# This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at https://mozilla.org/MPL/2.0/. # Stage 8 compiler. # # - Procedure calls in expressions. # - Comments between (* and *) are supported. These are still single line # comments and they should be on a separate line. const symbol_builtin_name_int := "Int"; symbol_builtin_name_word := "Word"; symbol_builtin_name_pointer := "Pointer"; symbol_builtin_name_char := "Char"; symbol_builtin_name_bool := "Bool"; # Every type info starts with a word describing what type it is. # # PRIMITIVE_TYPE = 1 # # Primitive types have only type size. symbol_builtin_type_int := S(1, 4); symbol_builtin_type_word := S(1, 4); symbol_builtin_type_pointer := S(1, 4); symbol_builtin_type_char := S(1, 1); symbol_builtin_type_bool := S(1, 1); # Info objects start with a word describing its type. # # INFO_TYPE = 1 # # Type info has the type it belongs to. symbol_type_info_int := S(1, @symbol_builtin_type_int); symbol_type_info_word := S(1, @symbol_builtin_type_word); symbol_type_info_pointer := S(1, @symbol_builtin_type_pointer); symbol_type_info_char := S(1, @symbol_builtin_type_char); symbol_type_info_bool := S(1, @symbol_builtin_type_bool); var source_code: Array; compiler_strings: Array; symbol_table_global: Array; symbol_table_local: Array; classification: Array; compiler_strings_position: Pointer := @compiler_strings; compiler_strings_length: Word := 0; source_code_position: Pointer := @source_code; # Calculates and returns the string token length between quotes, including the # escaping slash characters. # # Parameters: # a0 - String token pointer. # # Returns the length in a0. proc _string_length(); begin # Reset the counter. v0 := 0; .string_length_loop: v88 := v88 + 1; lw t0, 88(sp) lb t0, (t0) li t1, '"' beq t0, t1, .string_length_end v0 := v0 + 1; goto .string_length_loop; .string_length_end: return v0 end; # Adds a string to the global, read-only string storage. # # Parameters: # a0 - String token. # # Returns the offset from the beginning of the storage to the new string in a0. proc _add_string(); begin v0 := v88 + 1; v4 := compiler_strings_length; .add_string_loop: lw t0, 0(sp) lb t1, (t0) li t2, '"' beq t1, t2, .add_string_end la t2, compiler_strings_position lw t3, (t2) sb t1, (t3) addi t3, t3, 1 sw t3, (t2) addi t0, t0, 1 sw t0, 0(sp) li t2, '\\' bne t1, t2, .add_string_increment goto .add_string_loop; .add_string_increment: la t2, compiler_strings_length lw t4, (t2) addi t4, t4, 1 sw t4, (t2) goto .add_string_loop; .add_string_end: return v4 end; # Reads standard input into a buffer. # a0 - Buffer pointer. # a1 - Buffer size. # # Returns the amount of bytes written in a0. proc _read_file(); begin mv a2, a1 mv a1, a0 # STDIN. li a0, 0 # SYS_READ. li a7, 63 ecall end; # Writes to the standard output. # # Parameters: # a0 - Buffer. # a1 - Buffer length. proc _write_s(); begin mv a2, a1 mv a1, a0 # STDOUT. li a0, 1 # SYS_WRITE. li a7, 64 ecall end; # Writes a number to a string buffer. # # t0 - Local buffer. # t1 - Constant 10. # t2 - Current character. # t3 - Whether the number is negative. # # Parameters: # a0 - Whole number. # a1 - Buffer pointer. # # Sets a0 to the length of the written number. proc _print_i(); begin li t1, 10 addi t0, s0, -9 li t3, 0 bgez a0, .print_i_digit10 li t3, 1 neg a0, a0 .print_i_digit10: rem t2, a0, t1 addi t2, t2, '0' sb t2, 0(t0) div a0, a0, t1 addi t0, t0, -1 bne zero, a0, .print_i_digit10 beq zero, t3, .print_i_write_call addi t2, zero, '-' sb t2, 0(t0) addi t0, t0, -1 .print_i_write_call: mv a0, a1 addi a1, t0, 1 sub a2, s0, t0 addi a2, a2, -9 sw a2, 0(sp) _memcpy(); return v0 end; # Writes a number to the standard output. # # Parameters: # a0 - Whole number. proc _write_i(); begin _print_i(v88, @v0); mv a1, a0 addi a0, sp, 0 _write_s(); end; # Writes a character from a0 into the standard output. proc _write_c(); begin _write_s(@v88, 1); end; # Write null terminated string. # # Parameters: # a0 - String. proc _write_z(); begin .write_z_loop: # Check for 0 character. lw a0, 88(sp) lb a0, (a0) beqz a0, .write_z_end # Print a character. _write_c(); # Advance the input string by one byte. v88 := v88 + 1; goto .write_z_loop; .write_z_end: end; # Detects if a0 is an uppercase character. Sets a0 to 1 if so, otherwise to 0. proc _is_upper(); begin v0 := v88 >= 'A'; v4 := v88 <= 'Z'; return v0 & v4 end; # Detects if a0 is an lowercase character. Sets a0 to 1 if so, otherwise to 0. proc _is_lower(); begin v0 := v88 >= 'a'; v4 := v88 <= 'z'; return v0 & v4 end; # Detects if the passed character is a 7-bit alpha character or an underscore. # # Paramters: # a0 - Tested character. # # Sets a0 to 1 if the character is an alpha character or underscore, sets it to 0 otherwise. proc _is_alpha(); begin sw a0, 0(sp) _is_upper(); sw a0, 4(sp) _is_lower(v0); lw t0, 0(sp) xori t1, t0, '_' seqz t1, t1 lw t0, 4(sp) or a0, a0, t0 or a0, a0, t1 end; # Detects whether the passed character is a digit # (a value between 0 and 9). # # Parameters: # a0 - Exemined value. # # Sets a0 to 1 if it is a digit, to 0 otherwise. proc _is_digit(); begin v0 := v88 >= '0'; v4 := v88 <= '9'; return v0 & v4 end; proc _is_alnum(); begin sw a0, 4(sp) _is_alpha(); sw a0, 0(sp) _is_digit(v4); lw a1, 0(sp) or a0, a0, a1 end; # Reads the next token. # # Returns token length in a0. proc _read_token(); begin # Current token position. v0 := source_code_position; # Token length. v4 := 0; .read_token_loop: lw t0, 0(sp) # Current character. lb t0, (t0) # First we try to read a derictive. # A derictive can contain a dot and characters. li t1, '.' beq t0, t1, .read_token_next lw a0, 0(sp) lb a0, (a0) _is_alnum(); bnez a0, .read_token_next goto .read_token_end; .read_token_next: # Advance the source code position and token length. v4 := v4 + 1; v0 := v0 + 1; goto .read_token_loop; .read_token_end: return v4 end; # a0 - First pointer. # a1 - Second pointer. # a2 - The length to compare. # # Returns 0 in a0 if memory regions are equal. proc _memcmp(); begin mv t0, a0 li a0, 0 .memcmp_loop: beqz a2, .memcmp_end lbu t1, (t0) lbu t2, (a1) sub a0, t1, t2 bnez a0, .memcmp_end addi t0, t0, 1 addi a1, a1, 1 addi a2, a2, -1 goto .memcmp_loop; .memcmp_end: end; # Copies memory. # # Parameters: # a0 - Destination. # a1 - Source. # a2 - Size. # # Preserves a0. proc _memcpy(); begin mv t0, a0 .memcpy_loop: beqz a2, .memcpy_end lbu t1, (a1) sb t1, (a0) addi a0, a0, 1 addi a1, a1, 1 addi a2, a2, -1 goto .memcpy_loop .memcpy_end: mv a0, t0 end; # Advances the token stream by a0 bytes. proc _advance_token(); begin la t0, source_code_position lw t1, (t0) add t1, t1, a0 sw t1, (t0) end; # Prints the current token. # # Parameters: # a0 - Token length. # # Returns a0 unchanged. proc _write_token(); begin _write_s(source_code_position, v88); return v88 end; # Prints and skips a line. proc _compile_line(); begin .compile_line_loop: la a0, source_code_position lw a1, (a0) lb t0, (a1) li t1, '\n' beq t0, t1, .compile_line_end # Print a character. lw a0, (a1) _write_c(); # Advance the input string by one byte. _advance_token(1); goto .compile_line_loop; .compile_line_end: _write_c('\n'); _advance_token(1); end; proc _compile_integer_literal(); begin _write_z("\tli t0, \0"); _read_token(); _write_token(); _advance_token(); _write_c('\n'); end; proc _compile_character_literal(); begin _write_z("\tli t0, \0"); _write_c('\''); _advance_token(1); la t0, source_code_position lw t0, (t0) lb a0, (t0) li t1, '\\' bne a0, t1, .compile_character_literal_end _write_c('\\'); _advance_token(1); .compile_character_literal_end: la t0, source_code_position lw t0, (t0) lb a0, (t0) _write_c(); _write_c('\''); _write_c('\n'); _advance_token(2); end; proc _compile_variable_expression(); begin _compile_designator(); _write_z("\tlw t0, (t0)\n\0"); end; proc _compile_address_expression(); begin # Skip the "@" sign. _advance_token(1); _compile_designator(); end; proc _compile_negate_expression(); begin # Skip the "-" sign. _advance_token(1); _compile_term(); _write_z("\tneg t0, t0\n\0"); end; proc _compile_not_expression(); begin # Skip the "~" sign. _advance_token(1); _compile_term(); _write_z("\tnot t0, t0\n\0"); end; proc _compile_string_literal(); begin _string_length(source_code_position); sw a0, 0(sp) _add_string(source_code_position); sw a0, 4(sp) _advance_token(v0 + 2); _write_z("\tla t0, strings\n\0"); _write_z("\tli t1, \0"); _write_i(v4); _write_c('\n'); _write_z("\tadd t0, t0, t1\n\0"); end; proc _compile_term(); begin la t0, source_code_position lw t0, (t0) lb a0, (t0) sw a0, 0(sp) li t1, '\'' beq a0, t1, .compile_term_character_literal li t1, '@' beq a0, t1, .compile_term_address li t1, '-' beq a0, t1, .compile_term_negation li t1, '~' beq a0, t1, .compile_term_not li t1, '"' beq a0, t1, .compile_term_string_literal li t1, '_' beq a0, t1, .compile_term_call _is_digit(v0); bnez a0, .compile_term_integer_literal goto .compile_term_variable; .compile_term_character_literal: _compile_character_literal(); goto .compile_term_end; .compile_term_integer_literal: _compile_integer_literal(); goto .compile_term_end; .compile_term_address: _compile_address_expression(); goto .compile_term_end; .compile_term_negation: _compile_negate_expression(); goto .compile_term_end; .compile_term_not: _compile_not_expression(); goto .compile_term_end; .compile_term_string_literal: _compile_string_literal(); goto .compile_term_end; .compile_term_call: _compile_call(); _write_z("\nmv t0, a0\n\0"); goto .compile_term_end; .compile_term_variable: _compile_variable_expression(); goto .compile_term_end; .compile_term_end: end; proc _compile_binary_rhs(); begin # Skip the whitespace after the binary operator. _advance_token(1); _compile_term(); # Load the left expression from the stack; _write_z("\tlw t1, 24(sp)\n\0"); end; proc _compile_expression(); begin _compile_term(); la t0, source_code_position lw t0, (t0) lb a0, (t0) li t1, ' ' bne a0, t1, .compile_expression_end # It is a binary expression. # Save the value of the left expression on the stack. _write_z("sw t0, 24(sp)\n\0"); # Skip surrounding whitespace in front of the operator. _advance_token(1); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '+' beq t0, t1, .compile_expression_add li t1, '*' beq t0, t1, .compile_expression_mul li t1, '&' beq t0, t1, .compile_expression_and li t1, 'o' beq t0, t1, .compile_expression_or li t1, 'x' beq t0, t1, .compile_expression_xor li t1, '=' beq t0, t1, .compile_expression_equals li t1, '<' beq t0, t1, .compile_expression_less li t1, '>' beq t0, t1, .compile_expression_greater # Unknown binary operator. unimp .compile_expression_add: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("add t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_mul: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\tmul t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_and: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\tand t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_or: _advance_token(2); _compile_binary_rhs(); # Execute the operation. _write_z("or t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_xor: _advance_token(3); _compile_binary_rhs(); # Execute the operation. _write_z("xor t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_equals: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("xor t0, t0, t1\nseqz t0, t0\n\0"); goto .compile_expression_end; .compile_expression_less: _advance_token(1); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '>' beq t0, t1, .compile_expression_not_equal li t1, '=' beq t0, t1, .compile_expression_less_equal _compile_binary_rhs(); # Execute the operation. _write_z("slt t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_not_equal: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\txor t0, t0, t1\nsnez t0, t0\n\0"); goto .compile_expression_end; .compile_expression_less_equal: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\tslt t0, t0, t1\nxori t0, t0, 1\n\0"); goto .compile_expression_end; .compile_expression_greater: _advance_token(1); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '=' beq t0, t1, .compile_expression_greater_equal _compile_binary_rhs(); # Execute the operation. _write_z("\tslt t0, t1, t0\n\0"); goto .compile_expression_end; .compile_expression_greater_equal: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\tslt t0, t1, t0\nxori t0, t0, 1\n\0"); goto .compile_expression_end; .compile_expression_end: end; proc _compile_call(); begin # Stack variables: # v0 - Procedure name length. # v4 - Procedure name pointer. # v8 - Argument count. _read_token(); sw a0, 0(sp) v4 := source_code_position; v8 := 0; # Skip the identifier and left paren. _advance_token(v0 + 1); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ')' beq t0, t1, .compile_call_finalize .compile_call_loop: _compile_expression(); # Save the argument on the stack. _write_z("\tsw t0, \0"); # Calculate the stack offset: 116 - (4 * argument_counter) v12 := v8 * 4; v12 := 116 + -v12; _write_i(v12); _write_z("(sp)\n\0"); # Add one to the argument counter. v8 := v8 + 1; la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ',' bne t0, t1, .compile_call_finalize _advance_token(2); goto .compile_call_loop; .compile_call_finalize: # Load the argument from the stack. lw t0, 8(sp) beqz t0, .compile_call_end # Decrement the argument counter. v8 := v8 + -1; _write_z("\tlw a\0"); _write_i(v8); _write_z(", \0"); # Calculate the stack offset: 116 - (4 * argument_counter) v12 := v8 * 4; v12 := 116 + -v12; _write_i(v12); _write_z("(sp)\n\0"); goto .compile_call_finalize; .compile_call_end: _write_z("\tcall \0"); _write_s(v4, v0); # Skip the right paren. _advance_token(1); end; proc _compile_goto(); begin _advance_token(5); _read_token(); sw a0, 0(sp) _write_z("\tj \0"); _write_token(v0); _advance_token(); end; proc _compile_local_designator(); begin # Skip "v" in the local variable name. _advance_token(1); _write_z("\t addi t0, sp, \0"); # Read local variable stack offset and save it. _read_token(); _write_token(); _advance_token(); _write_c('\n'); end; proc _compile_global_designator(); begin _write_z("\tla t0, \0"); _read_token(); _write_token(); _advance_token(); _write_c('\n'); end; proc _compile_designator(); begin la t0, source_code_position lw t0, (t0) lb a0, (t0) li t1, 'v' beq a0, t1, .compile_designator_local goto .compile_designator_global; .compile_designator_local: _compile_local_designator(); goto .compile_designator_end; .compile_designator_global: _compile_global_designator(); goto .compile_designator_end; .compile_designator_end: end; proc _compile_assignment(); begin _compile_designator(); # Save the assignee address on the stack. _write_z("\tsw t0, 20(sp)\n\0"); # Skip the assignment sign (:=) with surrounding whitespaces. _advance_token(4); # Compile the assignment. _compile_expression(); _write_z("\tlw t1, 20(sp)\nsw t0, (t1)\n\0"); end; proc _compile_return_statement(); begin # Skip "return" keyword and whitespace after it. _advance_token(7); _compile_expression(); _write_z("mv a0, t0\n\0"); end; proc _compile_statement(); begin # This is a call if the statement starts with an underscore. la t0, source_code_position lw t0, (t0) # First character after alignment tab. addi t0, t0, 1 lb t0, (t0) li t1, '_' beq t0, t1, .compile_statement_call li t1, 'g' beq t0, t1, .compile_statement_goto li t1, 'v' beq t0, t1, .compile_statement_assignment # keyword_ret contains "\tret", so it's 4 bytes long. _memcmp(source_code_position, "\treturn", 7); beqz a0, .compile_statement_return _compile_line(); goto .compile_statement_end; .compile_statement_call: _advance_token(1); _compile_call(); goto .compile_statement_semicolon; .compile_statement_goto: _advance_token(1); _compile_goto(); goto .compile_statement_semicolon; .compile_statement_assignment: _advance_token(1); _compile_assignment(); goto .compile_statement_semicolon; .compile_statement_return: _advance_token(1); _compile_return_statement(); _write_c('\n'); goto .compile_statement_end; .compile_statement_semicolon: _advance_token(2); _write_c('\n'); .compile_statement_end: end; proc _compile_procedure_body(); begin .compile_procedure_body_loop: _skip_empty_lines(); # 3 is "end" length. _memcmp(source_code_position, "end", 3); beqz a0, .compile_procedure_body_epilogue _compile_statement(); goto .compile_procedure_body_loop; .compile_procedure_body_epilogue: end; # Writes a regster name to the standard output. # # Parameters: # a0 - Register character. # a1 - Register number. proc _write_register(); begin _write_c(v88); v84 := v84 + '0'; _write_c(v84); end; proc _compile_procedure_prologue(); begin _write_z("\taddi sp, sp, -128\n\tsw ra, 124(sp)\n\tsw s0, 120(sp)\n\taddi s0, sp, 128\n\0"); v0 := 0; .compile_procedure_prologue_loop: _write_z("\tsw a\0"); _write_i(v0); _write_z(", \0"); # Calculate the stack offset: 88 - (4 * parameter_counter) v4 := v0 * 4; v4 := 88 + -v4; _write_i(v4); _write_z("(sp)\n\0"); v0 := v0 + 1; lw a0, 0(sp) li t0, 8 bne a0, t0, .compile_procedure_prologue_loop end; proc _compile_procedure(); begin # Skip "proc ". _advance_token(5); _read_token(); # Save the procedure name length. sw a0, 0(sp) # Write .type _procedure_name, @function. _write_z(".type \0"); _write_token(v0); _write_z(", @function\n\0"); # Write procedure label, _procedure_name: _write_token(v0); _write_z(":\n\0"); # Skip the function name and trailing parens, semicolon, "begin" and newline. _advance_token(v0 + 10); _compile_procedure_prologue(); _compile_procedure_body(); # Write the epilogue. _write_z("\tlw ra, 124(sp)\n\tlw s0, 120(sp)\n\taddi sp, sp, 128\n\tret\n\0"); # Skip the "end" keyword, semicolon and newline. _advance_token(5); end; proc _skip_newlines(); begin # Skip newlines. la t0, source_code_position lw t1, (t0) .skip_newlines_loop: lb t2, (t1) li t3, '\n' bne t2, t3, .skip_newlines_end beqz t2, .skip_newlines_end addi t1, t1, 1 sw t1, (t0) goto .skip_newlines_loop; .skip_newlines_end: end; # Prints and skips a line. proc _skip_comment(); begin la t0, source_code_position lw t1, (t0) .skip_comment_loop: # Check for newline character. lb t2, (t1) li t3, '\n' beq t2, t3, .skip_comment_end # Advance the input string by one byte. addi t1, t1, 1 sw t1, (t0) goto .skip_comment_loop; .skip_comment_end: # Skip the newline. addi t1, t1, 1 sw t1, (t0) end; # Skip newlines and comments. proc _skip_empty_lines(); begin .skip_empty_lines_rerun: la t0, source_code_position lw t0, (t0) sw t0, 0(sp) .skip_empty_lines_loop: lw t2, 0(sp) lb t0, (t2) li t1, '#' beq t0, t1, .skip_empty_lines_comment li t1, '\n' beq t0, t1, .skip_empty_lines_newline li t1, '\t' beq t0, t1, .skip_empty_lines_tab li t1, '(' bne t0, t1, .skip_empty_lines_end addi t2, t2, 1 lb t0, (t2) li t1, '*' beq t0, t1, .skip_empty_lines_comment goto .skip_empty_lines_end; .skip_empty_lines_comment: la t0, source_code_position lw t1, 0(sp) sw t1, (t0) _skip_comment(); goto .skip_empty_lines_rerun; .skip_empty_lines_newline: la t0, source_code_position lw t1, 0(sp) addi t1, t1, 1 sw t1, (t0) goto .skip_empty_lines_rerun; .skip_empty_lines_tab: v0 := v0 + 1; goto .skip_empty_lines_loop .skip_empty_lines_end: end; proc _compile_global_initializer(); begin la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '"' beq t0, t1, .compile_global_initializer_string li t1, 'S' beq t0, t1, .compile_global_initializer_record li t1, '@' beq t0, t1, .compile_global_initializer_pointer la a0, source_code_position lw a0, (a0) lb a0, (a0) _is_digit(); bnez a0, .compile_global_initializer_number unimp .compile_global_initializer_pointer: # Skip @. _advance_token(1); _write_z("\n\t.word \0"); _read_token(); _write_token(); _advance_token(); goto .compile_global_initializer_end; .compile_global_initializer_number: _write_z("\n\t.word \0"); _read_token(); _write_token(); _advance_token(1); goto .compile_global_initializer_end; .compile_global_initializer_record: # Skip "S(". _advance_token(2); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ')' beq t0, t1, .compile_global_initializer_closing .compile_global_initializer_loop: _compile_global_initializer(); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ')' beq t0, t1, .compile_global_initializer_closing # Skip comma and whitespace after it. _advance_token(2); goto .compile_global_initializer_loop; .compile_global_initializer_closing: # Skip ")" _advance_token(1); goto .compile_global_initializer_end; .compile_global_initializer_string: _write_z("\n\t.word strings + \0"); _string_length(source_code_position); sw a0, 4(sp) _add_string(source_code_position); _write_i(); # Skip the quoted string. _advance_token(v4 + 2); goto .compile_global_initializer_end; .compile_global_initializer_end: end; proc _compile_constant_declaration(); begin _read_token(); sw a0, 0(sp) _write_z(".type \0"); _write_token(v0); _write_z(", @object\n\0"); _write_token(v0); _write_c(':'); # Skip the constant name with assignment sign and surrounding whitespaces. _advance_token(v0 + 4); _compile_global_initializer(); # Skip semicolon and newline. _advance_token(2); _write_c('\n'); end; proc _compile_const_part(); begin _skip_empty_lines(); _memcmp(source_code_position, "const\0", 5); bnez a0, .compile_const_part_end # Skip "const" with the newline after it. _advance_token(6); _write_z(".section .rodata # Compiled from const section.\n\n\0"); .compile_const_part_loop: _skip_empty_lines(); la t0, source_code_position lw t0, (t0) lb t0, (t0) # If the character at the line beginning is not indentation, # it is probably the next code section. li t1, '\t' bne t0, t1, .compile_const_part_end _advance_token(1); _compile_constant_declaration(); goto .compile_const_part_loop; .compile_const_part_end: end; proc _compile_variable_declaration(); begin _read_token(); sw a0, 0(sp) _write_z(".type \0"); _write_token(v0); _write_z(", @object\n\0"); _write_token(v0); _write_c(':'); # Skip the variable name and colon with space before the type. _advance_token(v0 + 2); # Skip the type name. _read_token(); _advance_token(); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ' ' beq t0, t1, .compile_variable_declaration_initializer # Else we assume this is a zeroed 81920 bytes big array. _write_z(" .zero 81920\0"); goto .compile_variable_declaration_finalize; .compile_variable_declaration_initializer: # Skip the assignment sign with surrounding whitespaces. _advance_token(4); _compile_global_initializer(); goto .compile_variable_declaration_finalize; .compile_variable_declaration_finalize: # Skip semicolon and newline. _advance_token(2); _write_c('\n'); end; proc _compile_var_part(); begin _memcmp(source_code_position, "var\0", 3); bnez a0, .compile_var_part_end # Skip "var" and newline. _advance_token(4); _write_z(".section .data\n\0"); .compile_var_part_loop: _skip_empty_lines(); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '\t' beq t0, t1, .compile_var_part_declaration goto .compile_var_part_end; .compile_var_part_declaration: _advance_token(1); _compile_variable_declaration(); goto .compile_var_part_loop; .compile_var_part_end: end; # Process the source code and print the generated code. proc _compile_module(); begin _compile_const_part(); _skip_empty_lines(); _compile_var_part(); _write_z(".section .text\n\0"); .compile_module_loop: _skip_empty_lines(); la t0, source_code_position lw t0, (t0) lb t0, (t0) beqz t0, .compile_module_end # 5 is "proc " length. Space is needed to distinguish from "procedure". _memcmp(source_code_position, "proc ", 5); beqz a0, .compile_module_procedure # Not a known token, exit. goto .compile_module_end; .compile_module_procedure: _compile_procedure(); goto .compile_module_loop; .compile_module_end: end; proc _compile(); begin _write_z(".globl _start\n\n\0"); _compile_module(); _write_z(".section .rodata\n.type strings, @object\nstrings: .ascii \0"); _write_c('"'); la t0, compiler_strings sw t0, 0(sp) .compile_loop: lw t0, 0(sp) la t1, compiler_strings_position lw t1, (t1) bge t0, t1, .compile_end lb a0, (t0) addi t0, t0, 1 sw t0, 0(sp) _write_c(); j .compile_loop .compile_end: _write_c('"'); _write_c('\n'); end; # Terminates the program. a0 contains the return code. # # Parameters: # a0 - Status code. proc _exit(); begin li a7, 93 # SYS_EXIT ecall end; # Inserts a symbol into the table. # # Parameters: # a0 - Symbol pointer. # a1 - Symbol name length. # a2 - Symbol name pointer. # a3 - Symbol table. proc _symbol_table_enter(); begin # The first word in the symbol table is its length, get it. lw a0, 76(sp) lw a0, (a0) sw a0, 0(sp) # Calculate the offset for the new symbol. v4 := v0 * 4; v4 := v4 + 4; v4 := v76 + 4; _memcpy(v4, @v80, 12); # Increment the symbol table length. v0 := v0 + 1; lw t0, 0(sp) lw t1, 76(sp) sw t0, (t1) end; proc _symbol_table_build(); begin _symbol_table_enter(@symbol_type_info_int, 3, symbol_builtin_name_int, @symbol_table_global); _symbol_table_enter(@symbol_type_info_word, 4, symbol_builtin_name_word, @symbol_table_global); _symbol_table_enter(@symbol_type_info_pointer, 7, symbol_builtin_name_pointer, @symbol_table_global); _symbol_table_enter(@symbol_type_info_char, 4, symbol_builtin_name_char, @symbol_table_global); _symbol_table_enter(@symbol_type_info_bool, 4, symbol_builtin_name_bool, @symbol_table_global); end; # # Classification table assigns each possible character to a group (class). All # characters of the same group a handled equivalently. # # Classification: # # TransitionClass = ( # transitionClassInvalid = 1, # transitionClassDigit = 2, # transitionClassAlpha = 3, # transitionClassSpace = 4, # transitionClassColon = 5, # transitionClassEquals = 6, # transitionClassLeftParen = 7, # transitionClassRightParen = 8, # transitionClassAsterisk = 9, # transitionClassUnderscore = 10, # transitionClassSingle = 11, # transitionClassHex = 12, # transitionClassZero = 13, # transitionClassX = 14, # transitionClassEof = 15, # transitionClassDot = 16, # transitionClassMinus = 17, # transitionClassSingleQuote = 18, # transitionClassDoubleQuote = 19, # transitionClassGreater = 20, # transitionClassLess = 21, # transitionClassOther = 22 # ); # TransitionState = ( # transitionStateStart = 1, # transitionStateColon = 2, # transitionStateIdentifier = 3, # transitionStateDecimal = 4, # transitionStateGreater = 5, # transitionStateMinus = 6, # transitionStateLeftParen = 7, # transitionStateLess = 8, # transitionStateDot = 9, # transitionStateComment = 10, # transitionStateClosingComment = 11, # transitionStateCharacter = 12, # transitionStateString = 13, # transitionStateLeadingZero = 14, # transitionStateDecimalSuffix = 15, # transitionStateEnd = 16 # ); # Transition = record # action: TransitionAction; # next_state: TransitionState # end; # TransitionAction = ( # none = 1, # accumulate = 2, # skip = 3, # single = 4, # eof = 5, # finalize = 6, # composite = 7, # key_id = 8, # integer = 9, # delimited = 10 # ); # Assigns some value to at array index. # # Parameters: # a0 - Array pointer. # a1 - Index (word offset into the array). # a2 - Data to assign. proc _assign_at(); begin v0 := v84 + -1; v0 := v0 * 4; v0 := v88 + v0; lw t0, 0(sp) lw t1, 80(sp) sw t1, (t0) end; proc _initialize_classification(); begin _assign_at(@classification, 1, 15); _assign_at(@classification, 2, 1); _assign_at(@classification, 3, 1); _assign_at(@classification, 4, 1); _assign_at(@classification, 5, 1); _assign_at(@classification, 6, 1); _assign_at(@classification, 7, 1); _assign_at(@classification, 8, 1); _assign_at(@classification, 9, 1); _assign_at(@classification, 10, 4); _assign_at(@classification, 11, 4); _assign_at(@classification, 12, 1); _assign_at(@classification, 13, 1); _assign_at(@classification, 14, 4); _assign_at(@classification, 15, 1); _assign_at(@classification, 16, 1); _assign_at(@classification, 17, 1); _assign_at(@classification, 18, 1); _assign_at(@classification, 19, 1); _assign_at(@classification, 20, 1); _assign_at(@classification, 21, 1); _assign_at(@classification, 22, 1); _assign_at(@classification, 23, 1); _assign_at(@classification, 24, 1); _assign_at(@classification, 25, 1); _assign_at(@classification, 26, 1); _assign_at(@classification, 27, 1); _assign_at(@classification, 28, 1); _assign_at(@classification, 29, 1); _assign_at(@classification, 30, 1); _assign_at(@classification, 31, 1); _assign_at(@classification, 32, 1); _assign_at(@classification, 33, 4); _assign_at(@classification, 34, 11); _assign_at(@classification, 35, 19); _assign_at(@classification, 36, 22); _assign_at(@classification, 37, 22); _assign_at(@classification, 38, 11); _assign_at(@classification, 39, 11); _assign_at(@classification, 40, 18); _assign_at(@classification, 41, 7); _assign_at(@classification, 42, 8); _assign_at(@classification, 43, 9); _assign_at(@classification, 44, 11); _assign_at(@classification, 45, 11); _assign_at(@classification, 46, 17); _assign_at(@classification, 47, 16); _assign_at(@classification, 48, 11); _assign_at(@classification, 49, 13); _assign_at(@classification, 50, 2); _assign_at(@classification, 51, 2); _assign_at(@classification, 52, 2); _assign_at(@classification, 53, 2); _assign_at(@classification, 54, 2); _assign_at(@classification, 55, 2); _assign_at(@classification, 56, 2); _assign_at(@classification, 57, 2); _assign_at(@classification, 58, 2); _assign_at(@classification, 59, 5); _assign_at(@classification, 60, 11); _assign_at(@classification, 61, 21); _assign_at(@classification, 62, 6); _assign_at(@classification, 63, 20); _assign_at(@classification, 64, 22); _assign_at(@classification, 65, 11); _assign_at(@classification, 66, 3); _assign_at(@classification, 67, 3); _assign_at(@classification, 68, 3); _assign_at(@classification, 69, 3); _assign_at(@classification, 70, 3); _assign_at(@classification, 71, 3); _assign_at(@classification, 72, 3); _assign_at(@classification, 73, 3); _assign_at(@classification, 74, 3); _assign_at(@classification, 75, 3); _assign_at(@classification, 76, 3); _assign_at(@classification, 77, 3); _assign_at(@classification, 78, 3); _assign_at(@classification, 79, 3); _assign_at(@classification, 80, 3); _assign_at(@classification, 81, 3); _assign_at(@classification, 82, 3); _assign_at(@classification, 83, 3); _assign_at(@classification, 84, 3); _assign_at(@classification, 85, 3); _assign_at(@classification, 86, 3); _assign_at(@classification, 87, 3); _assign_at(@classification, 88, 3); _assign_at(@classification, 89, 3); _assign_at(@classification, 90, 3); _assign_at(@classification, 91, 3); _assign_at(@classification, 92, 11); _assign_at(@classification, 93, 22); _assign_at(@classification, 94, 11); _assign_at(@classification, 95, 11); _assign_at(@classification, 96, 10); _assign_at(@classification, 97, 22); _assign_at(@classification, 98, 12); _assign_at(@classification, 99, 12); _assign_at(@classification, 100, 12); _assign_at(@classification, 101, 12); _assign_at(@classification, 102, 12); _assign_at(@classification, 103, 12); _assign_at(@classification, 104, 3); _assign_at(@classification, 105, 3); _assign_at(@classification, 106, 3); _assign_at(@classification, 107, 3); _assign_at(@classification, 108, 3); _assign_at(@classification, 109, 3); _assign_at(@classification, 110, 3); _assign_at(@classification, 111, 3); _assign_at(@classification, 112, 3); _assign_at(@classification, 113, 3); _assign_at(@classification, 114, 3); _assign_at(@classification, 115, 3); _assign_at(@classification, 116, 3); _assign_at(@classification, 117, 3); _assign_at(@classification, 118, 3); _assign_at(@classification, 119, 3); _assign_at(@classification, 120, 3); _assign_at(@classification, 121, 14); _assign_at(@classification, 122, 3); _assign_at(@classification, 123, 3); _assign_at(@classification, 124, 22); _assign_at(@classification, 125, 11); _assign_at(@classification, 126, 22); _assign_at(@classification, 127, 11); _assign_at(@classification, 128, 1); v0 := 129; # Set the remaining 129 - 256 bytes to transitionClassOther. .initialize_classification_loop: _assign_at(@classification, v0, 22); v0 := v0 + 1; lw t0, 0(sp) li t1, 257 blt t0, t1, .initialize_classification_loop end; # Parameters: # a0 - Current state (first index into transitions table). # a1 - Transition (second index into transitions table).. # a2 - Action to assign. # a3 - Next state to assign. proc _set_transition(); begin # Transitions start at offset in classification array. Save the transitions start in v0. la t0, classification addi t0, t0, 256 sw t0, 0(sp) # Each state is 8 bytes long (2 words: action and next state). # There are 16 transition classes, so a transition 8 * 16 = 128 bytes long. v4 := v88 + -1; v4 := v4 * 128; v8 := v84 + -1; v8 := v8 * 8; v12 := v0 + v4; v12 := v12 + v8; lw t0, 12(sp) lw t1, 80(sp) lw t2, 76(sp) sw t1, (t0) addi t0, t0, 4 sw t2, (t0) end; # Parameters: # a0 - Current state (Transition state enumeration). # a1 - Default action (Callback). # a2 - Next state (Transition state enumeration). proc _set_default_transition(); begin _set_transition(v88, 1, v84, v80); _set_transition(v88, 2, v84, v80); _set_transition(v88, 3, v84, v80); _set_transition(v88, 4, v84, v80); _set_transition(v88, 5, v84, v80); _set_transition(v88, 6, v84, v80); _set_transition(v88, 7, v84, v80); _set_transition(v88, 8, v84, v80); _set_transition(v88, 9, v84, v80); _set_transition(v88, 10, v84, v80); _set_transition(v88, 11, v84, v80); _set_transition(v88, 12, v84, v80); _set_transition(v88, 13, v84, v80); _set_transition(v88, 14, v84, v80); _set_transition(v88, 15, v84, v80); _set_transition(v88, 16, v84, v80); _set_transition(v88, 17, v84, v80); _set_transition(v88, 18, v84, v80); _set_transition(v88, 19, v84, v80); _set_transition(v88, 20, v84, v80); _set_transition(v88, 21, v84, v80); _set_transition(v88, 22, v84, v80); end; # The transition table describes transitions from one state to another, given # a symbol (character class). # # The table has m rows and n columns, where m is the amount of states and n is # the amount of classes. So given the current state and a classified character # the table can be used to look up the next state. # # Each cell is a word long. # - The least significant byte of the word is a row number (beginning with 0). # It specifies the target state. "ff" means that this is an end state and no # transition is possible. # - The next byte is the action that should be performed when transitioning. # For the meaning of actions see labels in the lex_next function, which # handles each action. proc _initialize_transitions(); begin # Start state. _set_transition(1, 1, 1, 16); _set_transition(1, 2, 2, 4); _set_transition(1, 3, 2, 3); _set_transition(1, 4, 3, 1); _set_transition(1, 5, 2, 5); _set_transition(1, 6, 4, 16); _set_transition(1, 7, 2, 7); _set_transition(1, 8, 4, 16); _set_transition(1, 9, 4, 16); _set_transition(1, 10, 2, 3); _set_transition(1, 11, 4, 16); _set_transition(1, 12, 2, 3); _set_transition(1, 13, 2, 14); _set_transition(1, 14, 2, 3); _set_transition(1, 15, 5, 16); _set_transition(1, 16, 2, 9); _set_transition(1, 17, 2, 6); _set_transition(1, 18, 2, 12); _set_transition(1, 19, 2, 13); _set_transition(1, 20, 2, 5); _set_transition(1, 21, 2, 8); _set_transition(1, 22, 1, 16); # Colon state. _set_default_transition(2, 6, 16); _set_transition(2, 6, 7, 16); # Identifier state. _set_default_transition(3, 8, 16); _set_transition(3, 2, 2, 3); _set_transition(3, 3, 2, 3); _set_transition(3, 10, 2, 3); _set_transition(3, 12, 2, 3); _set_transition(3, 13, 2, 3); _set_transition(3, 14, 2, 3); # Decimal state. _set_default_transition(4, 9, 16); _set_transition(4, 2, 2, 4); _set_transition(4, 3, 2, 15); _set_transition(4, 10, 1, 16); _set_transition(4, 12, 2, 15); _set_transition(4, 13, 2, 4); _set_transition(4, 14, 2, 15); # Greater state. _set_default_transition(5, 6, 16); _set_transition(5, 6, 7, 16); # Minus state. _set_default_transition(6, 6, 16); _set_transition(6, 20, 7, 16); # Left paren state. _set_default_transition(7, 6, 16); _set_transition(7, 9, 2, 10); # Less state. _set_default_transition(8, 6, 16); _set_transition(8, 6, 7, 16); _set_transition(8, 20, 7, 16); # Hexadecimal after 0x. _set_default_transition(9, 6, 16); _set_transition(9, 16, 7, 16); # Comment. _set_default_transition(10, 2, 10); _set_transition(10, 9, 2, 11); _set_transition(10, 15, 1, 16); # Closing comment. _set_default_transition(11, 2, 10); _set_transition(11, 1, 1, 16); _set_transition(11, 8, 10, 16); _set_transition(11, 9, 2, 11); _set_transition(11, 15, 1, 16); # Character. _set_default_transition(12, 2, 12); _set_transition(12, 1, 1, 16); _set_transition(12, 15, 1, 16); _set_transition(12, 18, 10, 16); # String. _set_default_transition(13, 2, 13); _set_transition(13, 1, 1, 16); _set_transition(13, 15, 1, 16); _set_transition(13, 19, 10, 16); # Leading zero. _set_default_transition(14, 9, 16); _set_transition(14, 2, 1, 16); _set_transition(14, 3, 1, 16); _set_transition(14, 10, 1, 16); _set_transition(14, 12, 1, 16); _set_transition(14, 13, 1, 16); _set_transition(14, 14, 1, 16); # Digit with a character suffix. _set_default_transition(15, 9, 16); _set_transition(15, 3, 1, 16); _set_transition(15, 2, 1, 16); _set_transition(15, 12, 1, 16); _set_transition(15, 13, 1, 16); _set_transition(15, 14, 1, 16); end; proc _lexer_get_state(); begin # Lexer state is saved after the transition tables. The offset is 256 + 16 * 22. v0 := @classification; v4 := 16 * 22; v0 := v0 + 256; return v0 + v4 end; # Gets pointer to the current source text. proc _lexer_get_current(); begin _lexer_get_state(); sw a0, 0(sp) return v0 + 4 end; # Resets the lexer state for reading the next token. proc _lexer_reset(); begin # Transition start state is 1. _lexer_get_state(); li t0, 1 sw t0, (a0) sw a0, 0(sp) # Text pointer to the beginning of the currently read token. _lexer_get_current(); la t0, source_code_position lw t0, (t0) sw t0, (a0) # Initial length of the token is 0. addi t0, t0, 4 sw zero, (t0) end; # One time lexer initialization. proc _lexer_initialize(); begin _initialize_classification(); _initialize_transitions(); end; # Entry point. proc _start(); begin _lexer_initialize(); _symbol_table_build(); # Read the source from the standard input. # Second argument is buffer size. Modifying update the source_code definition. _read_file(@source_code, 81920); _compile(); _exit(0); end;