 10);
# Less state.
_set_default_transition(8, 6, 16);
_set_transition(8, 6, 7, 16);
_set_transition(8, 20, 7, 16);
# Hexadecimal after 0x.
_set_default_transition(9, 6, 16);
_set_transition(9, 16, 7, 16);
# Comment.
_set_default_transition(10, 2, 10);
_set_transition(10, 9, 2, 11);
_set_transition(10, 15, 1, 16);
# Closing comment.
_set_default_transition(11, 2, 10);
_set_transition(11, 1, 1, 16);
_set_transition(11, 8, 10, 16);
_set_transition(11, 9, 2, 11);
_set_transition(11, 15, 1, 16);
# Character.
_set_default_transition(12, 2, 12);
_set_transition(12, 1, 1, 16);
_set_transition(12, 15, 1, 16);
_set_transition(12, 18, 10, 16);
# String.
_set_default_transition(13, 2, 13);
_set_transition(13, 1, 1, 16);
_set_transition(13, 15, 1, 16);
_set_transition(13, 19, 10, 16);
# Leading zero.
_set_default_transition(14, 9, 16);
_set_transition(14, 2, 1, 16);
_set_transition(14, 3, 1, 16);
_set_transition(14, 10, 1, 16);
_set_transition(14, 12, 1, 16);
_set_transition(14, 13, 1, 16);
_set_transition(14, 14, 1, 16);
# Digit with a character suffix.
_set_default_transition(15, 9, 16);
_set_transition(15, 3, 1, 16);
_set_transition(15, 2, 1, 16);
_set_transition(15, 12, 1, 16);
_set_transition(15, 13, 1, 16);
_set_transition(15, 14, 1, 16);
end;
proc _lexer_get_state();
begin
# Lexer state is saved after the transition tables. The offset is 256 + 16 * 22.
v0 := @classification;
v4 := 16 * 22;
v0 := v0 + 256;
return v0 + v4
end;
# Gets pointer to the current source text.
proc _lexer_get_current();
begin
_lexer_get_state();
sw a0, 0(sp)
return v0 + 4
end;
# Resets the lexer state for reading the next token.
proc _lexer_reset();
begin
# Transition start state is 1.
_lexer_get_state();
li t0, 1
sw t0, (a0)
sw a0, 0(sp)
# Text pointer to the beginning of the currently read token.
_lexer_get_current();
la t0, source_code_position
lw t0, (t0)
sw t0, (a0)
# Initial length of the token is 0.
addi t0, t0, 4
sw zero, (t0)
end;
# One time lexer initialization.
proc _lexer_initialize();
begin
_initialize_classification();
_initialize_transitions();
end;
# Entry point.
proc _start();
begin
_lexer_initialize();
_symbol_table_build();
# Read the source from the standard input.
# Second argument is buffer size. Modifying update the source_code definition.
_read_file(@source_code, 81920);
_compile();
_exit(0);
end;