Compare commits
No commits in common. "modula2" and "assembly" have entirely different histories.
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,3 +1,3 @@
|
||||
a.out
|
||||
/boot/
|
||||
/build/
|
||||
a.out
|
||||
/vendor/
|
||||
|
9
Gemfile
Normal file
9
Gemfile
Normal file
@ -0,0 +1,9 @@
|
||||
# This Source Code Form is subject to the terms of the Mozilla Public License,
|
||||
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
# obtain one at https://mozilla.org/MPL/2.0/.
|
||||
# frozen_string_literal: true
|
||||
|
||||
source 'https://rubygems.org'
|
||||
|
||||
gem 'term-ansicolor', '~> 1.2'
|
||||
gem 'rake', '~> 13.2'
|
22
Gemfile.lock
Normal file
22
Gemfile.lock
Normal file
@ -0,0 +1,22 @@
|
||||
GEM
|
||||
remote: https://rubygems.org/
|
||||
specs:
|
||||
bigdecimal (3.1.9)
|
||||
rake (13.2.1)
|
||||
sync (0.5.0)
|
||||
term-ansicolor (1.11.2)
|
||||
tins (~> 1.0)
|
||||
tins (1.38.0)
|
||||
bigdecimal
|
||||
sync
|
||||
|
||||
PLATFORMS
|
||||
ruby
|
||||
x86_64-linux
|
||||
|
||||
DEPENDENCIES
|
||||
rake (~> 13.2)
|
||||
term-ansicolor (~> 1.2)
|
||||
|
||||
BUNDLED WITH
|
||||
2.6.7
|
373
LICENSE
Normal file
373
LICENSE
Normal file
@ -0,0 +1,373 @@
|
||||
Mozilla Public License Version 2.0
|
||||
==================================
|
||||
|
||||
1. Definitions
|
||||
--------------
|
||||
|
||||
1.1. "Contributor"
|
||||
means each individual or legal entity that creates, contributes to
|
||||
the creation of, or owns Covered Software.
|
||||
|
||||
1.2. "Contributor Version"
|
||||
means the combination of the Contributions of others (if any) used
|
||||
by a Contributor and that particular Contributor's Contribution.
|
||||
|
||||
1.3. "Contribution"
|
||||
means Covered Software of a particular Contributor.
|
||||
|
||||
1.4. "Covered Software"
|
||||
means Source Code Form to which the initial Contributor has attached
|
||||
the notice in Exhibit A, the Executable Form of such Source Code
|
||||
Form, and Modifications of such Source Code Form, in each case
|
||||
including portions thereof.
|
||||
|
||||
1.5. "Incompatible With Secondary Licenses"
|
||||
means
|
||||
|
||||
(a) that the initial Contributor has attached the notice described
|
||||
in Exhibit B to the Covered Software; or
|
||||
|
||||
(b) that the Covered Software was made available under the terms of
|
||||
version 1.1 or earlier of the License, but not also under the
|
||||
terms of a Secondary License.
|
||||
|
||||
1.6. "Executable Form"
|
||||
means any form of the work other than Source Code Form.
|
||||
|
||||
1.7. "Larger Work"
|
||||
means a work that combines Covered Software with other material, in
|
||||
a separate file or files, that is not Covered Software.
|
||||
|
||||
1.8. "License"
|
||||
means this document.
|
||||
|
||||
1.9. "Licensable"
|
||||
means having the right to grant, to the maximum extent possible,
|
||||
whether at the time of the initial grant or subsequently, any and
|
||||
all of the rights conveyed by this License.
|
||||
|
||||
1.10. "Modifications"
|
||||
means any of the following:
|
||||
|
||||
(a) any file in Source Code Form that results from an addition to,
|
||||
deletion from, or modification of the contents of Covered
|
||||
Software; or
|
||||
|
||||
(b) any new file in Source Code Form that contains any Covered
|
||||
Software.
|
||||
|
||||
1.11. "Patent Claims" of a Contributor
|
||||
means any patent claim(s), including without limitation, method,
|
||||
process, and apparatus claims, in any patent Licensable by such
|
||||
Contributor that would be infringed, but for the grant of the
|
||||
License, by the making, using, selling, offering for sale, having
|
||||
made, import, or transfer of either its Contributions or its
|
||||
Contributor Version.
|
||||
|
||||
1.12. "Secondary License"
|
||||
means either the GNU General Public License, Version 2.0, the GNU
|
||||
Lesser General Public License, Version 2.1, the GNU Affero General
|
||||
Public License, Version 3.0, or any later versions of those
|
||||
licenses.
|
||||
|
||||
1.13. "Source Code Form"
|
||||
means the form of the work preferred for making modifications.
|
||||
|
||||
1.14. "You" (or "Your")
|
||||
means an individual or a legal entity exercising rights under this
|
||||
License. For legal entities, "You" includes any entity that
|
||||
controls, is controlled by, or is under common control with You. For
|
||||
purposes of this definition, "control" means (a) the power, direct
|
||||
or indirect, to cause the direction or management of such entity,
|
||||
whether by contract or otherwise, or (b) ownership of more than
|
||||
fifty percent (50%) of the outstanding shares or beneficial
|
||||
ownership of such entity.
|
||||
|
||||
2. License Grants and Conditions
|
||||
--------------------------------
|
||||
|
||||
2.1. Grants
|
||||
|
||||
Each Contributor hereby grants You a world-wide, royalty-free,
|
||||
non-exclusive license:
|
||||
|
||||
(a) under intellectual property rights (other than patent or trademark)
|
||||
Licensable by such Contributor to use, reproduce, make available,
|
||||
modify, display, perform, distribute, and otherwise exploit its
|
||||
Contributions, either on an unmodified basis, with Modifications, or
|
||||
as part of a Larger Work; and
|
||||
|
||||
(b) under Patent Claims of such Contributor to make, use, sell, offer
|
||||
for sale, have made, import, and otherwise transfer either its
|
||||
Contributions or its Contributor Version.
|
||||
|
||||
2.2. Effective Date
|
||||
|
||||
The licenses granted in Section 2.1 with respect to any Contribution
|
||||
become effective for each Contribution on the date the Contributor first
|
||||
distributes such Contribution.
|
||||
|
||||
2.3. Limitations on Grant Scope
|
||||
|
||||
The licenses granted in this Section 2 are the only rights granted under
|
||||
this License. No additional rights or licenses will be implied from the
|
||||
distribution or licensing of Covered Software under this License.
|
||||
Notwithstanding Section 2.1(b) above, no patent license is granted by a
|
||||
Contributor:
|
||||
|
||||
(a) for any code that a Contributor has removed from Covered Software;
|
||||
or
|
||||
|
||||
(b) for infringements caused by: (i) Your and any other third party's
|
||||
modifications of Covered Software, or (ii) the combination of its
|
||||
Contributions with other software (except as part of its Contributor
|
||||
Version); or
|
||||
|
||||
(c) under Patent Claims infringed by Covered Software in the absence of
|
||||
its Contributions.
|
||||
|
||||
This License does not grant any rights in the trademarks, service marks,
|
||||
or logos of any Contributor (except as may be necessary to comply with
|
||||
the notice requirements in Section 3.4).
|
||||
|
||||
2.4. Subsequent Licenses
|
||||
|
||||
No Contributor makes additional grants as a result of Your choice to
|
||||
distribute the Covered Software under a subsequent version of this
|
||||
License (see Section 10.2) or under the terms of a Secondary License (if
|
||||
permitted under the terms of Section 3.3).
|
||||
|
||||
2.5. Representation
|
||||
|
||||
Each Contributor represents that the Contributor believes its
|
||||
Contributions are its original creation(s) or it has sufficient rights
|
||||
to grant the rights to its Contributions conveyed by this License.
|
||||
|
||||
2.6. Fair Use
|
||||
|
||||
This License is not intended to limit any rights You have under
|
||||
applicable copyright doctrines of fair use, fair dealing, or other
|
||||
equivalents.
|
||||
|
||||
2.7. Conditions
|
||||
|
||||
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
|
||||
in Section 2.1.
|
||||
|
||||
3. Responsibilities
|
||||
-------------------
|
||||
|
||||
3.1. Distribution of Source Form
|
||||
|
||||
All distribution of Covered Software in Source Code Form, including any
|
||||
Modifications that You create or to which You contribute, must be under
|
||||
the terms of this License. You must inform recipients that the Source
|
||||
Code Form of the Covered Software is governed by the terms of this
|
||||
License, and how they can obtain a copy of this License. You may not
|
||||
attempt to alter or restrict the recipients' rights in the Source Code
|
||||
Form.
|
||||
|
||||
3.2. Distribution of Executable Form
|
||||
|
||||
If You distribute Covered Software in Executable Form then:
|
||||
|
||||
(a) such Covered Software must also be made available in Source Code
|
||||
Form, as described in Section 3.1, and You must inform recipients of
|
||||
the Executable Form how they can obtain a copy of such Source Code
|
||||
Form by reasonable means in a timely manner, at a charge no more
|
||||
than the cost of distribution to the recipient; and
|
||||
|
||||
(b) You may distribute such Executable Form under the terms of this
|
||||
License, or sublicense it under different terms, provided that the
|
||||
license for the Executable Form does not attempt to limit or alter
|
||||
the recipients' rights in the Source Code Form under this License.
|
||||
|
||||
3.3. Distribution of a Larger Work
|
||||
|
||||
You may create and distribute a Larger Work under terms of Your choice,
|
||||
provided that You also comply with the requirements of this License for
|
||||
the Covered Software. If the Larger Work is a combination of Covered
|
||||
Software with a work governed by one or more Secondary Licenses, and the
|
||||
Covered Software is not Incompatible With Secondary Licenses, this
|
||||
License permits You to additionally distribute such Covered Software
|
||||
under the terms of such Secondary License(s), so that the recipient of
|
||||
the Larger Work may, at their option, further distribute the Covered
|
||||
Software under the terms of either this License or such Secondary
|
||||
License(s).
|
||||
|
||||
3.4. Notices
|
||||
|
||||
You may not remove or alter the substance of any license notices
|
||||
(including copyright notices, patent notices, disclaimers of warranty,
|
||||
or limitations of liability) contained within the Source Code Form of
|
||||
the Covered Software, except that You may alter any license notices to
|
||||
the extent required to remedy known factual inaccuracies.
|
||||
|
||||
3.5. Application of Additional Terms
|
||||
|
||||
You may choose to offer, and to charge a fee for, warranty, support,
|
||||
indemnity or liability obligations to one or more recipients of Covered
|
||||
Software. However, You may do so only on Your own behalf, and not on
|
||||
behalf of any Contributor. You must make it absolutely clear that any
|
||||
such warranty, support, indemnity, or liability obligation is offered by
|
||||
You alone, and You hereby agree to indemnify every Contributor for any
|
||||
liability incurred by such Contributor as a result of warranty, support,
|
||||
indemnity or liability terms You offer. You may include additional
|
||||
disclaimers of warranty and limitations of liability specific to any
|
||||
jurisdiction.
|
||||
|
||||
4. Inability to Comply Due to Statute or Regulation
|
||||
---------------------------------------------------
|
||||
|
||||
If it is impossible for You to comply with any of the terms of this
|
||||
License with respect to some or all of the Covered Software due to
|
||||
statute, judicial order, or regulation then You must: (a) comply with
|
||||
the terms of this License to the maximum extent possible; and (b)
|
||||
describe the limitations and the code they affect. Such description must
|
||||
be placed in a text file included with all distributions of the Covered
|
||||
Software under this License. Except to the extent prohibited by statute
|
||||
or regulation, such description must be sufficiently detailed for a
|
||||
recipient of ordinary skill to be able to understand it.
|
||||
|
||||
5. Termination
|
||||
--------------
|
||||
|
||||
5.1. The rights granted under this License will terminate automatically
|
||||
if You fail to comply with any of its terms. However, if You become
|
||||
compliant, then the rights granted under this License from a particular
|
||||
Contributor are reinstated (a) provisionally, unless and until such
|
||||
Contributor explicitly and finally terminates Your grants, and (b) on an
|
||||
ongoing basis, if such Contributor fails to notify You of the
|
||||
non-compliance by some reasonable means prior to 60 days after You have
|
||||
come back into compliance. Moreover, Your grants from a particular
|
||||
Contributor are reinstated on an ongoing basis if such Contributor
|
||||
notifies You of the non-compliance by some reasonable means, this is the
|
||||
first time You have received notice of non-compliance with this License
|
||||
from such Contributor, and You become compliant prior to 30 days after
|
||||
Your receipt of the notice.
|
||||
|
||||
5.2. If You initiate litigation against any entity by asserting a patent
|
||||
infringement claim (excluding declaratory judgment actions,
|
||||
counter-claims, and cross-claims) alleging that a Contributor Version
|
||||
directly or indirectly infringes any patent, then the rights granted to
|
||||
You by any and all Contributors for the Covered Software under Section
|
||||
2.1 of this License shall terminate.
|
||||
|
||||
5.3. In the event of termination under Sections 5.1 or 5.2 above, all
|
||||
end user license agreements (excluding distributors and resellers) which
|
||||
have been validly granted by You or Your distributors under this License
|
||||
prior to termination shall survive termination.
|
||||
|
||||
************************************************************************
|
||||
* *
|
||||
* 6. Disclaimer of Warranty *
|
||||
* ------------------------- *
|
||||
* *
|
||||
* Covered Software is provided under this License on an "as is" *
|
||||
* basis, without warranty of any kind, either expressed, implied, or *
|
||||
* statutory, including, without limitation, warranties that the *
|
||||
* Covered Software is free of defects, merchantable, fit for a *
|
||||
* particular purpose or non-infringing. The entire risk as to the *
|
||||
* quality and performance of the Covered Software is with You. *
|
||||
* Should any Covered Software prove defective in any respect, You *
|
||||
* (not any Contributor) assume the cost of any necessary servicing, *
|
||||
* repair, or correction. This disclaimer of warranty constitutes an *
|
||||
* essential part of this License. No use of any Covered Software is *
|
||||
* authorized under this License except under this disclaimer. *
|
||||
* *
|
||||
************************************************************************
|
||||
|
||||
************************************************************************
|
||||
* *
|
||||
* 7. Limitation of Liability *
|
||||
* -------------------------- *
|
||||
* *
|
||||
* Under no circumstances and under no legal theory, whether tort *
|
||||
* (including negligence), contract, or otherwise, shall any *
|
||||
* Contributor, or anyone who distributes Covered Software as *
|
||||
* permitted above, be liable to You for any direct, indirect, *
|
||||
* special, incidental, or consequential damages of any character *
|
||||
* including, without limitation, damages for lost profits, loss of *
|
||||
* goodwill, work stoppage, computer failure or malfunction, or any *
|
||||
* and all other commercial damages or losses, even if such party *
|
||||
* shall have been informed of the possibility of such damages. This *
|
||||
* limitation of liability shall not apply to liability for death or *
|
||||
* personal injury resulting from such party's negligence to the *
|
||||
* extent applicable law prohibits such limitation. Some *
|
||||
* jurisdictions do not allow the exclusion or limitation of *
|
||||
* incidental or consequential damages, so this exclusion and *
|
||||
* limitation may not apply to You. *
|
||||
* *
|
||||
************************************************************************
|
||||
|
||||
8. Litigation
|
||||
-------------
|
||||
|
||||
Any litigation relating to this License may be brought only in the
|
||||
courts of a jurisdiction where the defendant maintains its principal
|
||||
place of business and such litigation shall be governed by laws of that
|
||||
jurisdiction, without reference to its conflict-of-law provisions.
|
||||
Nothing in this Section shall prevent a party's ability to bring
|
||||
cross-claims or counter-claims.
|
||||
|
||||
9. Miscellaneous
|
||||
----------------
|
||||
|
||||
This License represents the complete agreement concerning the subject
|
||||
matter hereof. If any provision of this License is held to be
|
||||
unenforceable, such provision shall be reformed only to the extent
|
||||
necessary to make it enforceable. Any law or regulation which provides
|
||||
that the language of a contract shall be construed against the drafter
|
||||
shall not be used to construe this License against a Contributor.
|
||||
|
||||
10. Versions of the License
|
||||
---------------------------
|
||||
|
||||
10.1. New Versions
|
||||
|
||||
Mozilla Foundation is the license steward. Except as provided in Section
|
||||
10.3, no one other than the license steward has the right to modify or
|
||||
publish new versions of this License. Each version will be given a
|
||||
distinguishing version number.
|
||||
|
||||
10.2. Effect of New Versions
|
||||
|
||||
You may distribute the Covered Software under the terms of the version
|
||||
of the License under which You originally received the Covered Software,
|
||||
or under the terms of any subsequent version published by the license
|
||||
steward.
|
||||
|
||||
10.3. Modified Versions
|
||||
|
||||
If you create software not governed by this License, and you want to
|
||||
create a new license for such software, you may create and use a
|
||||
modified version of this License if you rename the license and remove
|
||||
any references to the name of the license steward (except to note that
|
||||
such modified license differs from this License).
|
||||
|
||||
10.4. Distributing Source Code Form that is Incompatible With Secondary
|
||||
Licenses
|
||||
|
||||
If You choose to distribute Source Code Form that is Incompatible With
|
||||
Secondary Licenses under the terms of this version of the License, the
|
||||
notice described in Exhibit B of this License must be attached.
|
||||
|
||||
Exhibit A - Source Code Form License Notice
|
||||
-------------------------------------------
|
||||
|
||||
This Source Code Form is subject to the terms of the Mozilla Public
|
||||
License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
If it is not possible or desirable to put the notice in a particular
|
||||
file, then You may include the notice in a location (such as a LICENSE
|
||||
file in a relevant directory) where a recipient would be likely to look
|
||||
for such a notice.
|
||||
|
||||
You may add additional accurate notices of copyright ownership.
|
||||
|
||||
Exhibit B - "Incompatible With Secondary Licenses" Notice
|
||||
---------------------------------------------------------
|
||||
|
||||
This Source Code Form is "Incompatible With Secondary Licenses", as
|
||||
defined by the Mozilla Public License, v. 2.0.
|
52
README.md
52
README.md
@ -9,55 +9,3 @@ representation for a such high-level hypothetical programming language.
|
||||
## File extension
|
||||
|
||||
.elna
|
||||
|
||||
## Current implementation
|
||||
|
||||
This repository contains a GCC frontend for Elna. After finishing the frontend
|
||||
I'm planning to rewrite the compiler in Elna itself with its own backend and
|
||||
a hand-written parser. So GCC gives a way to have a simple bootstrap compiler
|
||||
and a possbility to compile Elna programs for different platforms.
|
||||
|
||||
## Grammar
|
||||
|
||||
program = block "." ;
|
||||
|
||||
block = [ "const" ident "=" number {"," ident "=" number} ";"]
|
||||
[ "var" ident {"," ident} ";"]
|
||||
{ "procedure" ident ";" block ";" } statement ;
|
||||
|
||||
statement = [ ident ":=" expression | "call" ident
|
||||
| "?" ident | "!" expression
|
||||
| "begin" statement {";" statement } "end"
|
||||
| "if" condition "then" statement
|
||||
| "while" condition "do" statement ];
|
||||
|
||||
condition = "odd" expression |
|
||||
expression ("="|"#"|"<"|"<="|">"|">=") expression ;
|
||||
|
||||
expression = [ "+"|"-"] term { ("+"|"-") term};
|
||||
|
||||
term = factor {("*"|"/") factor};
|
||||
|
||||
factor = ident | number | "(" expression ")";
|
||||
|
||||
## Build
|
||||
|
||||
The frontend requires GCC 14.2.0 (not tested with other versions).
|
||||
|
||||
Download the GCC source. Copy the contents of this repository into `gcc/elna`
|
||||
inside GCC. Finally build GCC enabling the frontend with
|
||||
`--enable-languages=c,c++,elna`. After the installation the compiler can be
|
||||
invoked with `$prefix/bin/gelna`.
|
||||
|
||||
There is also a `Rakefile` that downloads, builds and installs GCC into the
|
||||
`./build/` subdirectory. The `Rakefile` assumes that ruby and rake, as well as
|
||||
all GCC dependencies are already available in the system. It works under Linux
|
||||
and Mac OS. In the latter case GCC is patched with the patches used by Homebrew
|
||||
(official GCC doesn't support Apple silicon targets). Invoke with
|
||||
|
||||
```sh
|
||||
rake boot
|
||||
```
|
||||
|
||||
See `rake -T` for more tasks. The GCC source is under `build/tools`. The
|
||||
installation path is `build/host/install`.
|
||||
|
155
Rakefile
155
Rakefile
@ -1,141 +1,38 @@
|
||||
require 'pathname'
|
||||
require 'rake/clean'
|
||||
# This Source Code Form is subject to the terms of the Mozilla Public License,
|
||||
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
# obtain one at https://mozilla.org/MPL/2.0/.
|
||||
# frozen_string_literal: true
|
||||
|
||||
require 'open3'
|
||||
require 'rake/clean'
|
||||
require 'term/ansicolor'
|
||||
|
||||
M2C = 'gm2' # Modula-2 compiler.
|
||||
CLEAN.include 'build/boot'
|
||||
|
||||
stage_compiler = Pathname.new 'build/stage1/elna'
|
||||
directory 'build/boot'
|
||||
|
||||
directory 'build/stage1'
|
||||
directory 'build/source'
|
||||
directory 'build/self'
|
||||
|
||||
CLEAN.include 'build'
|
||||
|
||||
rule(/build\/stage1\/.+\.o$/ => ->(file) {
|
||||
path = Pathname.new('boot/stage1/source') + Pathname.new(file).basename
|
||||
|
||||
['build/stage1', path.sub_ext('.def'), path.sub_ext('.mod')]
|
||||
}) do |t|
|
||||
sources = t.prerequisites.filter { |f| f.end_with? '.mod' }
|
||||
|
||||
sh M2C, '-c', '-I', 'boot/stage1/source', '-o', t.name, *sources
|
||||
end
|
||||
|
||||
file 'build/stage1/elna' => FileList['boot/stage1/source/*'].map { |file|
|
||||
File.join 'build', 'stage1', Pathname.new(file).basename.sub_ext('.o')
|
||||
} do |t|
|
||||
sh M2C, '-o', t.name, *t.prerequisites
|
||||
end
|
||||
|
||||
file 'build/stage1/Compiler.o' => ['build/stage1', 'boot/stage1/source/Compiler.mod'] do |t|
|
||||
sources = t.prerequisites.filter { |f| f.end_with? '.mod' }
|
||||
|
||||
sh M2C, '-fscaffold-main', '-c', '-I', 'boot/stage1/source', '-o', t.name, *sources
|
||||
end
|
||||
|
||||
['source', 'self'].each do |sub|
|
||||
rule(/build\/#{sub}\/.+\.mod$/ => [
|
||||
"build/#{sub}", stage_compiler.to_path,
|
||||
->(file) { File.join('source', Pathname.new(file).basename.sub_ext('.elna')) }
|
||||
]) do |t|
|
||||
sources, compiler = t.prerequisites
|
||||
.reject { |f| File.directory? f }
|
||||
.partition { |f| f.end_with? '.elna' }
|
||||
|
||||
File.open t.name, 'w' do |output|
|
||||
compiler_command = compiler + sources
|
||||
|
||||
puts
|
||||
puts(compiler_command * ' ')
|
||||
|
||||
Open3.popen2(*compiler_command) do |cl_in, cl_out|
|
||||
cl_in.close
|
||||
|
||||
IO.copy_stream cl_out, output
|
||||
cl_out.close
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
rule(/build\/#{sub}\/.+\.o$/ => ->(file) {
|
||||
path = Pathname.new(file).relative_path_from('build')
|
||||
result = []
|
||||
|
||||
result << File.join('source', path.basename.sub_ext('.def'))
|
||||
result << File.join('build', path.sub_ext('.mod'))
|
||||
}) do |t|
|
||||
sources = t.prerequisites.filter { |f| f.end_with? '.mod' }
|
||||
|
||||
sh M2C, '-c', '-I', 'source', '-o', t.name, *sources
|
||||
end
|
||||
|
||||
file "build/#{sub}/Compiler.o" => ["build/#{sub}/Compiler.mod"] do |t|
|
||||
sh M2C, '-fscaffold-main', '-c', '-I', 'source', '-o', t.name, *t.prerequisites
|
||||
end
|
||||
stage_compiler = Pathname.new('build') + sub + 'elna'
|
||||
|
||||
file stage_compiler => FileList["source/*.elna"].map { |file|
|
||||
File.join 'build', sub, Pathname.new(file).basename.sub_ext('.o')
|
||||
} do |t|
|
||||
sh M2C, '-o', t.name, *t.prerequisites
|
||||
end
|
||||
end
|
||||
|
||||
task default: 'build/self/elna'
|
||||
task default: 'build/self/Compiler.mod'
|
||||
task default: 'source/Compiler.elna'
|
||||
task :default do |t|
|
||||
desc 'Final stage'
|
||||
task default: ['build/boot/stage2b', 'build/boot/stage2b.s', 'boot/stage2.elna'] do |t|
|
||||
exe, previous_output, source = t.prerequisites
|
||||
|
||||
exe_arguments = [exe, source]
|
||||
cat_arguments = ['cat', source]
|
||||
compiler_arguments = [QEMU, '-L', SYSROOT, exe]
|
||||
diff_arguments = ['diff', '-Nur', '--text', previous_output, '-']
|
||||
|
||||
puts [exe, diff_arguments * ' '].join(' | ')
|
||||
Open3.pipeline exe_arguments, diff_arguments
|
||||
Open3.pipeline(cat_arguments, compiler_arguments, diff_arguments)
|
||||
end
|
||||
|
||||
task :backport do
|
||||
FileList['source/*.elna'].each do |file|
|
||||
source_path = Pathname.new file
|
||||
source = File.read source_path
|
||||
current_procedure = nil
|
||||
target = ''
|
||||
module_name = source_path.basename.sub_ext('')
|
||||
file 'build/boot/test.s' => ['build/boot/stage1', 'boot/test.elna'] do |t|
|
||||
source, exe = t.prerequisites.partition { |prerequisite| prerequisite.end_with? '.elna' }
|
||||
|
||||
source
|
||||
.gsub(/^(var|type|const|begin)/) { |match| match.upcase }
|
||||
.gsub(/\b(record|nil|or|false|true)\b/) { |match| match.upcase }
|
||||
.gsub(/proc\(/, 'PROCEDURE(')
|
||||
.gsub(/ & /, ' AND ')
|
||||
.gsub(/ -> /, ': ')
|
||||
.gsub(/program;/, "MODULE #{module_name};")
|
||||
.gsub(/module;/, "IMPLEMENTATION MODULE #{module_name};")
|
||||
.gsub(/end\./, "END #{module_name}.")
|
||||
.gsub(/([[:space:]]*)end(;?)$/, '\1END\2')
|
||||
.gsub(/^([[:space:]]*)(while|return|if)\b/) { |match| match.upcase }
|
||||
.gsub(/^from ([[:alnum:]]+) import/, 'FROM \1 IMPORT')
|
||||
.gsub(/ \^([[:alnum:]])/, ' POINTER TO \1')
|
||||
.gsub(/(then|do)$/) { |match| match.upcase }
|
||||
.gsub(/(:|=) \[([[:digit:]]+)\]/, '\1 ARRAY[1..\2] OF ')
|
||||
.each_line do |line|
|
||||
if line.start_with? 'proc'
|
||||
current_procedure = line[5...line.index('(')]
|
||||
|
||||
line = 'PROCEDURE ' + line[5..].gsub(',', ';')
|
||||
elsif line.start_with?('END;') && !current_procedure.nil?
|
||||
line = "END #{current_procedure};"
|
||||
current_proceure = nil
|
||||
elsif line.start_with?('end')
|
||||
line = 'END ' + line[4..]
|
||||
end
|
||||
target += line
|
||||
end
|
||||
|
||||
target_path = Pathname.new('boot/stage1/source') + source_path.basename.sub_ext('.mod')
|
||||
File.write target_path, target
|
||||
end
|
||||
FileList['source/*.def'].each do |file|
|
||||
cp file, File.join('boot/stage1/source', Pathname.new(file).basename)
|
||||
File.open t.name, 'w' do |output|
|
||||
assemble_stage output, exe, source
|
||||
end
|
||||
end
|
||||
|
||||
file 'build/boot/test' => ['build/boot/test.s', 'boot/common-boot.s'] do |t|
|
||||
sh CROSS_GCC, '-nostdlib', '-o', t.name, *t.prerequisites
|
||||
end
|
||||
|
||||
task test: 'build/boot/test' do |t|
|
||||
sh QEMU, '-L', SYSROOT, t.prerequisites.first
|
||||
end
|
||||
|
630
boot/common-boot.s
Normal file
630
boot/common-boot.s
Normal file
@ -0,0 +1,630 @@
|
||||
# This Source Code Form is subject to the terms of the Mozilla Public License,
|
||||
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
# obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
.global _is_alpha, _is_digit, _is_alnum, _is_upper, _is_lower
|
||||
.global _write_s, _read_file, _write_error, _write_c, _write_i, _print_i
|
||||
.global _memcmp, _memchr, _memmem, _memcpy, _mmap
|
||||
.global _current, _get, _advance, _label_counter
|
||||
.global _divide_by_zero_error, _exit, _strings_index, _string_equal
|
||||
|
||||
.section .rodata
|
||||
|
||||
.equ SYS_READ, 63
|
||||
.equ SYS_WRITE, 64
|
||||
.equ SYS_EXIT, 93
|
||||
.equ SYS_MMAP2, 222
|
||||
.equ STDIN, 0
|
||||
.equ STDOUT, 1
|
||||
.equ STDERR, 2
|
||||
.equ PROT_READ, 0x1
|
||||
.equ PROT_WRITE, 0x2
|
||||
.equ MAP_PRIVATE, 0x02
|
||||
.equ MAP_ANONYMOUS, 0x20
|
||||
|
||||
new_line: .ascii "\n"
|
||||
|
||||
.section .text
|
||||
|
||||
# Write the current token to stderr. Ends the output with a newline.
|
||||
#
|
||||
# a0 - String pointer.
|
||||
# a1 - String length.
|
||||
.type _write_error, @function
|
||||
_write_error:
|
||||
mv t0, a0
|
||||
mv t1, a1
|
||||
|
||||
li a0, STDERR
|
||||
mv a1, t0
|
||||
mv a2, t1
|
||||
li a7, SYS_WRITE
|
||||
ecall
|
||||
|
||||
li a0, STDERR
|
||||
la a1, new_line
|
||||
li a2, 1
|
||||
li a7, SYS_WRITE
|
||||
ecall
|
||||
|
||||
ret
|
||||
|
||||
# a0 - First pointer.
|
||||
# a1 - Second pointer.
|
||||
# a2 - The length to compare.
|
||||
#
|
||||
# Returns 0 in a0 if memory regions are equal.
|
||||
.type _memcmp, @function
|
||||
_memcmp:
|
||||
mv t0, a0
|
||||
li a0, 0
|
||||
|
||||
.Lmemcmp_loop:
|
||||
beqz a2, .Lmemcmp_end
|
||||
|
||||
lbu t1, (t0)
|
||||
lbu t2, (a1)
|
||||
sub a0, t1, t2
|
||||
|
||||
bnez a0, .Lmemcmp_end
|
||||
|
||||
addi t0, t0, 1
|
||||
addi a1, a1, 1
|
||||
addi a2, a2, -1
|
||||
|
||||
j .Lmemcmp_loop
|
||||
|
||||
.Lmemcmp_end:
|
||||
ret
|
||||
|
||||
# Detects if a0 is an uppercase character. Sets a0 to 1 if so, otherwise to 0.
|
||||
.type _is_upper, @function
|
||||
_is_upper:
|
||||
li t0, 'A' - 1
|
||||
sltu t1, t0, a0 # t1 = a0 >= 'A'
|
||||
|
||||
sltiu t2, a0, 'Z' + 1 # t2 = a0 <= 'Z'
|
||||
and a0, t1, t2 # t1 = a0 >= 'A' & a0 <= 'Z'
|
||||
|
||||
ret
|
||||
|
||||
# Detects if a0 is an lowercase character. Sets a0 to 1 if so, otherwise to 0.
|
||||
.type _is_lower, @function
|
||||
_is_lower:
|
||||
li t0, 'a' - 1
|
||||
sltu t2, t0, a0 # t2 = a0 >= 'a'
|
||||
|
||||
sltiu t3, a0, 'z' + 1 # t3 = a0 <= 'z'
|
||||
and a0, t2, t3 # t2 = a0 >= 'a' & a0 <= 'z'
|
||||
|
||||
ret
|
||||
|
||||
# Detects if the passed character is a 7-bit alpha character or an underscore.
|
||||
# The character is passed in a0.
|
||||
# Sets a0 to 1 if the character is an alpha character or underscore, sets it to 0 otherwise.
|
||||
.type _is_alpha, @function
|
||||
_is_alpha:
|
||||
# Prologue.
|
||||
addi sp, sp, -16
|
||||
sw ra, 12(sp)
|
||||
sw s0, 8(sp)
|
||||
addi s0, sp, 16
|
||||
|
||||
sw a0, 4(sp)
|
||||
|
||||
call _is_upper
|
||||
sw a0, 0(sp)
|
||||
|
||||
lw a0, 4(sp)
|
||||
call _is_lower
|
||||
|
||||
lw t0, 4(sp)
|
||||
xori t1, t0, '_'
|
||||
seqz t1, t1
|
||||
|
||||
lw t0, 0(sp)
|
||||
or a0, a0, t0
|
||||
or a0, a0, t1
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 12(sp)
|
||||
lw s0, 8(sp)
|
||||
addi sp, sp, 16
|
||||
ret
|
||||
|
||||
# Detects whether the passed character is a digit
|
||||
# (a value between 0 and 9).
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Exemined value.
|
||||
#
|
||||
# Sets a0 to 1 if it is a digit, to 0 otherwise.
|
||||
.type _is_digit, @function
|
||||
_is_digit:
|
||||
li t0, '0' - 1
|
||||
sltu t1, t0, a0 # t1 = a0 >= '0'
|
||||
|
||||
sltiu t2, a0, '9' + 1 # t2 = a0 <= '9'
|
||||
|
||||
and a0, t1, t2
|
||||
|
||||
ret
|
||||
|
||||
.type _is_alnum, @function
|
||||
_is_alnum:
|
||||
# Prologue.
|
||||
addi sp, sp, -16
|
||||
sw ra, 12(sp)
|
||||
sw s0, 8(sp)
|
||||
addi s0, sp, 16
|
||||
|
||||
sw a0, 4(sp)
|
||||
|
||||
call _is_alpha
|
||||
sw a0, 0(sp)
|
||||
|
||||
lw a0, 4(sp)
|
||||
call _is_digit
|
||||
|
||||
lw a1, 0(sp)
|
||||
or a0, a0, a1
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 12(sp)
|
||||
lw s0, 8(sp)
|
||||
addi sp, sp, 16
|
||||
ret
|
||||
|
||||
# Writes a string to the standard output.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Length of the string.
|
||||
# a1 - String pointer.
|
||||
.type _write_s, @function
|
||||
_write_s:
|
||||
# Prologue.
|
||||
addi sp, sp, -8
|
||||
sw ra, 4(sp)
|
||||
sw s0, 0(sp)
|
||||
addi s0, sp, 8
|
||||
|
||||
mv a2, a0
|
||||
li a0, STDOUT
|
||||
li a7, SYS_WRITE
|
||||
ecall
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 4(sp)
|
||||
lw s0, 0(sp)
|
||||
addi sp, sp, 8
|
||||
ret
|
||||
|
||||
# Reads standard input into a buffer.
|
||||
# a0 - Buffer pointer.
|
||||
# a1 - Buffer size.
|
||||
#
|
||||
# Sets s1 to the buffer passed in a0.
|
||||
#
|
||||
# Returns the amount of bytes written in a0.
|
||||
.type _read_file, @function
|
||||
_read_file:
|
||||
# Prologue.
|
||||
addi sp, sp, -8
|
||||
sw ra, 4(sp)
|
||||
sw s0, 0(sp)
|
||||
addi s0, sp, 8
|
||||
|
||||
mv s1, a0
|
||||
|
||||
li a0, STDIN
|
||||
mv a2, a1
|
||||
mv a1, s1
|
||||
li a7, SYS_READ
|
||||
ecall
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 4(sp)
|
||||
lw s0, 0(sp)
|
||||
addi sp, sp, 8
|
||||
ret
|
||||
|
||||
# Terminates the program. a0 contains the return code.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Status code.
|
||||
.type _exit, @function
|
||||
_exit:
|
||||
li a7, SYS_EXIT
|
||||
ecall
|
||||
# ret
|
||||
|
||||
.type _divide_by_zero_error, @function
|
||||
_divide_by_zero_error:
|
||||
addi a7, zero, 172 # getpid
|
||||
ecall
|
||||
|
||||
addi a1, zero, 8 # SIGFPE
|
||||
addi a7, zero, 129 # kill
|
||||
ecall
|
||||
ret
|
||||
|
||||
# Writes a number to a string buffer.
|
||||
#
|
||||
# t0 - Local buffer.
|
||||
# t1 - Constant 10.
|
||||
# t2 - Current character.
|
||||
# t3 - Whether the number is negative.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Whole number.
|
||||
# a1 - Buffer pointer.
|
||||
#
|
||||
# Sets a0 to the length of the written number.
|
||||
.type _print_i, @function
|
||||
_print_i:
|
||||
addi sp, sp, -32
|
||||
sw ra, 28(sp)
|
||||
sw s0, 24(sp)
|
||||
addi s0, sp, 32
|
||||
|
||||
li t1, 10
|
||||
addi t0, s0, -9
|
||||
|
||||
li t3, 0
|
||||
bgez a0, .Lprint_i_digit10
|
||||
li t3, 1
|
||||
neg a0, a0
|
||||
|
||||
.Lprint_i_digit10:
|
||||
rem t2, a0, t1
|
||||
addi t2, t2, '0'
|
||||
sb t2, 0(t0)
|
||||
div a0, a0, t1
|
||||
addi t0, t0, -1
|
||||
bne zero, a0, .Lprint_i_digit10
|
||||
|
||||
beq zero, t3, .Lprint_i_write_call
|
||||
addi t2, zero, '-'
|
||||
sb t2, 0(t0)
|
||||
addi t0, t0, -1
|
||||
|
||||
.Lprint_i_write_call:
|
||||
mv a0, a1
|
||||
addi a1, t0, 1
|
||||
sub a2, s0, t0
|
||||
addi a2, a2, -9
|
||||
sw a2, 0(sp)
|
||||
|
||||
call _memcpy
|
||||
|
||||
lw a0, 0(sp)
|
||||
|
||||
lw ra, 28(sp)
|
||||
lw s0, 24(sp)
|
||||
addi sp, sp, 32
|
||||
ret
|
||||
|
||||
# Writes a number to the standard output.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Whole number.
|
||||
.type _write_i, @function
|
||||
_write_i:
|
||||
addi sp, sp, -32
|
||||
sw ra, 28(sp)
|
||||
sw s0, 24(sp)
|
||||
addi s0, sp, 32
|
||||
|
||||
addi a1, sp, 0
|
||||
call _print_i
|
||||
|
||||
addi a1, sp, 0
|
||||
call _write_s
|
||||
|
||||
lw ra, 28(sp)
|
||||
lw s0, 24(sp)
|
||||
addi sp, sp, 32
|
||||
ret
|
||||
|
||||
# Writes a character from a0 into the standard output.
|
||||
.type _write_c, @function
|
||||
_write_c:
|
||||
# Prologue
|
||||
addi sp, sp, -16
|
||||
sw ra, 12(sp)
|
||||
sw s0, 8(sp)
|
||||
addi s0, sp, 16
|
||||
|
||||
sb a0, 4(sp)
|
||||
li a0, STDOUT
|
||||
addi a1, sp, 4
|
||||
li a2, 1
|
||||
li a7, SYS_WRITE
|
||||
ecall
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 12(sp)
|
||||
lw s0, 8(sp)
|
||||
add sp, sp, 16
|
||||
ret
|
||||
|
||||
# a0 - Pointer to an array to get the first element.
|
||||
#
|
||||
# Dereferences a pointer and returns what is on the address in a0.
|
||||
.type _get, @function
|
||||
_get:
|
||||
lw a0, (a0)
|
||||
ret
|
||||
|
||||
# Searches for the occurences of a character in the given memory block.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Memory block.
|
||||
# a1 - Needle.
|
||||
# a2 - Memory size.
|
||||
#
|
||||
# Sets a0 to the pointer to the found character or to null if the character
|
||||
# doesn't occur in the memory block.
|
||||
.type _memchr, @function
|
||||
_memchr:
|
||||
.Lmemchr_loop:
|
||||
beqz a2, .Lmemchr_nil # Exit if the length is 0.
|
||||
|
||||
lbu t0, (a0) # Load the character from the memory block.
|
||||
beq t0, a1, .Lmemchr_end # Exit if the character was found.
|
||||
|
||||
# Otherwise, continue with the next character.
|
||||
addi a0, a0, 1
|
||||
addi a2, a2, -1
|
||||
|
||||
j .Lmemchr_loop
|
||||
|
||||
.Lmemchr_nil:
|
||||
li a0, 0
|
||||
|
||||
.Lmemchr_end:
|
||||
ret
|
||||
|
||||
# Locates a substring.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Haystack.
|
||||
# a1 - Haystack size.
|
||||
# a2 - Needle.
|
||||
# a3 - Needle size.
|
||||
#
|
||||
# Sets a0 to the pointer to the beginning of the substring in memory or to 0
|
||||
# if the substring doesn't occur in the block.
|
||||
.type _memmem, @function
|
||||
_memmem:
|
||||
# Prologue.
|
||||
addi sp, sp, -24
|
||||
sw ra, 20(sp)
|
||||
sw s0, 16(sp)
|
||||
addi s0, sp, 24
|
||||
|
||||
# Save preserved registers. They are used to keep arguments.
|
||||
sw s1, 12(sp)
|
||||
sw s2, 8(sp)
|
||||
sw s3, 4(sp)
|
||||
sw s4, 0(sp)
|
||||
|
||||
mv s1, a0
|
||||
mv s2, a1
|
||||
mv s3, a2
|
||||
mv s4, a3
|
||||
|
||||
.Lmemmem_loop:
|
||||
blt s2, s3, .Lmemmem_nil # Exit if the needle length is greater than memory.
|
||||
|
||||
mv a0, s1
|
||||
mv a1, s3
|
||||
mv a2, s4
|
||||
call _memcmp
|
||||
|
||||
mv t0, a0 # memcmp result.
|
||||
mv a0, s1 # Memory pointer for the case the substring was found.
|
||||
beqz t0, .Lmemmem_end
|
||||
|
||||
addi s1, s1, 1
|
||||
add s2, s2, -1
|
||||
|
||||
j .Lmemmem_loop
|
||||
|
||||
.Lmemmem_nil:
|
||||
li a0, 0
|
||||
|
||||
.Lmemmem_end:
|
||||
|
||||
# Restore the preserved registers.
|
||||
lw s1, 12(sp)
|
||||
lw s2, 8(sp)
|
||||
lw s3, 4(sp)
|
||||
lw s4, 0(sp)
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 20(sp)
|
||||
lw s0, 16(sp)
|
||||
add sp, sp, 24
|
||||
ret
|
||||
|
||||
# Copies memory.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Destination.
|
||||
# a1 - Source.
|
||||
# a2 - Size.
|
||||
#
|
||||
# Preserves a0.
|
||||
.type _memcpy, @function
|
||||
_memcpy:
|
||||
mv t0, a0
|
||||
|
||||
.Lmemcpy_loop:
|
||||
beqz a2, .Lmemcpy_end
|
||||
|
||||
lbu t1, (a1)
|
||||
sb t1, (a0)
|
||||
|
||||
addi a0, a0, 1
|
||||
addi a1, a1, 1
|
||||
addi a2, a2, -1
|
||||
|
||||
j .Lmemcpy_loop
|
||||
|
||||
.Lmemcpy_end:
|
||||
mv a0, t0
|
||||
ret
|
||||
|
||||
# Searches for a string in a string array.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Number of elements in the string array.
|
||||
# a1 - String array.
|
||||
# a2 - Needle length.
|
||||
# a3 - Needle.
|
||||
#
|
||||
# Sets a0 to the 1-based index of the needle in the haystack or to 0 if the
|
||||
# element could not be found.
|
||||
.type _strings_index, @function
|
||||
_strings_index:
|
||||
# Prologue.
|
||||
addi sp, sp, -32
|
||||
sw ra, 28(sp)
|
||||
sw s0, 24(sp)
|
||||
addi s0, sp, 32
|
||||
|
||||
sw s1, 20(sp)
|
||||
mv s1, a0
|
||||
sw s2, 16(sp)
|
||||
mv s2, a1
|
||||
sw s3, 12(sp)
|
||||
mv s3, a2
|
||||
sw s4, 8(sp)
|
||||
mv s4, a3
|
||||
sw s5, 4(sp)
|
||||
li s5, 0 # Index counter.
|
||||
|
||||
.Lstrings_index_loop:
|
||||
addi s5, s5, 1
|
||||
beqz s1, .Lstrings_index_missing
|
||||
|
||||
lw a2, (s2) # Read the length of the current element in the haystack.
|
||||
bne a2, s3, .Lstrings_index_next # Lengths don't match, skip the iteration.
|
||||
|
||||
addi a0, s2, 4
|
||||
mv a1, s4
|
||||
call _memcmp
|
||||
|
||||
beqz a0, .Lstrings_index_end
|
||||
|
||||
.Lstrings_index_next:
|
||||
# Advance the pointer, reduce the length.
|
||||
lw a2, (s2)
|
||||
addi s2, s2, 4
|
||||
add s2, s2, a2
|
||||
addi s1, s1, -1
|
||||
j .Lstrings_index_loop
|
||||
|
||||
.Lstrings_index_missing:
|
||||
li s5, 0
|
||||
|
||||
.Lstrings_index_end:
|
||||
mv a0, s5
|
||||
|
||||
lw s1, 20(sp)
|
||||
lw s2, 16(sp)
|
||||
lw s3, 12(sp)
|
||||
lw s4, 8(sp)
|
||||
lw s5, 4(sp)
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 28(sp)
|
||||
lw s0, 24(sp)
|
||||
add sp, sp, 32
|
||||
ret
|
||||
|
||||
# Compares two strings for equality.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Length of the first string.
|
||||
# a1 - Pointer to the first string.
|
||||
# a2 - Length of the second string.
|
||||
# a3 - Pointer to the second string.
|
||||
#
|
||||
# Sets a0 to 1 if the string are equal, to 0 if not.
|
||||
.type _string_equal, @function
|
||||
_string_equal:
|
||||
# Prologue.
|
||||
addi sp, sp, -32
|
||||
sw ra, 28(sp)
|
||||
sw s0, 24(sp)
|
||||
addi s0, sp, 32
|
||||
|
||||
# Compare string lengths.
|
||||
bne a0, a2, .Lstring_equal_not_found
|
||||
|
||||
# If lengths match, compare the content.
|
||||
mv a0, a1
|
||||
mv a1, a3
|
||||
# a2 is already set to the length.
|
||||
call _memcmp
|
||||
|
||||
bnez a0, .Lstring_equal_not_found
|
||||
|
||||
li a0, 1
|
||||
j .Lstring_equal_end
|
||||
|
||||
.Lstring_equal_not_found:
|
||||
mv a0, zero
|
||||
|
||||
.Lstring_equal_end:
|
||||
# Epilogue.
|
||||
lw ra, 28(sp)
|
||||
lw s0, 24(sp)
|
||||
addi sp, sp, 32
|
||||
ret
|
||||
|
||||
# Sets a0 to the mapping address.
|
||||
.type _mmap, @function
|
||||
_mmap:
|
||||
li a0, 0 # Address at which to create the mapping.
|
||||
li a1, 4096 # The length of the mapping.
|
||||
li a2, PROT_READ | PROT_WRITE # Protection flags.
|
||||
li a3, MAP_ANONYMOUS | MAP_PRIVATE # The mapping is not backed by a file.
|
||||
li a4, -1 # File descriptor.
|
||||
li a5, 0 # Page offset.
|
||||
li a7, SYS_MMAP2
|
||||
ecall
|
||||
|
||||
ret
|
||||
|
||||
# Sets the a0 to the current position in the source text (s1).
|
||||
.type _current, @function
|
||||
_current:
|
||||
mv a0, s1
|
||||
ret
|
||||
|
||||
# Advances the position of the source text.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - The number of bytes to advance.
|
||||
.type _advance, @function
|
||||
_advance:
|
||||
add s1, s1, a0
|
||||
ret
|
||||
|
||||
# Advances the global label counter by 1 setting a0 to the previous value.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - If it is 0, resets the counter to 1.
|
||||
.type _label_counter, @function
|
||||
_label_counter:
|
||||
bnez a0, .Llabel_counter_advance
|
||||
li s2, 0
|
||||
|
||||
.Llabel_counter_advance:
|
||||
mv a0, s2
|
||||
addi s2, s2, 1
|
||||
|
||||
ret
|
68
boot/definitions.inc
Normal file
68
boot/definitions.inc
Normal file
@ -0,0 +1,68 @@
|
||||
# This Source Code Form is subject to the terms of the Mozilla Public License,
|
||||
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
# obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
#
|
||||
# Tokens.
|
||||
#
|
||||
|
||||
# The constant should match the index in the keywords array in tokenizer.s.
|
||||
|
||||
.equ TOKEN_PROGRAM, 1
|
||||
.equ TOKEN_IMPORT, 2
|
||||
.equ TOKEN_CONST, 3
|
||||
.equ TOKEN_VAR, 4
|
||||
.equ TOKEN_IF, 5
|
||||
.equ TOKEN_THEN, 6
|
||||
.equ TOKEN_ELSIF, 7
|
||||
.equ TOKEN_ELSE, 8
|
||||
.equ TOKEN_WHILE, 9
|
||||
.equ TOKEN_DO, 10
|
||||
.equ TOKEN_PROC, 11
|
||||
.equ TOKEN_BEGIN, 12
|
||||
.equ TOKEN_END, 13
|
||||
.equ TOKEN_TYPE, 14
|
||||
.equ TOKEN_RECORD, 15
|
||||
.equ TOKEN_UNION, 16
|
||||
.equ TOKEN_TRUE, 17
|
||||
.equ TOKEN_FALSE, 18
|
||||
.equ TOKEN_NIL, 19
|
||||
.equ TOKEN_XOR, 20
|
||||
.equ TOKEN_OR, 21
|
||||
.equ TOKEN_RETURN, 22
|
||||
.equ TOKEN_CAST, 23
|
||||
.equ TOKEN_GOTO, 24
|
||||
.equ TOKEN_CASE, 25
|
||||
.equ TOKEN_OF, 26
|
||||
|
||||
.equ TOKEN_IDENTIFIER, 27
|
||||
# The constant should match the character index in the byte_keywords string.
|
||||
|
||||
.equ TOKEN_AND, TOKEN_IDENTIFIER + 1
|
||||
.equ TOKEN_DOT, TOKEN_IDENTIFIER + 2
|
||||
.equ TOKEN_COMMA, TOKEN_IDENTIFIER + 3
|
||||
.equ TOKEN_COLON, TOKEN_IDENTIFIER + 4
|
||||
.equ TOKEN_SEMICOLON, TOKEN_IDENTIFIER + 5
|
||||
.equ TOKEN_LEFT_PAREN, TOKEN_IDENTIFIER + 6
|
||||
.equ TOKEN_RIGHT_PAREN, TOKEN_IDENTIFIER + 7
|
||||
.equ TOKEN_LEFT_BRACKET, TOKEN_IDENTIFIER + 8
|
||||
.equ TOKEN_RIGHT_BRACKET, TOKEN_IDENTIFIER + 9
|
||||
.equ TOKEN_HAT, TOKEN_IDENTIFIER + 10
|
||||
.equ TOKEN_EQUALS, TOKEN_IDENTIFIER + 11
|
||||
.equ TOKEN_PLUS, TOKEN_IDENTIFIER + 12
|
||||
.equ TOKEN_MINUS, TOKEN_IDENTIFIER + 13
|
||||
.equ TOKEN_ASTERISK, TOKEN_IDENTIFIER + 14
|
||||
.equ TOKEN_AT, TOKEN_IDENTIFIER + 15
|
||||
|
||||
.equ TOKEN_ASSIGN, 43
|
||||
.equ TOKEN_INTEGER, 44
|
||||
|
||||
#
|
||||
# Symbols.
|
||||
#
|
||||
.equ TYPE_PRIMITIVE, 0x01
|
||||
.equ TYPE_POINTER, 0x02
|
||||
.equ TYPE_PROCEDURE, 0x03
|
||||
.equ INFO_PARAMETER, 0x10
|
||||
.equ INFO_LOCAL, 0x20
|
||||
.equ INFO_PROCEDURE, 0x30
|
1544
boot/stage1.s
Normal file
1544
boot/stage1.s
Normal file
File diff suppressed because it is too large
Load Diff
1393
boot/stage2.elna
Normal file
1393
boot/stage2.elna
Normal file
File diff suppressed because it is too large
Load Diff
297
boot/symbol.s
Normal file
297
boot/symbol.s
Normal file
@ -0,0 +1,297 @@
|
||||
# This Source Code Form is subject to the terms of the Mozilla Public License,
|
||||
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
# obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
.global symbol_table
|
||||
.global symbol_table_build, symbol_table_lookup, symbol_table_enter, symbol_table_dump
|
||||
.global symbol_table_make_pointer, symbol_table_make_parameter, symbol_table_make_local, symbol_table_make_procedure
|
||||
|
||||
.include "boot/definitions.inc"
|
||||
|
||||
.equ SYMBOL_PRIME, 1543
|
||||
|
||||
.section .rodata
|
||||
|
||||
.type symbol_builtin_name_int, @object
|
||||
symbol_builtin_name_int: .ascii "Int"
|
||||
.type symbol_builtin_name_word, @object
|
||||
symbol_builtin_name_word: .ascii "Word"
|
||||
.type symbol_builtin_name_byte, @object
|
||||
symbol_builtin_name_byte: .ascii "Byte"
|
||||
.type symbol_builtin_name_char, @object
|
||||
symbol_builtin_name_char: .ascii "Char"
|
||||
.type symbol_builtin_name_bool, @object
|
||||
symbol_builtin_name_bool: .ascii "Bool"
|
||||
|
||||
# Every type info starts with a word describing what type it is.
|
||||
|
||||
# Primitive types have only type size.
|
||||
.type symbol_builtin_type_int, @object
|
||||
symbol_builtin_type_int: .word TYPE_PRIMITIVE
|
||||
.word 4
|
||||
.type symbol_builtin_type_word, @object
|
||||
symbol_builtin_type_word: .word TYPE_PRIMITIVE
|
||||
.word 4
|
||||
.type symbol_builtin_type_byte, @object
|
||||
symbol_builtin_type_byte: .word TYPE_PRIMITIVE
|
||||
.word 1
|
||||
.type symbol_builtin_type_char, @object
|
||||
symbol_builtin_type_char: .word TYPE_PRIMITIVE
|
||||
.word 1
|
||||
.type symbol_builtin_type_bool, @object
|
||||
symbol_builtin_type_bool: .word TYPE_PRIMITIVE
|
||||
.word 1
|
||||
|
||||
.section .bss
|
||||
|
||||
# The first word of the symbol table is its length.
|
||||
# Then a list of type infos follows:
|
||||
#
|
||||
# record
|
||||
# name: String
|
||||
# info: ^TypeInfo
|
||||
# end
|
||||
.type symbol_table, @object
|
||||
symbol_table: .zero SYMBOL_PRIME
|
||||
|
||||
.section .text
|
||||
|
||||
# Prints the list of symbols in the table.
|
||||
.type symbol_table_dump, @function
|
||||
symbol_table_dump:
|
||||
# Prologue.
|
||||
addi sp, sp, -32
|
||||
sw ra, 28(sp)
|
||||
sw s0, 24(sp)
|
||||
addi s0, sp, 32
|
||||
|
||||
sw s1, 20(sp) # Current symbol in the table.
|
||||
sw s2, 16(sp) # Symbol table length.
|
||||
|
||||
la s1, symbol_table
|
||||
lw s2, 0(s1)
|
||||
addi s1, s1, 4 # Advance to the first symbol in the table.
|
||||
|
||||
.Lsymbol_table_dump_loop:
|
||||
beqz s2, .Lsymbol_table_dump_end
|
||||
|
||||
# Compare string lengths.
|
||||
lw a0, 4(s1)
|
||||
lw a1, 0(s1)
|
||||
call _write_error
|
||||
|
||||
addi s1, s1, 12
|
||||
addi s2, s2, -1
|
||||
j .Lsymbol_table_dump_loop
|
||||
|
||||
.Lsymbol_table_dump_end:
|
||||
lw s1, 20(sp)
|
||||
lw s2, 16(sp)
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 28(sp)
|
||||
lw s0, 24(sp)
|
||||
addi sp, sp, 32
|
||||
ret
|
||||
|
||||
# Searches for a symbol by name.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Length of the symbol to search.
|
||||
# a1 - Pointer to the symbol name.
|
||||
#
|
||||
# Sets a0 to the symbol info pointer or 0 if the symbol has not been found.
|
||||
.type symbol_table_lookup, @function
|
||||
symbol_table_lookup:
|
||||
# Prologue.
|
||||
addi sp, sp, -32
|
||||
sw ra, 28(sp)
|
||||
sw s0, 24(sp)
|
||||
addi s0, sp, 32
|
||||
|
||||
sw s1, 20(sp) # Current symbol in the table.
|
||||
sw s2, 16(sp) # Symbol table length.
|
||||
sw s3, 12(sp) # Length of the symbol to search.
|
||||
sw s4, 8(sp) # Pointer to the symbol to search.
|
||||
|
||||
mv s3, a0
|
||||
mv s4, a1
|
||||
|
||||
la s1, symbol_table
|
||||
lw s2, 0(s1)
|
||||
addi s1, s1, 4 # Advance to the first symbol in the table.
|
||||
|
||||
.Lsymbol_table_lookup_loop:
|
||||
beqz s2, .Lsymbol_table_lookup_not_found
|
||||
|
||||
# Compare string lengths.
|
||||
mv a0, s3
|
||||
mv a1, s4
|
||||
lw a2, 0(s1)
|
||||
lw a3, 4(s1)
|
||||
call _string_equal
|
||||
|
||||
beqz a0, .Lsymbol_table_lookup_continue
|
||||
|
||||
lw a0, 8(s1) # Pointer to the symbol.
|
||||
j .Lsymbol_table_lookup_end
|
||||
|
||||
.Lsymbol_table_lookup_continue:
|
||||
addi s1, s1, 12
|
||||
addi s2, s2, -1
|
||||
j .Lsymbol_table_lookup_loop
|
||||
|
||||
.Lsymbol_table_lookup_not_found:
|
||||
li a0, 0
|
||||
|
||||
.Lsymbol_table_lookup_end:
|
||||
lw s1, 20(sp)
|
||||
lw s2, 16(sp)
|
||||
lw s3, 12(sp)
|
||||
lw s4, 8(sp)
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 28(sp)
|
||||
lw s0, 24(sp)
|
||||
addi sp, sp, 32
|
||||
ret
|
||||
|
||||
# Creates a pointer type.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Pointer to the base type.
|
||||
# a1 - Output memory.
|
||||
#
|
||||
# Sets a0 to the size of newly created type in bytes.
|
||||
.type symbol_table_make_pointer, @function
|
||||
symbol_table_make_pointer:
|
||||
li t0, TYPE_POINTER
|
||||
sw t0, 0(a1)
|
||||
sw a0, 4(a1)
|
||||
|
||||
li a0, 8
|
||||
ret
|
||||
|
||||
# Creates a parameter info.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Pointer to the parameter type.
|
||||
# a1 - Parameter offset.
|
||||
# a2 - Output memory.
|
||||
#
|
||||
# Sets a0 to the size of newly created info object in bytes.
|
||||
.type symbol_table_make_parameter, @function
|
||||
symbol_table_make_parameter:
|
||||
li t0, INFO_PARAMETER
|
||||
sw t0, 0(a2)
|
||||
sw a0, 4(a2)
|
||||
sw a1, 8(a2)
|
||||
|
||||
li a0, 12
|
||||
ret
|
||||
|
||||
# Creates a local variable info.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Pointer to the variable type.
|
||||
# a1 - Variable stack offset.
|
||||
# a2 - Output memory.
|
||||
#
|
||||
# Sets a0 to the size of newly created info object in bytes.
|
||||
.type symbol_table_make_local, @function
|
||||
symbol_table_make_local:
|
||||
li t0, INFO_LOCAL
|
||||
sw t0, 0(a2)
|
||||
sw a0, 4(a2)
|
||||
sw a1, 8(a2)
|
||||
|
||||
li a0, 12
|
||||
ret
|
||||
|
||||
# Creates a procedure type and procedure info objects refering the type.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Output memory.
|
||||
#
|
||||
# Sets a0 to the size of newly created info object in bytes.
|
||||
.type symbol_table_make_procedure, @function
|
||||
symbol_table_make_procedure:
|
||||
li t0, TYPE_PROCEDURE
|
||||
sw t0, 8(a0)
|
||||
|
||||
li t0, INFO_PROCEDURE
|
||||
sw t0, 0(a0)
|
||||
sw a0, 4(a0) # Procedure type stored in the same memory segment.
|
||||
|
||||
li a0, 12
|
||||
ret
|
||||
|
||||
# Inserts a symbol into the table.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Symbol name length.
|
||||
# a1 - Symbol name pointer.
|
||||
# a2 - Symbol pointer.
|
||||
.type symbol_table_enter, @function
|
||||
symbol_table_enter:
|
||||
la t0, symbol_table
|
||||
|
||||
lw t1, 0(t0) # Current table length.
|
||||
li t2, 12 # Calculate the offset to the next entry.
|
||||
mul t2, t1, t2
|
||||
addi t2, t2, 4
|
||||
add t2, t0, t2
|
||||
|
||||
sw a0, 0(t2)
|
||||
sw a1, 4(t2)
|
||||
sw a2, 8(t2)
|
||||
|
||||
addi t1, t1, 1 # Save the new length.
|
||||
sw t1, 0(t0)
|
||||
|
||||
ret
|
||||
|
||||
# Build the initial symbols.
|
||||
#
|
||||
# Sets a0 to the pointer to the global symbol table.
|
||||
.type symbol_build, @function
|
||||
symbol_table_build:
|
||||
# Prologue.
|
||||
addi sp, sp, -16
|
||||
sw ra, 12(sp)
|
||||
sw s0, 8(sp)
|
||||
addi s0, sp, 16
|
||||
|
||||
la a0, symbol_table
|
||||
addi t0, a0, 4
|
||||
|
||||
li a0, 3 # Length of the word "Int".
|
||||
la a1, symbol_builtin_name_int
|
||||
la a2, symbol_builtin_type_int
|
||||
call symbol_table_enter
|
||||
|
||||
li a0, 4 # Length of the word "Word".
|
||||
la a1, symbol_builtin_name_word
|
||||
la a2, symbol_builtin_type_word
|
||||
call symbol_table_enter
|
||||
|
||||
li a0, 4 # Length of the word "Byte".
|
||||
la a1, symbol_builtin_name_byte
|
||||
la a2, symbol_builtin_type_byte
|
||||
call symbol_table_enter
|
||||
|
||||
li a0, 4 # Length of the word "Char".
|
||||
la a1, symbol_builtin_name_char
|
||||
la a2, symbol_builtin_type_char
|
||||
call symbol_table_enter
|
||||
|
||||
li a0, 4 # Length of the word "Bool".
|
||||
la a1, symbol_builtin_name_bool
|
||||
la a2, symbol_builtin_type_bool
|
||||
call symbol_table_enter
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 12(sp)
|
||||
lw s0, 8(sp)
|
||||
addi sp, sp, 16
|
||||
ret
|
14
boot/test.elna
Normal file
14
boot/test.elna
Normal file
@ -0,0 +1,14 @@
|
||||
program
|
||||
|
||||
proc main(x: Word, y: Word)
|
||||
begin
|
||||
_write_s(4, @x);
|
||||
_write_s(4, @y);
|
||||
|
||||
y := 0x0a2c3063;
|
||||
_write_s(4, @y)
|
||||
end
|
||||
|
||||
begin
|
||||
main(0x0a2c3061, 0x0a2c3062)
|
||||
end.
|
616
boot/tokenizer.s
Normal file
616
boot/tokenizer.s
Normal file
@ -0,0 +1,616 @@
|
||||
# This Source Code Form is subject to the terms of the Mozilla Public License,
|
||||
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
# obtain one at https://mozilla.org/MPL/2.0/.
|
||||
|
||||
.global lex_next, classification, transitions, keywords, byte_keywords
|
||||
|
||||
.include "boot/definitions.inc"
|
||||
|
||||
.section .rodata
|
||||
|
||||
#
|
||||
# Classification table assigns each possible character to a group (class). All
|
||||
# characters of the same group a handled equivalently.
|
||||
#
|
||||
# Classification:
|
||||
#
|
||||
.equ CLASS_INVALID, 0x00
|
||||
.equ CLASS_DIGIT, 0x01
|
||||
.equ CLASS_CHARACTER, 0x02
|
||||
.equ CLASS_SPACE, 0x03
|
||||
.equ CLASS_COLON, 0x04
|
||||
.equ CLASS_EQUALS, 0x05
|
||||
.equ CLASS_LEFT_PAREN, 0x06
|
||||
.equ CLASS_RIGHT_PAREN, 0x07
|
||||
.equ CLASS_ASTERISK, 0x08
|
||||
.equ CLASS_UNDERSCORE, 0x09
|
||||
.equ CLASS_SINGLE, 0x0a
|
||||
.equ CLASS_HEX, 0x0b
|
||||
.equ CLASS_ZERO, 0x0c
|
||||
.equ CLASS_X, 0x0d
|
||||
.equ CLASS_EOF, 0x0e
|
||||
.equ CLASS_DOT, 0x0f
|
||||
.equ CLASS_MINUS, 0x10
|
||||
.equ CLASS_QUOTE, 0x11
|
||||
.equ CLASS_GREATER, 0x12
|
||||
.equ CLASS_LESS, 0x13
|
||||
|
||||
.equ CLASS_COUNT, 20
|
||||
|
||||
.type classification, @object
|
||||
classification:
|
||||
.byte CLASS_EOF # 00 NUL
|
||||
.byte CLASS_INVALID # 01 SOH
|
||||
.byte CLASS_INVALID # 02 STX
|
||||
.byte CLASS_INVALID # 03 ETX
|
||||
.byte CLASS_INVALID # 04 EOT
|
||||
.byte CLASS_INVALID # 05 ENQ
|
||||
.byte CLASS_INVALID # 06 ACK
|
||||
.byte CLASS_INVALID # 07 BEL
|
||||
.byte CLASS_INVALID # 08 BS
|
||||
.byte CLASS_SPACE # 09 HT
|
||||
.byte CLASS_SPACE # 0A LF
|
||||
.byte CLASS_INVALID # 0B VT
|
||||
.byte CLASS_INVALID # 0C FF
|
||||
.byte CLASS_SPACE # 0D CR
|
||||
.byte CLASS_INVALID # 0E SO
|
||||
.byte CLASS_INVALID # 0F SI
|
||||
.byte CLASS_INVALID # 10 DLE
|
||||
.byte CLASS_INVALID # 11 DC1
|
||||
.byte CLASS_INVALID # 12 DC2
|
||||
.byte CLASS_INVALID # 13 DC3
|
||||
.byte CLASS_INVALID # 14 DC4
|
||||
.byte CLASS_INVALID # 15 NAK
|
||||
.byte CLASS_INVALID # 16 SYN
|
||||
.byte CLASS_INVALID # 17 ETB
|
||||
.byte CLASS_INVALID # 18 CAN
|
||||
.byte CLASS_INVALID # 19 EM
|
||||
.byte CLASS_INVALID # 1A SUB
|
||||
.byte CLASS_INVALID # 1B ESC
|
||||
.byte CLASS_INVALID # 1C FS
|
||||
.byte CLASS_INVALID # 1D GS
|
||||
.byte CLASS_INVALID # 1E RS
|
||||
.byte CLASS_INVALID # 1F US
|
||||
.byte CLASS_SPACE # 20 Space
|
||||
.byte CLASS_SINGLE # 21 !
|
||||
.byte CLASS_QUOTE # 22 "
|
||||
.byte 0x00 # 23 #
|
||||
.byte 0x00 # 24 $
|
||||
.byte CLASS_SINGLE # 25 %
|
||||
.byte CLASS_SINGLE # 26 &
|
||||
.byte CLASS_QUOTE # 27 '
|
||||
.byte CLASS_LEFT_PAREN # 28 (
|
||||
.byte CLASS_RIGHT_PAREN # 29 )
|
||||
.byte CLASS_ASTERISK # 2A *
|
||||
.byte CLASS_SINGLE # 2B +
|
||||
.byte CLASS_SINGLE # 2C ,
|
||||
.byte CLASS_MINUS # 2D -
|
||||
.byte CLASS_DOT # 2E .
|
||||
.byte CLASS_SINGLE # 2F /
|
||||
.byte CLASS_ZERO # 30 0
|
||||
.byte CLASS_DIGIT # 31 1
|
||||
.byte CLASS_DIGIT # 32 2
|
||||
.byte CLASS_DIGIT # 33 3
|
||||
.byte CLASS_DIGIT # 34 4
|
||||
.byte CLASS_DIGIT # 35 5
|
||||
.byte CLASS_DIGIT # 36 6
|
||||
.byte CLASS_DIGIT # 37 7
|
||||
.byte CLASS_DIGIT # 38 8
|
||||
.byte CLASS_DIGIT # 39 9
|
||||
.byte CLASS_COLON # 3A :
|
||||
.byte CLASS_SINGLE # 3B ;
|
||||
.byte CLASS_LESS # 3C <
|
||||
.byte CLASS_EQUALS # 3D =
|
||||
.byte CLASS_GREATER # 3E >
|
||||
.byte 0x00 # 3F ?
|
||||
.byte CLASS_SINGLE # 40 @
|
||||
.byte CLASS_CHARACTER # 41 A
|
||||
.byte CLASS_CHARACTER # 42 B
|
||||
.byte CLASS_CHARACTER # 43 C
|
||||
.byte CLASS_CHARACTER # 44 D
|
||||
.byte CLASS_CHARACTER # 45 E
|
||||
.byte CLASS_CHARACTER # 46 F
|
||||
.byte CLASS_CHARACTER # 47 G
|
||||
.byte CLASS_CHARACTER # 48 H
|
||||
.byte CLASS_CHARACTER # 49 I
|
||||
.byte CLASS_CHARACTER # 4A J
|
||||
.byte CLASS_CHARACTER # 4B K
|
||||
.byte CLASS_CHARACTER # 4C L
|
||||
.byte CLASS_CHARACTER # 4D M
|
||||
.byte CLASS_CHARACTER # 4E N
|
||||
.byte CLASS_CHARACTER # 4F O
|
||||
.byte CLASS_CHARACTER # 50 P
|
||||
.byte CLASS_CHARACTER # 51 Q
|
||||
.byte CLASS_CHARACTER # 52 R
|
||||
.byte CLASS_CHARACTER # 53 S
|
||||
.byte CLASS_CHARACTER # 54 T
|
||||
.byte CLASS_CHARACTER # 55 U
|
||||
.byte CLASS_CHARACTER # 56 V
|
||||
.byte CLASS_CHARACTER # 57 W
|
||||
.byte CLASS_CHARACTER # 58 X
|
||||
.byte CLASS_CHARACTER # 59 Y
|
||||
.byte CLASS_CHARACTER # 5A Z
|
||||
.byte CLASS_SINGLE # 5B [
|
||||
.byte 0x00 # 5C \
|
||||
.byte CLASS_SINGLE # 5D ]
|
||||
.byte CLASS_SINGLE # 5E ^
|
||||
.byte CLASS_UNDERSCORE # 5F _
|
||||
.byte 0x00 # 60 `
|
||||
.byte CLASS_HEX # 61 a
|
||||
.byte CLASS_HEX # 62 b
|
||||
.byte CLASS_HEX # 63 c
|
||||
.byte CLASS_HEX # 64 d
|
||||
.byte CLASS_HEX # 65 e
|
||||
.byte CLASS_HEX # 66 f
|
||||
.byte CLASS_CHARACTER # 67 g
|
||||
.byte CLASS_CHARACTER # 68 h
|
||||
.byte CLASS_CHARACTER # 69 i
|
||||
.byte CLASS_CHARACTER # 6A j
|
||||
.byte CLASS_CHARACTER # 6B k
|
||||
.byte CLASS_CHARACTER # 6C l
|
||||
.byte CLASS_CHARACTER # 6D m
|
||||
.byte CLASS_CHARACTER # 6E n
|
||||
.byte CLASS_CHARACTER # 6F o
|
||||
.byte CLASS_CHARACTER # 70 p
|
||||
.byte CLASS_CHARACTER # 71 q
|
||||
.byte CLASS_CHARACTER # 72 r
|
||||
.byte CLASS_CHARACTER # 73 s
|
||||
.byte CLASS_CHARACTER # 74 t
|
||||
.byte CLASS_CHARACTER # 75 u
|
||||
.byte CLASS_CHARACTER # 76 v
|
||||
.byte CLASS_CHARACTER # 77 w
|
||||
.byte CLASS_X # 78 x
|
||||
.byte CLASS_CHARACTER # 79 y
|
||||
.byte CLASS_CHARACTER # 7A z
|
||||
.byte 0x00 # 7B {
|
||||
.byte CLASS_SINGLE # 7C |
|
||||
.byte 0x00 # 7D }
|
||||
.byte CLASS_SINGLE # 7E ~
|
||||
.byte CLASS_INVALID # 7F DEL
|
||||
|
||||
#
|
||||
# Textual keywords in the language.
|
||||
#
|
||||
.equ KEYWORDS_COUNT, TOKEN_IDENTIFIER - 1
|
||||
|
||||
.type keywords, @object
|
||||
keywords:
|
||||
.word 7
|
||||
.ascii "program"
|
||||
.word 6
|
||||
.ascii "import"
|
||||
.word 5
|
||||
.ascii "const"
|
||||
.word 3
|
||||
.ascii "var"
|
||||
.word 2
|
||||
.ascii "if"
|
||||
.word 4
|
||||
.ascii "then"
|
||||
.word 5
|
||||
.ascii "elsif"
|
||||
.word 4
|
||||
.ascii "else"
|
||||
.word 5
|
||||
.ascii "while"
|
||||
.word 2
|
||||
.ascii "do"
|
||||
.word 4
|
||||
.ascii "proc"
|
||||
.word 5
|
||||
.ascii "begin"
|
||||
.word 3
|
||||
.ascii "end"
|
||||
.word 4
|
||||
.ascii "type"
|
||||
.word 6
|
||||
.ascii "record"
|
||||
.word 5
|
||||
.ascii "union"
|
||||
.word 4
|
||||
.ascii "true"
|
||||
.word 5
|
||||
.ascii "false"
|
||||
.word 3
|
||||
.ascii "nil"
|
||||
.word 3
|
||||
.ascii "xor"
|
||||
.word 2
|
||||
.ascii "or"
|
||||
.word 6
|
||||
.ascii "return"
|
||||
.word 4
|
||||
.ascii "cast"
|
||||
.word 4
|
||||
.ascii "goto"
|
||||
.word 4
|
||||
.ascii "case"
|
||||
.word 2
|
||||
.ascii "of"
|
||||
|
||||
.type byte_keywords, @object
|
||||
byte_keywords: .ascii "&.,:;()[]^=+-*@"
|
||||
.equ BYTE_KEYWORDS_SIZE, . - byte_keywords
|
||||
|
||||
.section .data
|
||||
|
||||
# The transition table describes transitions from one state to another, given
|
||||
# a symbol (character class).
|
||||
#
|
||||
# The table has m rows and n columns, where m is the amount of states and n is
|
||||
# the amount of classes. So given the current state and a classified character
|
||||
# the table can be used to look up the next state.
|
||||
#
|
||||
# Each cell is a word long.
|
||||
# - The least significant byte of the word is a row number (beginning with 0).
|
||||
# It specifies the target state. "ff" means that this is an end state and no
|
||||
# transition is possible.
|
||||
# - The next byte is the action that should be performed when transitioning.
|
||||
# For the meaning of actions see labels in the lex_next function, which
|
||||
# handles each action.
|
||||
#
|
||||
.type transitions, @object
|
||||
transitions:
|
||||
# Invalid Digit Alpha Space : = ( )
|
||||
# * _ Single Hex 0 x NUL .
|
||||
# - " or ' > <
|
||||
.word 0x00ff, 0x0103, 0x0102, 0x0300, 0x0101, 0x06ff, 0x0106, 0x06ff
|
||||
.word 0x06ff, 0x0102, 0x06ff, 0x0102, 0x010c, 0x0102, 0x00ff, 0x06ff
|
||||
.word 0x0105, 0x0110, 0x0104, 0x0107 # 0x00 Start
|
||||
|
||||
.word 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x07ff, 0x02ff, 0x02ff
|
||||
.word 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff
|
||||
.word 0x02ff, 0x02ff, 0x02ff, 0x02ff # 0x01 Colon
|
||||
|
||||
.word 0x05ff, 0x0102, 0x0102, 0x05ff, 0x05ff, 0x05ff, 0x05ff, 0x05ff
|
||||
.word 0x05ff, 0x0102, 0x05ff, 0x0102, 0x0102, 0x0102, 0x05ff, 0x05ff
|
||||
.word 0x05ff, 0x05ff, 0x05ff, 0x05ff # 0x02 Identifier
|
||||
|
||||
.word 0x08ff, 0x0103, 0x00ff, 0x08ff, 0x08ff, 0x08ff, 0x08ff, 0x08ff
|
||||
.word 0x08ff, 0x00ff, 0x08ff, 0x00ff, 0x0103, 0x00ff, 0x08ff, 0x08ff
|
||||
.word 0x08ff, 0x08ff, 0x08ff, 0x08ff # 0x03 Decimal
|
||||
|
||||
.word 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x04ff, 0x02ff, 0x02ff
|
||||
.word 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff
|
||||
.word 0x02ff, 0x02ff, 0x04ff, 0x02ff # 0x04 Greater
|
||||
|
||||
.word 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff
|
||||
.word 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff
|
||||
.word 0x06ff, 0x06ff, 0x04ff, 0x06ff # 0x05 Minus
|
||||
|
||||
.word 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff
|
||||
.word 0x0109, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff, 0x06ff
|
||||
.word 0x06ff, 0x06ff, 0x06ff, 0x06ff # 0x06 Left paren
|
||||
|
||||
.word 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff
|
||||
.word 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff, 0x02ff
|
||||
.word 0x02ff, 0x02ff, 0x02ff, 0x04ff # 0x07 Less
|
||||
|
||||
.word 0x08ff, 0x0108, 0x00ff, 0x08ff, 0x08ff, 0x08ff, 0x08ff, 0x08ff
|
||||
.word 0x08ff, 0x00ff, 0x08ff, 0x0108, 0x0108, 0x00ff, 0x08ff, 0x08ff
|
||||
.word 0x08ff, 0x08ff, 0x08ff, 0x08ff # 0x08 Hexadecimal after 0x.
|
||||
|
||||
.word 0x0109, 0x0109, 0x0109, 0x0109, 0x0109, 0x0109, 0x0109, 0x0109
|
||||
.word 0x010a, 0x0109, 0x0109, 0x0109, 0x0109, 0x0109, 0x00ff, 0x0109
|
||||
.word 0x0109, 0x0109, 0x0109, 0x0109 # 0x09 Comment
|
||||
|
||||
.word 0x00ff, 0x0109, 0x0109, 0x0109, 0x0109, 0x0109, 0x0109, 0x04ff
|
||||
.word 0x010a, 0x0109, 0x0109, 0x0109, 0x0109, 0x0109, 0x00ff, 0x0109
|
||||
.word 0x0109, 0x0109, 0x0109, 0x0109 # 0x0a Closing comment
|
||||
|
||||
.word 0x00ff, 0x010b, 0x010b, 0x010b, 0x010b, 0x010b, 0x010b, 0x0110
|
||||
.word 0x010b, 0x010b, 0x010b, 0x010b, 0x010b, 0x010b, 0x010b, 0x0110
|
||||
.word 0x010b, 0x04ff, 0x010b, 0x010b # 0x0b String
|
||||
|
||||
.word 0x08ff, 0x00ff, 0x00ff, 0x08ff, 0x08ff, 0x08ff, 0x08ff, 0x08ff
|
||||
.word 0x08ff, 0x00ff, 0x08ff, 0x00ff, 0x00ff, 0x010d, 0x08ff, 0x08ff
|
||||
.word 0x08ff, 0x08ff, 0x08ff, 0x08ff # 0x0c Leading zero
|
||||
|
||||
.word 0x00ff, 0x0108, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff
|
||||
.word 0x00ff, 0x00ff, 0x00ff, 0x0108, 0x0108, 0x00ff, 0x00ff, 0x00ff
|
||||
.word 0x00ff, 0x00ff, 0x00ff, 0x00ff # 0x0d Starting hexadecimal
|
||||
|
||||
.section .text
|
||||
|
||||
# Returns the class from the classification table for the given character.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Character.
|
||||
#
|
||||
# Sets a0 to the class number.
|
||||
.type classify, @function
|
||||
classify:
|
||||
la t0, classification
|
||||
add t0, t0, a0 # Character class pointer.
|
||||
lbu a0, (t0) # Character class.
|
||||
ret
|
||||
|
||||
# Given the current state and a character class, calculates the next state.
|
||||
|
||||
# Parameters:
|
||||
# a0 - Current state.
|
||||
# a1 - Character class.
|
||||
#
|
||||
# Sets a0 to the next state.
|
||||
.type lookup_state, @function
|
||||
lookup_state:
|
||||
li t0, CLASS_COUNT
|
||||
mul a0, a0, t0 # Transition row.
|
||||
add a0, a0, a1 # Transition column.
|
||||
|
||||
li t0, 4
|
||||
mul a0, a0, t0 # Multiply by the word size.
|
||||
|
||||
la t0, transitions
|
||||
add t0, t0, a0
|
||||
lw a0, (t0) # Next state.
|
||||
|
||||
ret
|
||||
|
||||
# Chains classify and lookup_state.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Current state.
|
||||
# a1 - Character.
|
||||
#
|
||||
# Sets a0 to the next state based on the given character.
|
||||
.type _next_state, @function
|
||||
_next_state:
|
||||
# Prologue.
|
||||
addi sp, sp, -16
|
||||
sw ra, 12(sp)
|
||||
sw s0, 8(sp)
|
||||
addi s0, sp, 16
|
||||
|
||||
sw a0, 4(sp)
|
||||
mv a0, a1
|
||||
call classify
|
||||
|
||||
mv a1, a0
|
||||
lw a0, 4(sp)
|
||||
call lookup_state
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 12(sp)
|
||||
lw s0, 8(sp)
|
||||
addi sp, sp, 16
|
||||
ret
|
||||
|
||||
# Takes an identifier and checks whether it's a keyword.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Token length.
|
||||
# a1 - Token pointer.
|
||||
#
|
||||
# Sets a0 to the appropriate token type.
|
||||
.type classify_identifier, @function
|
||||
classify_identifier:
|
||||
# Prologue.
|
||||
addi sp, sp, -16
|
||||
sw ra, 12(sp)
|
||||
sw s0, 8(sp)
|
||||
addi s0, sp, 16
|
||||
|
||||
mv a2, a0
|
||||
mv a3, a1
|
||||
li a0, KEYWORDS_COUNT
|
||||
la a1, keywords
|
||||
call _strings_index
|
||||
|
||||
bnez a0, .Lclassify_identifier_end
|
||||
li a0, TOKEN_IDENTIFIER
|
||||
|
||||
.Lclassify_identifier_end:
|
||||
# Epilogue.
|
||||
lw ra, 12(sp)
|
||||
lw s0, 8(sp)
|
||||
addi sp, sp, 16
|
||||
ret
|
||||
|
||||
# Takes a symbol and determines its type.
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Token character.
|
||||
#
|
||||
# Sets a0 to the appropriate token type.
|
||||
.type classify_single, @function
|
||||
classify_single:
|
||||
# Prologue.
|
||||
addi sp, sp, -16
|
||||
sw ra, 12(sp)
|
||||
sw s0, 8(sp)
|
||||
addi s0, sp, 16
|
||||
|
||||
mv a1, a0
|
||||
li a2, BYTE_KEYWORDS_SIZE
|
||||
la a0, byte_keywords
|
||||
call _memchr
|
||||
|
||||
la a1, byte_keywords
|
||||
sub a0, a0, a1
|
||||
addi a0, a0, TOKEN_IDENTIFIER + 1
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 12(sp)
|
||||
lw s0, 8(sp)
|
||||
addi sp, sp, 16
|
||||
ret
|
||||
|
||||
# Classified a symbol containing multiple characters (probably 2).
|
||||
#
|
||||
# Parameters:
|
||||
# a0 - Token length.
|
||||
# a1 - Token pointer.
|
||||
#
|
||||
# Sets a0 to the appropriate token type.
|
||||
.type classify_composite, @function
|
||||
classify_composite:
|
||||
lbu t0, 0(a1)
|
||||
li t1, ':'
|
||||
beq t0, t1, .Lclassify_composite_assign
|
||||
|
||||
j .Lclassify_composite_end
|
||||
|
||||
.Lclassify_composite_assign:
|
||||
li a0, TOKEN_ASSIGN
|
||||
j .Lclassify_composite_end
|
||||
|
||||
.Lclassify_composite_end:
|
||||
ret
|
||||
|
||||
# Initializes the classification table.
|
||||
#
|
||||
# Paramaters:
|
||||
# a0 - Source text pointer.
|
||||
# a1 - A pointer for output value, the token kind. 4 Bytes.
|
||||
#
|
||||
# Sets a0 to the position of the next token.
|
||||
.type lex_next, @function
|
||||
lex_next:
|
||||
# Prologue.
|
||||
addi sp, sp, -32
|
||||
sw ra, 28(sp)
|
||||
sw s0, 24(sp)
|
||||
addi s0, sp, 32
|
||||
|
||||
sw s1, 20(sp) # Preserve s1 used for current source text position.
|
||||
mv s1, a0
|
||||
sw a0, 12(sp) # Keeps a pointer to the beginning of a token.
|
||||
# 4(sp) and 8(sp) are reserved for the kind and length of the token if needed.
|
||||
|
||||
sw s2, 16(sp) # Preserve s2 containing the current state.
|
||||
li s2, 0x00 # Initial, start state.
|
||||
|
||||
sw a1, 0(sp)
|
||||
sw zero, (a1) # Initialize.
|
||||
|
||||
.Llex_next_loop:
|
||||
mv a0, s2
|
||||
lbu a1, (s1)
|
||||
call _next_state
|
||||
|
||||
li t0, 0xff
|
||||
and s2, a0, t0 # Next state.
|
||||
|
||||
li t0, 0xff00
|
||||
and t1, a0, t0 # Transition action.
|
||||
srli t1, t1, 8
|
||||
|
||||
# Perform the provided action.
|
||||
li t0, 0x01 # Accumulate action.
|
||||
beq t1, t0, .Llex_next_accumulate
|
||||
|
||||
li t0, 0x02 # Print action.
|
||||
beq t1, t0, .Llex_next_print
|
||||
|
||||
li t0, 0x03 # Skip action.
|
||||
beq t1, t0, .Llex_next_skip
|
||||
|
||||
li t0, 0x04 # Delimited string action.
|
||||
beq t1, t0, .Llex_next_comment
|
||||
|
||||
li t0, 0x05 # Finalize identifier.
|
||||
beq t1, t0, .Llex_next_identifier
|
||||
|
||||
li t0, 0x06 # Single character symbol action.
|
||||
beq t1, t0, .Llex_next_single
|
||||
|
||||
li t0, 0x07 # An action for symbols containing multiple characters.
|
||||
beq t1, t0, .Llex_next_composite
|
||||
|
||||
li t0, 0x08 # Integer action.
|
||||
beq t1, t0, .Llex_next_integer
|
||||
|
||||
j .Llex_next_reject
|
||||
|
||||
.Llex_next_reject:
|
||||
addi s1, s1, 1
|
||||
|
||||
j .Llex_next_end
|
||||
|
||||
.Llex_next_accumulate:
|
||||
addi s1, s1, 1
|
||||
|
||||
j .Llex_next_loop
|
||||
|
||||
.Llex_next_skip:
|
||||
addi s1, s1, 1
|
||||
lw t0, 12(sp)
|
||||
addi t0, t0, 1
|
||||
sw t0, 12(sp)
|
||||
|
||||
j .Llex_next_loop
|
||||
|
||||
.Llex_next_print:
|
||||
/* DEBUG
|
||||
addi a0, a0, 21
|
||||
sw a0, 0(sp)
|
||||
addi a0, sp, 0
|
||||
li a1, 1
|
||||
call _write_error */
|
||||
|
||||
j .Llex_next_end
|
||||
|
||||
.Llex_next_comment:
|
||||
addi s1, s1, 1
|
||||
|
||||
j .Llex_next_end
|
||||
|
||||
.Llex_next_identifier:
|
||||
# An identifier can be a textual keyword.
|
||||
# Check the kind of the token and write it into the output parameter.
|
||||
lw a1, 12(sp)
|
||||
sub a0, s1, a1
|
||||
sw a0, 8(sp)
|
||||
call classify_identifier
|
||||
sw a0, 4(sp)
|
||||
lw a0, 0(sp)
|
||||
addi a1, sp, 4
|
||||
li a2, 12
|
||||
call _memcpy
|
||||
|
||||
j .Llex_next_end
|
||||
|
||||
.Llex_next_single:
|
||||
lw a0, 12(sp)
|
||||
addi s1, a0, 1
|
||||
lbu a0, (a0)
|
||||
call classify_single
|
||||
lw a1, 0(sp)
|
||||
sw a0, (a1)
|
||||
|
||||
j .Llex_next_end
|
||||
|
||||
.Llex_next_composite:
|
||||
addi s1, s1, 1
|
||||
lw a1, 12(sp)
|
||||
sub a0, s1, a1
|
||||
call classify_composite
|
||||
lw a1, 0(sp)
|
||||
sw a0, (a1)
|
||||
|
||||
j .Llex_next_end
|
||||
|
||||
.Llex_next_integer:
|
||||
lw t0, 0(sp)
|
||||
li t1, TOKEN_INTEGER
|
||||
sw t1, 0(t0)
|
||||
lw t1, 12(sp)
|
||||
sw t1, 8(t0)
|
||||
sub t1, s1, t1
|
||||
sw t1, 4(t0)
|
||||
|
||||
j .Llex_next_end
|
||||
|
||||
.Llex_next_end:
|
||||
mv a0, s1 # Return the advanced text pointer.
|
||||
|
||||
# Restore saved registers.
|
||||
lw s1, 20(sp)
|
||||
lw s2, 16(sp)
|
||||
|
||||
# Epilogue.
|
||||
lw ra, 28(sp)
|
||||
lw s0, 24(sp)
|
||||
addi sp, sp, 32
|
||||
ret
|
61
rakelib/stage.rake
Normal file
61
rakelib/stage.rake
Normal file
@ -0,0 +1,61 @@
|
||||
# This Source Code Form is subject to the terms of the Mozilla Public License,
|
||||
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
# obtain one at https://mozilla.org/MPL/2.0/. -}
|
||||
# frozen_string_literal: true
|
||||
|
||||
CROSS_GCC = 'build/rootfs/bin/riscv32-unknown-linux-gnu-gcc'
|
||||
SYSROOT = 'build/sysroot'
|
||||
QEMU = 'qemu-riscv32'
|
||||
|
||||
def assemble_stage(output, compiler, source)
|
||||
arguments = [QEMU, '-L', SYSROOT, *compiler]
|
||||
|
||||
puts Term::ANSIColor.green(arguments * ' ')
|
||||
puts
|
||||
Open3.popen2(*arguments) do |qemu_in, qemu_out|
|
||||
qemu_in.write File.read(*source)
|
||||
qemu_in.close
|
||||
|
||||
IO.copy_stream qemu_out, output
|
||||
qemu_out.close
|
||||
end
|
||||
end
|
||||
|
||||
library = []
|
||||
|
||||
Dir.glob('boot/*.s').each do |assembly_source|
|
||||
source_basename = Pathname.new(assembly_source).basename
|
||||
target_object = Pathname.new('build/boot') + source_basename.sub_ext('.o')
|
||||
|
||||
file target_object.to_s => [assembly_source, 'build/boot'] do |t|
|
||||
sh CROSS_GCC, '-c', '-o', t.name, assembly_source
|
||||
end
|
||||
library << assembly_source unless source_basename.to_s.start_with? 'stage'
|
||||
end
|
||||
|
||||
desc 'Initial stage'
|
||||
file 'build/boot/stage1' => ['build/boot/stage1.o', *library] do |t|
|
||||
sh CROSS_GCC, '-nostdlib', '-o', t.name, *t.prerequisites
|
||||
end
|
||||
|
||||
file 'build/boot/stage2a.s' => ['build/boot/stage1', 'boot/stage2.elna'] do |t|
|
||||
source, exe = t.prerequisites.partition { |prerequisite| prerequisite.end_with? '.elna' }
|
||||
|
||||
File.open t.name, 'w' do |output|
|
||||
assemble_stage output, exe, source
|
||||
end
|
||||
end
|
||||
|
||||
['build/boot/stage2a', 'build/boot/stage2b'].each do |exe|
|
||||
file exe => [exe.ext('.s'), *library] do |t|
|
||||
sh CROSS_GCC, '-nostdlib', '-o', t.name, *t.prerequisites
|
||||
end
|
||||
end
|
||||
|
||||
file 'build/boot/stage2b.s' => ['build/boot/stage2a', 'boot/stage2.elna'] do |t|
|
||||
source, exe = t.prerequisites.partition { |prerequisite| prerequisite.end_with? '.elna' }
|
||||
|
||||
File.open t.name, 'w' do |output|
|
||||
assemble_stage output, exe, source
|
||||
end
|
||||
end
|
@ -1,15 +0,0 @@
|
||||
DEFINITION MODULE CommandLineInterface;
|
||||
|
||||
FROM Common IMPORT ShortString;
|
||||
|
||||
TYPE
|
||||
CommandLine = RECORD
|
||||
input: ShortString;
|
||||
lex: BOOLEAN;
|
||||
parse: BOOLEAN
|
||||
END;
|
||||
PCommandLine = POINTER TO CommandLine;
|
||||
|
||||
PROCEDURE parse_command_line(): PCommandLine;
|
||||
|
||||
END CommandLineInterface.
|
@ -1,75 +0,0 @@
|
||||
module;
|
||||
|
||||
from SYSTEM import ADR, TSIZE;
|
||||
|
||||
from Args import GetArg, Narg;
|
||||
from FIO import WriteString, WriteChar, WriteLine, StdErr;
|
||||
from Storage import ALLOCATE;
|
||||
from Strings import CompareStr, Length;
|
||||
from MemUtils import MemZero;
|
||||
|
||||
from Common import ShortString;
|
||||
|
||||
proc parse_command_line() -> PCommandLine;
|
||||
var
|
||||
parameter: ShortString;
|
||||
i: CARDINAL;
|
||||
result: PCommandLine;
|
||||
parsed: BOOLEAN;
|
||||
begin
|
||||
i := 1;
|
||||
ALLOCATE(result, TSIZE(CommandLine));
|
||||
result^.lex := false;
|
||||
result^.parse := false;
|
||||
MemZero(ADR(result^.input), 256);
|
||||
|
||||
while (i < Narg()) & (result <> nil) do
|
||||
parsed := GetArg(parameter, i);
|
||||
parsed := false;
|
||||
|
||||
if CompareStr(parameter, '--lex') = 0 then
|
||||
parsed := true;
|
||||
result^.lex := true
|
||||
end;
|
||||
if CompareStr(parameter, '--parse') = 0 then
|
||||
parsed := true;
|
||||
result^.parse := true
|
||||
end;
|
||||
if parameter[1] <> '-' then
|
||||
parsed := true;
|
||||
|
||||
if Length(result^.input) > 0 then
|
||||
WriteString(StdErr, 'Fatal error: only one source file can be compiled at once. First given "');
|
||||
WriteString(StdErr, result^.input);
|
||||
WriteString(StdErr, '", then "');
|
||||
WriteString(StdErr, parameter);
|
||||
WriteString(StdErr, '".');
|
||||
WriteLine(StdErr);
|
||||
result := nil
|
||||
end;
|
||||
if result <> nil then
|
||||
result^.input := parameter
|
||||
end
|
||||
end;
|
||||
if parsed = false then
|
||||
WriteString(StdErr, 'Fatal error: unknown command line options: ');
|
||||
|
||||
WriteString(StdErr, parameter);
|
||||
WriteChar(StdErr, '.');
|
||||
WriteLine(StdErr);
|
||||
|
||||
result := nil
|
||||
end;
|
||||
|
||||
i := i + 1
|
||||
end;
|
||||
if (result <> nil) & (Length(result^.input) = 0) then
|
||||
WriteString(StdErr, 'Fatal error: no input files.');
|
||||
WriteLine(StdErr);
|
||||
result := nil
|
||||
end;
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
end.
|
@ -1,8 +0,0 @@
|
||||
DEFINITION MODULE Common;
|
||||
|
||||
TYPE
|
||||
ShortString = ARRAY[1..256] OF CHAR;
|
||||
Identifier = ARRAY[1..256] OF CHAR;
|
||||
PIdentifier = POINTER TO Identifier;
|
||||
|
||||
END Common.
|
@ -1,3 +0,0 @@
|
||||
module;
|
||||
|
||||
end.
|
@ -1,51 +0,0 @@
|
||||
program;
|
||||
|
||||
from FIO import Close, IsNoError, File, OpenToRead, StdErr, StdOut, WriteLine, WriteString;
|
||||
from SYSTEM import ADR;
|
||||
from M2RTS import HALT, ExitOnHalt;
|
||||
|
||||
from Lexer import Lexer, lexer_destroy, lexer_initialize;
|
||||
from Transpiler import transpile;
|
||||
from CommandLineInterface import PCommandLine, parse_command_line;
|
||||
|
||||
var
|
||||
command_line: PCommandLine;
|
||||
|
||||
proc compile_from_stream();
|
||||
var
|
||||
lexer: Lexer;
|
||||
source_input: File;
|
||||
begin
|
||||
source_input := OpenToRead(command_line^.input);
|
||||
|
||||
if IsNoError(source_input) = false then
|
||||
WriteString(StdErr, 'Fatal error: failed to read the input file "');
|
||||
WriteString(StdErr, command_line^.input);
|
||||
WriteString(StdErr, '".');
|
||||
WriteLine(StdErr);
|
||||
|
||||
ExitOnHalt(2)
|
||||
end;
|
||||
if IsNoError(source_input) then
|
||||
lexer_initialize(ADR(lexer), source_input);
|
||||
|
||||
transpile(ADR(lexer), StdOut, command_line^.input);
|
||||
|
||||
lexer_destroy(ADR(lexer));
|
||||
|
||||
Close(source_input)
|
||||
end
|
||||
end;
|
||||
|
||||
begin
|
||||
ExitOnHalt(0);
|
||||
command_line := parse_command_line();
|
||||
|
||||
if command_line <> nil then
|
||||
compile_from_stream()
|
||||
end;
|
||||
if command_line = nil then
|
||||
ExitOnHalt(1)
|
||||
end;
|
||||
HALT()
|
||||
end.
|
@ -1,99 +0,0 @@
|
||||
DEFINITION MODULE Lexer;
|
||||
|
||||
FROM FIO IMPORT File;
|
||||
|
||||
FROM Common IMPORT Identifier;
|
||||
|
||||
TYPE
|
||||
PLexerBuffer = POINTER TO CHAR;
|
||||
Lexer = RECORD
|
||||
Input: File;
|
||||
Buffer: PLexerBuffer;
|
||||
Size: CARDINAL;
|
||||
Length: CARDINAL;
|
||||
Start: PLexerBuffer;
|
||||
Current: PLexerBuffer
|
||||
END;
|
||||
PLexer = POINTER TO Lexer;
|
||||
LexerKind = (
|
||||
lexerKindEof,
|
||||
lexerKindIdentifier,
|
||||
lexerKindIf,
|
||||
lexerKindThen,
|
||||
lexerKindElse,
|
||||
lexerKindElsif,
|
||||
lexerKindWhile,
|
||||
lexerKindDo,
|
||||
lexerKindProc,
|
||||
lexerKindBegin,
|
||||
lexerKindEnd,
|
||||
lexerKindImplementation,
|
||||
lexerKindConst,
|
||||
lexerKindVar,
|
||||
lexerKindCase,
|
||||
lexerKindOf,
|
||||
lexerKindType,
|
||||
lexerKindRecord,
|
||||
lexerKindUnion,
|
||||
lexerKindPipe,
|
||||
lexerKindTo,
|
||||
lexerKindBoolean,
|
||||
lexerKindNull,
|
||||
lexerKindAnd,
|
||||
lexerKindOr,
|
||||
lexerKindNot,
|
||||
lexerKindReturn,
|
||||
lexerKindDefinition,
|
||||
lexerKindRange,
|
||||
lexerKindLeftParen,
|
||||
lexerKindRightParen,
|
||||
lexerKindLeftSquare,
|
||||
lexerKindRightSquare,
|
||||
lexerKindGreaterEqual,
|
||||
lexerKindLessEqual,
|
||||
lexerKindGreaterThan,
|
||||
lexerKindLessThan,
|
||||
lexerKindNotEqual,
|
||||
lexerKindEqual,
|
||||
lexerKindSemicolon,
|
||||
lexerKindDot,
|
||||
lexerKindComma,
|
||||
lexerKindPlus,
|
||||
lexerKindMinus,
|
||||
lexerKindMultiplication,
|
||||
lexerKindDivision,
|
||||
lexerKindRemainder,
|
||||
lexerKindAssignment,
|
||||
lexerKindColon,
|
||||
lexerKindHat,
|
||||
lexerKindAt,
|
||||
lexerKindComment,
|
||||
lexerKindInteger,
|
||||
lexerKindWord,
|
||||
lexerKindCharacter,
|
||||
lexerKindString,
|
||||
lexerKindFrom,
|
||||
lexerKindPointer,
|
||||
lexerKindArray,
|
||||
lexerKindArrow,
|
||||
lexerKindProgram,
|
||||
lexerKindModule,
|
||||
lexerKindImport
|
||||
);
|
||||
LexerToken = RECORD
|
||||
CASE kind: LexerKind OF
|
||||
lexerKindBoolean: booleanKind: BOOLEAN |
|
||||
lexerKindIdentifier: identifierKind: Identifier |
|
||||
lexerKindInteger: integerKind: INTEGER
|
||||
END
|
||||
END;
|
||||
PLexerToken = POINTER TO LexerToken;
|
||||
|
||||
PROCEDURE lexer_initialize(ALexer: PLexer; Input: File);
|
||||
PROCEDURE lexer_destroy(ALexer: PLexer);
|
||||
(* Returns the last read token. *)
|
||||
PROCEDURE lexer_current(ALexer: PLexer): LexerToken;
|
||||
(* Read and return the next token. *)
|
||||
PROCEDURE lexer_lex(ALexer: PLexer): LexerToken;
|
||||
|
||||
END Lexer.
|
@ -1,828 +0,0 @@
|
||||
module;
|
||||
|
||||
from FIO import ReadNBytes, StdErr;
|
||||
from SYSTEM import ADR, TSIZE;
|
||||
|
||||
from DynamicStrings import String, InitStringCharStar, KillString;
|
||||
from StringConvert import StringToInteger;
|
||||
from Storage import DEALLOCATE, ALLOCATE;
|
||||
from Strings import Length;
|
||||
from MemUtils import MemCopy, MemZero;
|
||||
from StrCase import Lower;
|
||||
|
||||
const
|
||||
CHUNK_SIZE = 65536;
|
||||
|
||||
type
|
||||
(*
|
||||
* Classification table assigns each possible character to a group (class). All
|
||||
* characters of the same group a handled equivalently.
|
||||
*
|
||||
* Classification:
|
||||
*)
|
||||
TransitionClass = (
|
||||
transitionClassInvalid,
|
||||
transitionClassDigit,
|
||||
transitionClassAlpha,
|
||||
transitionClassSpace,
|
||||
transitionClassColon,
|
||||
transitionClassEquals,
|
||||
transitionClassLeftParen,
|
||||
transitionClassRightParen,
|
||||
transitionClassAsterisk,
|
||||
transitionClassUnderscore,
|
||||
transitionClassSingle,
|
||||
transitionClassHex,
|
||||
transitionClassZero,
|
||||
transitionClassX,
|
||||
transitionClassEof,
|
||||
transitionClassDot,
|
||||
transitionClassMinus,
|
||||
transitionClassSingleQuote,
|
||||
transitionClassDoubleQuote,
|
||||
transitionClassGreater,
|
||||
transitionClassLess,
|
||||
transitionClassOther
|
||||
);
|
||||
TransitionState = (
|
||||
transitionStateStart,
|
||||
transitionStateColon,
|
||||
transitionStateIdentifier,
|
||||
transitionStateDecimal,
|
||||
transitionStateGreater,
|
||||
transitionStateMinus,
|
||||
transitionStateLeftParen,
|
||||
transitionStateLess,
|
||||
transitionStateDot,
|
||||
transitionStateComment,
|
||||
transitionStateClosingComment,
|
||||
transitionStateCharacter,
|
||||
transitionStateString,
|
||||
transitionStateLeadingZero,
|
||||
transitionStateDecimalSuffix,
|
||||
transitionStateEnd
|
||||
);
|
||||
TransitionAction = proc(PLexer, PLexerToken);
|
||||
Transition = record
|
||||
Action: TransitionAction;
|
||||
NextState: TransitionState
|
||||
end;
|
||||
TransitionClasses = [22]Transition;
|
||||
|
||||
var
|
||||
classification: [128]TransitionClass;
|
||||
transitions: [16]TransitionClasses;
|
||||
|
||||
proc initialize_classification();
|
||||
var
|
||||
i: CARDINAL;
|
||||
begin
|
||||
classification[1] := transitionClassEof; (* NUL *)
|
||||
classification[2] := transitionClassInvalid; (* SOH *)
|
||||
classification[3] := transitionClassInvalid; (* STX *)
|
||||
classification[4] := transitionClassInvalid; (* ETX *)
|
||||
classification[5] := transitionClassInvalid; (* EOT *)
|
||||
classification[6] := transitionClassInvalid; (* EMQ *)
|
||||
classification[7] := transitionClassInvalid; (* ACK *)
|
||||
classification[8] := transitionClassInvalid; (* BEL *)
|
||||
classification[9] := transitionClassInvalid; (* BS *)
|
||||
classification[10] := transitionClassSpace; (* HT *)
|
||||
classification[11] := transitionClassSpace; (* LF *)
|
||||
classification[12] := transitionClassInvalid; (* VT *)
|
||||
classification[13] := transitionClassInvalid; (* FF *)
|
||||
classification[14] := transitionClassSpace; (* CR *)
|
||||
classification[15] := transitionClassInvalid; (* SO *)
|
||||
classification[16] := transitionClassInvalid; (* SI *)
|
||||
classification[17] := transitionClassInvalid; (* DLE *)
|
||||
classification[18] := transitionClassInvalid; (* DC1 *)
|
||||
classification[19] := transitionClassInvalid; (* DC2 *)
|
||||
classification[20] := transitionClassInvalid; (* DC3 *)
|
||||
classification[21] := transitionClassInvalid; (* DC4 *)
|
||||
classification[22] := transitionClassInvalid; (* NAK *)
|
||||
classification[23] := transitionClassInvalid; (* SYN *)
|
||||
classification[24] := transitionClassInvalid; (* ETB *)
|
||||
classification[25] := transitionClassInvalid; (* CAN *)
|
||||
classification[26] := transitionClassInvalid; (* EM *)
|
||||
classification[27] := transitionClassInvalid; (* SUB *)
|
||||
classification[28] := transitionClassInvalid; (* ESC *)
|
||||
classification[29] := transitionClassInvalid; (* FS *)
|
||||
classification[30] := transitionClassInvalid; (* GS *)
|
||||
classification[31] := transitionClassInvalid; (* RS *)
|
||||
classification[32] := transitionClassInvalid; (* US *)
|
||||
classification[33] := transitionClassSpace; (* Space *)
|
||||
classification[34] := transitionClassSingle; (* ! *)
|
||||
classification[35] := transitionClassDoubleQuote; (* " *)
|
||||
classification[36] := transitionClassOther; (* # *)
|
||||
classification[37] := transitionClassOther; (* $ *)
|
||||
classification[38] := transitionClassSingle; (* % *)
|
||||
classification[39] := transitionClassSingle; (* & *)
|
||||
classification[40] := transitionClassSingleQuote; (* ' *)
|
||||
classification[41] := transitionClassLeftParen; (* ( *)
|
||||
classification[42] := transitionClassRightParen; (* ) *)
|
||||
classification[43] := transitionClassAsterisk; (* * *)
|
||||
classification[44] := transitionClassSingle; (* + *)
|
||||
classification[45] := transitionClassSingle; (* , *)
|
||||
classification[46] := transitionClassMinus; (* - *)
|
||||
classification[47] := transitionClassDot; (* . *)
|
||||
classification[48] := transitionClassSingle; (* / *)
|
||||
classification[49] := transitionClassZero; (* 0 *)
|
||||
classification[50] := transitionClassDigit; (* 1 *)
|
||||
classification[51] := transitionClassDigit; (* 2 *)
|
||||
classification[52] := transitionClassDigit; (* 3 *)
|
||||
classification[53] := transitionClassDigit; (* 4 *)
|
||||
classification[54] := transitionClassDigit; (* 5 *)
|
||||
classification[55] := transitionClassDigit; (* 6 *)
|
||||
classification[56] := transitionClassDigit; (* 7 *)
|
||||
classification[57] := transitionClassDigit; (* 8 *)
|
||||
classification[58] := transitionClassDigit; (* 9 *)
|
||||
classification[59] := transitionClassColon; (* : *)
|
||||
classification[60] := transitionClassSingle; (* ; *)
|
||||
classification[61] := transitionClassLess; (* < *)
|
||||
classification[62] := transitionClassEquals; (* = *)
|
||||
classification[63] := transitionClassGreater; (* > *)
|
||||
classification[64] := transitionClassOther; (* ? *)
|
||||
classification[65] := transitionClassSingle; (* @ *)
|
||||
classification[66] := transitionClassAlpha; (* A *)
|
||||
classification[67] := transitionClassAlpha; (* B *)
|
||||
classification[68] := transitionClassAlpha; (* C *)
|
||||
classification[69] := transitionClassAlpha; (* D *)
|
||||
classification[70] := transitionClassAlpha; (* E *)
|
||||
classification[71] := transitionClassAlpha; (* F *)
|
||||
classification[72] := transitionClassAlpha; (* G *)
|
||||
classification[73] := transitionClassAlpha; (* H *)
|
||||
classification[74] := transitionClassAlpha; (* I *)
|
||||
classification[75] := transitionClassAlpha; (* J *)
|
||||
classification[76] := transitionClassAlpha; (* K *)
|
||||
classification[77] := transitionClassAlpha; (* L *)
|
||||
classification[78] := transitionClassAlpha; (* M *)
|
||||
classification[79] := transitionClassAlpha; (* N *)
|
||||
classification[80] := transitionClassAlpha; (* O *)
|
||||
classification[81] := transitionClassAlpha; (* P *)
|
||||
classification[82] := transitionClassAlpha; (* Q *)
|
||||
classification[83] := transitionClassAlpha; (* R *)
|
||||
classification[84] := transitionClassAlpha; (* S *)
|
||||
classification[85] := transitionClassAlpha; (* T *)
|
||||
classification[86] := transitionClassAlpha; (* U *)
|
||||
classification[87] := transitionClassAlpha; (* V *)
|
||||
classification[88] := transitionClassAlpha; (* W *)
|
||||
classification[89] := transitionClassAlpha; (* X *)
|
||||
classification[90] := transitionClassAlpha; (* Y *)
|
||||
classification[91] := transitionClassAlpha; (* Z *)
|
||||
classification[92] := transitionClassSingle; (* [ *)
|
||||
classification[93] := transitionClassOther; (* \ *)
|
||||
classification[94] := transitionClassSingle; (* ] *)
|
||||
classification[95] := transitionClassSingle; (* ^ *)
|
||||
classification[96] := transitionClassUnderscore; (* _ *)
|
||||
classification[97] := transitionClassOther; (* ` *)
|
||||
classification[98] := transitionClassHex; (* a *)
|
||||
classification[99] := transitionClassHex; (* b *)
|
||||
classification[100] := transitionClassHex; (* c *)
|
||||
classification[101] := transitionClassHex; (* d *)
|
||||
classification[102] := transitionClassHex; (* e *)
|
||||
classification[103] := transitionClassHex; (* f *)
|
||||
classification[104] := transitionClassAlpha; (* g *)
|
||||
classification[105] := transitionClassAlpha; (* h *)
|
||||
classification[106] := transitionClassAlpha; (* i *)
|
||||
classification[107] := transitionClassAlpha; (* j *)
|
||||
classification[108] := transitionClassAlpha; (* k *)
|
||||
classification[109] := transitionClassAlpha; (* l *)
|
||||
classification[110] := transitionClassAlpha; (* m *)
|
||||
classification[111] := transitionClassAlpha; (* n *)
|
||||
classification[112] := transitionClassAlpha; (* o *)
|
||||
classification[113] := transitionClassAlpha; (* p *)
|
||||
classification[114] := transitionClassAlpha; (* q *)
|
||||
classification[115] := transitionClassAlpha; (* r *)
|
||||
classification[116] := transitionClassAlpha; (* s *)
|
||||
classification[117] := transitionClassAlpha; (* t *)
|
||||
classification[118] := transitionClassAlpha; (* u *)
|
||||
classification[119] := transitionClassAlpha; (* v *)
|
||||
classification[120] := transitionClassAlpha; (* w *)
|
||||
classification[121] := transitionClassX; (* x *)
|
||||
classification[122] := transitionClassAlpha; (* y *)
|
||||
classification[123] := transitionClassAlpha; (* z *)
|
||||
classification[124] := transitionClassOther; (* { *)
|
||||
classification[125] := transitionClassSingle; (* | *)
|
||||
classification[126] := transitionClassOther; (* } *)
|
||||
classification[127] := transitionClassSingle; (* ~ *)
|
||||
classification[128] := transitionClassInvalid; (* DEL *)
|
||||
|
||||
i := 129;
|
||||
while i <= 256 do
|
||||
classification[i] := transitionClassOther;
|
||||
i := i + 1
|
||||
end
|
||||
end;
|
||||
|
||||
proc compare_keyword(Keyword: ARRAY OF CHAR, TokenStart: PLexerBuffer, TokenEnd: PLexerBuffer) -> BOOLEAN;
|
||||
var
|
||||
result: BOOLEAN;
|
||||
index: CARDINAL;
|
||||
begin
|
||||
index := 0;
|
||||
result := true;
|
||||
|
||||
while (index < Length(Keyword)) & (TokenStart <> TokenEnd) & result DO
|
||||
result := (Keyword[index] = TokenStart^) or (Lower(Keyword[index]) = TokenStart^);
|
||||
INC(TokenStart);
|
||||
INC(index)
|
||||
end;
|
||||
result := (index = Length(Keyword)) & (TokenStart = TokenEnd) & result;
|
||||
return result
|
||||
end;
|
||||
|
||||
(* Reached the end of file. *)
|
||||
proc transition_action_eof(lexer: PLexer, token: PLexerToken);
|
||||
begin
|
||||
token^.kind := lexerKindEof
|
||||
end;
|
||||
|
||||
(* Add the character to the token currently read and advance to the next character. *)
|
||||
proc transition_action_accumulate(lexer: PLexer, token: PLexerToken);
|
||||
begin
|
||||
INC(lexer^.Current)
|
||||
end;
|
||||
|
||||
(* The current character is not a part of the token. Finish the token already
|
||||
* read. Don't advance to the next character. *)
|
||||
proc transition_action_finalize(lexer: PLexer, token: PLexerToken);
|
||||
begin
|
||||
if lexer^.Start^ = ':' then
|
||||
token^.kind := lexerKindColon
|
||||
end;
|
||||
if lexer^.Start^ = '>' then
|
||||
token^.kind := lexerKindGreaterThan
|
||||
end;
|
||||
if lexer^.Start^ = '<' then
|
||||
token^.kind := lexerKindLessThan
|
||||
end;
|
||||
if lexer^.Start^ = '(' then
|
||||
token^.kind := lexerKindLeftParen
|
||||
end;
|
||||
if lexer^.Start^ = '-' then
|
||||
token^.kind := lexerKindLeftParen
|
||||
end;
|
||||
if lexer^.Start^ = '.' then
|
||||
token^.kind := lexerKindDot
|
||||
end
|
||||
end;
|
||||
|
||||
(* An action for tokens containing multiple characters. *)
|
||||
proc transition_action_composite(lexer: PLexer, token: PLexerToken);
|
||||
begin
|
||||
if lexer^.Start^ = '<' then
|
||||
if lexer^.Current^ = '>' then
|
||||
token^.kind := lexerKindNotEqual
|
||||
end;
|
||||
if lexer^.Current^ = '=' then
|
||||
token^.kind := lexerKindLessEqual
|
||||
end
|
||||
end;
|
||||
if (lexer^.Start^ = '>') & (lexer^.Current^ = '=') then
|
||||
token^.kind := lexerKindGreaterEqual
|
||||
end;
|
||||
if (lexer^.Start^ = '.') & (lexer^.Current^ = '.') then
|
||||
token^.kind := lexerKindRange
|
||||
end;
|
||||
if (lexer^.Start^ = ':') & (lexer^.Current^ = '=') then
|
||||
token^.kind := lexerKindAssignment
|
||||
end;
|
||||
if (lexer^.Start^ = '-') & (lexer^.Current^ = '>') then
|
||||
token^.kind := lexerKindArrow
|
||||
end;
|
||||
INC(lexer^.Current)
|
||||
end;
|
||||
|
||||
(* Skip a space. *)
|
||||
proc transition_action_skip(lexer: PLexer, token: PLexerToken);
|
||||
begin
|
||||
INC(lexer^.Current);
|
||||
INC(lexer^.Start)
|
||||
end;
|
||||
|
||||
(* Delimited string action. *)
|
||||
proc transition_action_delimited(lexer: PLexer, token: PLexerToken);
|
||||
begin
|
||||
if lexer^.Start^ = '(' then
|
||||
token^.kind := lexerKindComment
|
||||
end;
|
||||
if lexer^.Start^ = '"' then
|
||||
token^.kind := lexerKindCharacter
|
||||
end;
|
||||
if lexer^.Start^ = "'" then
|
||||
token^.kind := lexerKindString
|
||||
end;
|
||||
INC(lexer^.Current)
|
||||
end;
|
||||
|
||||
(* Finalize keyword or identifier. *)
|
||||
proc transition_action_key_id(lexer: PLexer, token: PLexerToken);
|
||||
begin
|
||||
token^.kind := lexerKindIdentifier;
|
||||
|
||||
token^.identifierKind[1] := lexer^.Current - lexer^.Start;
|
||||
MemCopy(lexer^.Start, ORD(token^.identifierKind[1]), ADR(token^.identifierKind[2]));
|
||||
|
||||
if compare_keyword('PROGRAM', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindProgram
|
||||
end;
|
||||
if compare_keyword('IMPORT', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindImport
|
||||
end;
|
||||
if compare_keyword('CONST', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindConst
|
||||
end;
|
||||
if compare_keyword('VAR', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindVar
|
||||
end;
|
||||
if compare_keyword('IF', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindIf
|
||||
end;
|
||||
if compare_keyword('THEN', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindThen
|
||||
end;
|
||||
if compare_keyword('ELSIF', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindElsif
|
||||
end;
|
||||
if compare_keyword('ELSE', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindElse
|
||||
end;
|
||||
if compare_keyword('WHILE', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindWhile
|
||||
end;
|
||||
if compare_keyword('DO', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindDo
|
||||
end;
|
||||
if compare_keyword('proc', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindProc
|
||||
end;
|
||||
if compare_keyword('BEGIN', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindBegin
|
||||
end;
|
||||
if compare_keyword('END', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindEnd
|
||||
end;
|
||||
if compare_keyword('TYPE', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindType
|
||||
end;
|
||||
if compare_keyword('RECORD', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindRecord
|
||||
end;
|
||||
if compare_keyword('UNION', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindUnion
|
||||
end;
|
||||
if compare_keyword('NIL', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindNull
|
||||
end;
|
||||
if compare_keyword('AND', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindAnd
|
||||
end;
|
||||
if compare_keyword('OR', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindOr
|
||||
end;
|
||||
if compare_keyword('RETURN', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindReturn
|
||||
end;
|
||||
if compare_keyword('DEFINITION', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindDefinition
|
||||
end;
|
||||
if compare_keyword('TO', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindTo
|
||||
end;
|
||||
if compare_keyword('CASE', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindCase
|
||||
end;
|
||||
if compare_keyword('OF', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindOf
|
||||
end;
|
||||
if compare_keyword('FROM', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindFrom
|
||||
end;
|
||||
if compare_keyword('MODULE', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindModule
|
||||
end;
|
||||
if compare_keyword('IMPLEMENTATION', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindImplementation
|
||||
end;
|
||||
if compare_keyword('POINTER', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindPointer
|
||||
end;
|
||||
if compare_keyword('ARRAY', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindArray
|
||||
end;
|
||||
if compare_keyword('TRUE', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindBoolean;
|
||||
token^.booleanKind := true
|
||||
end;
|
||||
if compare_keyword('FALSE', lexer^.Start, lexer^.Current) then
|
||||
token^.kind := lexerKindBoolean;
|
||||
token^.booleanKind := false
|
||||
end
|
||||
end;
|
||||
|
||||
(* Action for tokens containing only one character. The character cannot be
|
||||
* followed by other characters forming a composite token. *)
|
||||
proc transition_action_single(lexer: PLexer, token: PLexerToken);
|
||||
begin
|
||||
if lexer^.Current^ = '&' then
|
||||
token^.kind := lexerKindAnd
|
||||
end;
|
||||
if lexer^.Current^ = ';' then
|
||||
token^.kind := lexerKindSemicolon
|
||||
end;
|
||||
if lexer^.Current^ = ',' then
|
||||
token^.kind := lexerKindComma
|
||||
end;
|
||||
if lexer^.Current^ = ',' then
|
||||
token^.kind := lexerKindComma
|
||||
end;
|
||||
if lexer^.Current^ = ')' then
|
||||
token^.kind := lexerKindRightParen
|
||||
end;
|
||||
if lexer^.Current^ = '[' then
|
||||
token^.kind := lexerKindLeftSquare
|
||||
end;
|
||||
if lexer^.Current^ = ']' then
|
||||
token^.kind := lexerKindRightSquare
|
||||
end;
|
||||
if lexer^.Current^ = '^' then
|
||||
token^.kind := lexerKindHat
|
||||
end;
|
||||
if lexer^.Current^ = '=' then
|
||||
token^.kind := lexerKindEqual
|
||||
end;
|
||||
if lexer^.Current^ = '+' then
|
||||
token^.kind := lexerKindPlus
|
||||
end;
|
||||
if lexer^.Current^ = '/' then
|
||||
token^.kind := lexerKindDivision
|
||||
end;
|
||||
if lexer^.Current^ = '%' then
|
||||
token^.kind := lexerKindRemainder
|
||||
end;
|
||||
if lexer^.Current^ = '@' then
|
||||
token^.kind := lexerKindAt
|
||||
end;
|
||||
if lexer^.Current^ = '|' then
|
||||
token^.kind := lexerKindPipe
|
||||
end;
|
||||
INC(lexer^.Current)
|
||||
end;
|
||||
|
||||
(* Handle an integer literal. *)
|
||||
proc transition_action_integer(lexer: PLexer, token: PLexerToken);
|
||||
var
|
||||
buffer: String;
|
||||
integer_length: CARDINAL;
|
||||
found: BOOLEAN;
|
||||
begin
|
||||
token^.kind := lexerKindInteger;
|
||||
|
||||
integer_length := lexer^.Current - lexer^.Start;
|
||||
MemZero(ADR(token^.identifierKind), TSIZE(Identifier));
|
||||
MemCopy(lexer^.Start, integer_length, ADR(token^.identifierKind[1]));
|
||||
|
||||
buffer := InitStringCharStar(ADR(token^.identifierKind[1]));
|
||||
token^.integerKind := StringToInteger(buffer, 10, found);
|
||||
buffer := KillString(buffer)
|
||||
end;
|
||||
|
||||
proc set_default_transition(CurrentState: TransitionState, DefaultAction: TransitionAction, NextState: TransitionState);
|
||||
var
|
||||
DefaultTransition: Transition;
|
||||
begin
|
||||
DefaultTransition.Action := DefaultAction;
|
||||
DefaultTransition.NextState := NextState;
|
||||
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassInvalid) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassDigit) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassAlpha) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassSpace) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassColon) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassEquals) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassLeftParen) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassRightParen) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassAsterisk) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassUnderscore) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassSingle) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassHex) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassZero) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassX) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassEof) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassDot) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassMinus) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassSingleQuote) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassDoubleQuote) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassGreater) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassLess) + 1] := DefaultTransition;
|
||||
transitions[ORD(CurrentState) + 1][ORD(transitionClassOther) + 1] := DefaultTransition
|
||||
end;
|
||||
|
||||
(*
|
||||
* The transition table describes transitions from one state to another, given
|
||||
* a symbol (character class).
|
||||
*
|
||||
* The table has m rows and n columns, where m is the amount of states and n is
|
||||
* the amount of classes. So given the current state and a classified character
|
||||
* the table can be used to look up the next state.
|
||||
*
|
||||
* Each cell is a word long.
|
||||
* - The least significant byte of the word is a row number (beginning with 0).
|
||||
* It specifies the target state. "ff" means that this is an end state and no
|
||||
* transition is possible.
|
||||
* - The next byte is the action that should be performed when transitioning.
|
||||
* For the meaning of actions see labels in the lex_next function, which
|
||||
* handles each action.
|
||||
*)
|
||||
proc initialize_transitions();
|
||||
begin
|
||||
(* Start state. *)
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassInvalid) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassInvalid) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDigit) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDigit) + 1].NextState := transitionStateDecimal;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassAlpha) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassAlpha) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSpace) + 1].Action := transition_action_skip;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSpace) + 1].NextState := transitionStateStart;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassColon) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassColon) + 1].NextState := transitionStateColon;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassEquals) + 1].Action := transition_action_single;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassEquals) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassLeftParen) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassLeftParen) + 1].NextState := transitionStateLeftParen;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassRightParen) + 1].Action := transition_action_single;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassRightParen) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassAsterisk) + 1].Action := transition_action_single;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassAsterisk) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassUnderscore) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassUnderscore) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSingle) + 1].Action := transition_action_single;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSingle) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassHex) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassHex) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassZero) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassZero) + 1].NextState := transitionStateLeadingZero;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassX) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassX) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassEof) + 1].Action := transition_action_eof;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassEof) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDot) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDot) + 1].NextState := transitionStateDot;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassMinus) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassMinus) + 1].NextState := transitionStateMinus;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSingleQuote) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSingleQuote) + 1].NextState := transitionStateCharacter;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDoubleQuote) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDoubleQuote) + 1].NextState := transitionStateString;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassGreater) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassGreater) + 1].NextState := transitionStateGreater;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassLess) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassLess) + 1].NextState := transitionStateLess;
|
||||
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassOther) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassOther) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Colon state. *)
|
||||
set_default_transition(transitionStateColon, transition_action_finalize, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateColon) + 1][ORD(transitionClassEquals) + 1].Action := transition_action_composite;
|
||||
transitions[ORD(transitionStateColon) + 1][ORD(transitionClassEquals) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Identifier state. *)
|
||||
set_default_transition(transitionStateIdentifier, transition_action_key_id, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassDigit) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassDigit) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassAlpha) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassAlpha) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassUnderscore) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassUnderscore) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassHex) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassHex) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassZero) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassZero) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassX) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassX) + 1].NextState := transitionStateIdentifier;
|
||||
|
||||
(* Decimal state. *)
|
||||
set_default_transition(transitionStateDecimal, transition_action_integer, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassDigit) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassDigit) + 1].NextState := transitionStateDecimal;
|
||||
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassAlpha) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassAlpha) + 1].NextState := transitionStateDecimalSuffix;
|
||||
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassUnderscore) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassUnderscore) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassHex) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassHex) + 1].NextState := transitionStateDecimalSuffix;
|
||||
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassZero) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassZero) + 1].NextState := transitionStateDecimal;
|
||||
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassX) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassX) + 1].NextState := transitionStateDecimalSuffix;
|
||||
|
||||
(* Greater state. *)
|
||||
set_default_transition(transitionStateGreater, transition_action_finalize, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateGreater) + 1][ORD(transitionClassEquals) + 1].Action := transition_action_composite;
|
||||
transitions[ORD(transitionStateGreater) + 1][ORD(transitionClassEquals) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Minus state. *)
|
||||
set_default_transition(transitionStateMinus, transition_action_finalize, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateMinus) + 1][ORD(transitionClassGreater) + 1].Action := transition_action_composite;
|
||||
transitions[ORD(transitionStateMinus) + 1][ORD(transitionClassGreater) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Left paren state. *)
|
||||
set_default_transition(transitionStateLeftParen, transition_action_finalize, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateLeftParen) + 1][ORD(transitionClassAsterisk) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateLeftParen) + 1][ORD(transitionClassAsterisk) + 1].NextState := transitionStateComment;
|
||||
|
||||
(* Less state. *)
|
||||
set_default_transition(transitionStateLess, transition_action_finalize, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateLess) + 1][ORD(transitionClassEquals) + 1].Action := transition_action_composite;
|
||||
transitions[ORD(transitionStateLess) + 1][ORD(transitionClassEquals) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateLess) + 1][ORD(transitionClassGreater) + 1].Action := transition_action_composite;
|
||||
transitions[ORD(transitionStateLess) + 1][ORD(transitionClassGreater) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Hexadecimal after 0x. *)
|
||||
set_default_transition(transitionStateDot, transition_action_finalize, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateDot) + 1][ORD(transitionClassDot) + 1].Action := transition_action_composite;
|
||||
transitions[ORD(transitionStateDot) + 1][ORD(transitionClassDot) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Comment. *)
|
||||
set_default_transition(transitionStateComment, transition_action_accumulate, transitionStateComment);
|
||||
|
||||
transitions[ORD(transitionStateComment) + 1][ORD(transitionClassAsterisk) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateComment) + 1][ORD(transitionClassAsterisk) + 1].NextState := transitionStateClosingComment;
|
||||
|
||||
transitions[ORD(transitionStateComment) + 1][ORD(transitionClassEof) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateComment) + 1][ORD(transitionClassEof) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Closing comment. *)
|
||||
set_default_transition(transitionStateClosingComment, transition_action_accumulate, transitionStateComment);
|
||||
|
||||
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassInvalid) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassInvalid) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassRightParen) + 1].Action := transition_action_delimited;
|
||||
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassRightParen) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassAsterisk) + 1].Action := transition_action_accumulate;
|
||||
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassAsterisk) + 1].NextState := transitionStateClosingComment;
|
||||
|
||||
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassEof) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassEof) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Character. *)
|
||||
set_default_transition(transitionStateCharacter, transition_action_accumulate, transitionStateCharacter);
|
||||
|
||||
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassInvalid) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassInvalid) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassEof) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassEof) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassSingleQuote) + 1].Action := transition_action_delimited;
|
||||
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassSingleQuote) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* String. *)
|
||||
set_default_transition(transitionStateString, transition_action_accumulate, transitionStateString);
|
||||
|
||||
transitions[ORD(transitionStateString) + 1][ORD(transitionClassInvalid) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateString) + 1][ORD(transitionClassInvalid) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateString) + 1][ORD(transitionClassEof) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateString) + 1][ORD(transitionClassEof) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateString) + 1][ORD(transitionClassDoubleQuote) + 1].Action := transition_action_delimited;
|
||||
transitions[ORD(transitionStateString) + 1][ORD(transitionClassDoubleQuote) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Leading zero. *)
|
||||
set_default_transition(transitionStateLeadingZero, transition_action_integer, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassDigit) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassDigit) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassAlpha) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassAlpha) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassUnderscore) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassUnderscore) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassHex) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassHex) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassZero) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassZero) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassX) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassX) + 1].NextState := transitionStateEnd;
|
||||
|
||||
(* Digit with a character suffix. *)
|
||||
set_default_transition(transitionStateDecimalSuffix, transition_action_integer, transitionStateEnd);
|
||||
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassAlpha) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassAlpha) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassDigit) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassDigit) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassHex) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassHex) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassZero) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassZero) + 1].NextState := transitionStateEnd;
|
||||
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassX) + 1].Action := nil;
|
||||
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassX) + 1].NextState := transitionStateEnd
|
||||
end;
|
||||
|
||||
proc lexer_initialize(lexer: PLexer, Input: File);
|
||||
begin
|
||||
lexer^.Input := Input;
|
||||
lexer^.Length := 0;
|
||||
|
||||
ALLOCATE(lexer^.Buffer, CHUNK_SIZE);
|
||||
MemZero(lexer^.Buffer, CHUNK_SIZE);
|
||||
lexer^.Size := CHUNK_SIZE
|
||||
end;
|
||||
|
||||
proc lexer_current(lexer: PLexer) -> LexerToken;
|
||||
var
|
||||
CurrentClass: TransitionClass;
|
||||
CurrentState: TransitionState;
|
||||
CurrentTransition: Transition;
|
||||
result: LexerToken;
|
||||
begin
|
||||
lexer^.Current := lexer^.Start;
|
||||
CurrentState := transitionStateStart;
|
||||
|
||||
while CurrentState <> transitionStateEnd DO
|
||||
CurrentClass := classification[ORD(lexer^.Current^) + 1];
|
||||
|
||||
CurrentTransition := transitions[ORD(CurrentState) + 1][ORD(CurrentClass) + 1];
|
||||
if CurrentTransition.Action <> nil then
|
||||
CurrentTransition.Action(lexer, ADR(result))
|
||||
end;
|
||||
CurrentState := CurrentTransition.NextState
|
||||
end;
|
||||
return result
|
||||
end;
|
||||
|
||||
proc lexer_lex(lexer: PLexer) -> LexerToken;
|
||||
var
|
||||
result: LexerToken;
|
||||
begin
|
||||
if lexer^.Length = 0 then
|
||||
lexer^.Length := ReadNBytes(lexer^.Input, CHUNK_SIZE, lexer^.Buffer);
|
||||
lexer^.Current := lexer^.Buffer
|
||||
end;
|
||||
lexer^.Start := lexer^.Current;
|
||||
|
||||
result := lexer_current(lexer);
|
||||
return result
|
||||
end;
|
||||
|
||||
proc lexer_destroy(lexer: PLexer);
|
||||
begin
|
||||
DEALLOCATE(lexer^.Buffer, lexer^.Size)
|
||||
end;
|
||||
|
||||
begin
|
||||
initialize_classification();
|
||||
initialize_transitions()
|
||||
end.
|
@ -1,78 +0,0 @@
|
||||
DEFINITION MODULE Parser;
|
||||
|
||||
FROM Common IMPORT Identifier, PIdentifier;
|
||||
FROM Lexer IMPORT PLexer;
|
||||
|
||||
TYPE
|
||||
AstImportStatement = RECORD
|
||||
package: Identifier;
|
||||
symbols: PIdentifier
|
||||
END;
|
||||
PAstImportStatement = POINTER TO AstImportStatement;
|
||||
PPAstImportStatement = POINTER TO PAstImportStatement;
|
||||
|
||||
AstConstantDeclaration = RECORD
|
||||
constant_name: Identifier;
|
||||
constant_value: INTEGER
|
||||
END;
|
||||
PAstConstantDeclaration = POINTER TO AstConstantDeclaration;
|
||||
PPAstConstantDeclaration = POINTER TO PAstConstantDeclaration;
|
||||
|
||||
AstFieldDeclaration = RECORD
|
||||
field_name: Identifier;
|
||||
field_type: PAstTypeExpression
|
||||
END;
|
||||
PAstFieldDeclaration = POINTER TO AstFieldDeclaration;
|
||||
|
||||
AstTypeExpressionKind = (
|
||||
astTypeExpressionKindNamed,
|
||||
astTypeExpressionKindRecord,
|
||||
astTypeExpressionKindEnumeration,
|
||||
astTypeExpressionKindArray,
|
||||
astTypeExpressionKindPointer,
|
||||
astTypeExpressionKindProcedure
|
||||
);
|
||||
AstTypeExpression = RECORD
|
||||
CASE kind: AstTypeExpressionKind OF
|
||||
astTypeExpressionKindNamed: name: Identifier |
|
||||
astTypeExpressionKindEnumeration: cases: PIdentifier |
|
||||
astTypeExpressionKindPointer: target: PAstTypeExpression |
|
||||
astTypeExpressionKindRecord: fields: PAstFieldDeclaration |
|
||||
astTypeExpressionKindArray:
|
||||
base: PAstTypeExpression;
|
||||
length: CARDINAL |
|
||||
astTypeExpressionKindProcedure: parameters: PPAstTypeExpression
|
||||
END
|
||||
END;
|
||||
PAstTypeExpression = POINTER TO AstTypeExpression;
|
||||
PPAstTypeExpression = POINTER TO PAstTypeExpression;
|
||||
|
||||
AstTypeDeclaration = RECORD
|
||||
identifier: Identifier;
|
||||
type_expression: PAstTypeExpression
|
||||
END;
|
||||
PAstTypeDeclaration = POINTER TO AstTypeDeclaration;
|
||||
PPAstTypeDeclaration = POINTER TO PAstTypeDeclaration;
|
||||
|
||||
AstVariableDeclaration = RECORD
|
||||
variable_name: Identifier;
|
||||
variable_type: PAstTypeExpression
|
||||
END;
|
||||
PAstVariableDeclaration = POINTER TO AstVariableDeclaration;
|
||||
PPAstVariableDeclaration = POINTER TO PAstVariableDeclaration;
|
||||
|
||||
AstModule = RECORD
|
||||
imports: PPAstImportStatement;
|
||||
constants: PPAstConstantDeclaration;
|
||||
types: PPAstTypeDeclaration;
|
||||
variables: PPAstVariableDeclaration
|
||||
END;
|
||||
PAstModule = POINTER TO AstModule;
|
||||
|
||||
PROCEDURE parse_type_expression(lexer: PLexer): PAstTypeExpression;
|
||||
PROCEDURE parse_type_part(lexer: PLexer): PPAstTypeDeclaration;
|
||||
PROCEDURE parse_variable_part(lexer: PLexer): PPAstVariableDeclaration;
|
||||
PROCEDURE parse_constant_part(lexer: PLexer): PPAstConstantDeclaration;
|
||||
PROCEDURE parse_import_part(lexer: PLexer): PPAstImportStatement;
|
||||
|
||||
END Parser.
|
@ -1,466 +0,0 @@
|
||||
module;
|
||||
|
||||
from SYSTEM import TSIZE;
|
||||
|
||||
from MemUtils import MemZero;
|
||||
from Storage import ALLOCATE, REALLOCATE;
|
||||
|
||||
from Lexer import LexerKind, LexerToken, lexer_current, lexer_lex;
|
||||
|
||||
(* Calls lexer_lex() but skips the comments. *)
|
||||
proc transpiler_lex(lexer: PLexer) -> LexerToken;
|
||||
var
|
||||
result: LexerToken;
|
||||
begin
|
||||
result := lexer_lex(lexer);
|
||||
|
||||
while result.kind = lexerKindComment do
|
||||
result := lexer_lex(lexer)
|
||||
end;
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_type_fields(lexer: PLexer) -> PAstFieldDeclaration;
|
||||
var
|
||||
token: LexerToken;
|
||||
field_declarations: PAstFieldDeclaration;
|
||||
field_count: CARDINAL;
|
||||
current_field: PAstFieldDeclaration;
|
||||
begin
|
||||
ALLOCATE(field_declarations, TSIZE(AstFieldDeclaration));
|
||||
token := transpiler_lex(lexer);
|
||||
field_count := 0;
|
||||
|
||||
while token.kind <> lexerKindEnd do
|
||||
INC(field_count);
|
||||
REALLOCATE(field_declarations, TSIZE(AstFieldDeclaration) * (field_count + 1));
|
||||
current_field := field_declarations;
|
||||
INC(current_field , TSIZE(AstFieldDeclaration) * (field_count - 1));
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
current_field^.field_name := token.identifierKind;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
current_field^.field_type := parse_type_expression(lexer);
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
if token.kind = lexerKindSemicolon then
|
||||
token := transpiler_lex(lexer)
|
||||
end
|
||||
end;
|
||||
INC(current_field, TSIZE(AstFieldDeclaration));
|
||||
MemZero(current_field, TSIZE(AstFieldDeclaration));
|
||||
|
||||
return field_declarations
|
||||
end;
|
||||
|
||||
proc parse_record_type(lexer: PLexer) -> PAstTypeExpression;
|
||||
var
|
||||
result: PAstTypeExpression;
|
||||
begin
|
||||
ALLOCATE(result, TSIZE(AstTypeExpression));
|
||||
result^.kind := astTypeExpressionKindRecord;
|
||||
result^.fields := parse_type_fields(lexer);
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_pointer_type(lexer: PLexer) -> PAstTypeExpression;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PAstTypeExpression;
|
||||
begin
|
||||
ALLOCATE(result, TSIZE(AstTypeExpression));
|
||||
result^.kind := astTypeExpressionKindPointer;
|
||||
|
||||
token := lexer_current(lexer);
|
||||
|
||||
if token.kind = lexerKindPointer then
|
||||
token := transpiler_lex(lexer)
|
||||
end;
|
||||
token := lexer_current(lexer);
|
||||
result^.target := parse_type_expression(lexer);
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_array_type(lexer: PLexer) -> PAstTypeExpression;
|
||||
var
|
||||
token: LexerToken;
|
||||
buffer: [20]CHAR;
|
||||
result: PAstTypeExpression;
|
||||
begin
|
||||
ALLOCATE(result, TSIZE(AstTypeExpression));
|
||||
result^.kind := astTypeExpressionKindArray;
|
||||
result^.length := 0;
|
||||
|
||||
token := lexer_current(lexer);
|
||||
|
||||
if token.kind = lexerKindArray then
|
||||
token := transpiler_lex(lexer)
|
||||
end;
|
||||
if token.kind <> lexerKindOf then
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
result^.length := token.integerKind;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
end;
|
||||
token := transpiler_lex(lexer);
|
||||
result^.base := parse_type_expression(lexer);
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_enumeration_type(lexer: PLexer) -> PAstTypeExpression;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PAstTypeExpression;
|
||||
current_case: PIdentifier;
|
||||
case_count: CARDINAL;
|
||||
begin
|
||||
ALLOCATE(result, TSIZE(AstTypeExpression));
|
||||
result^.kind := astTypeExpressionKindEnumeration;
|
||||
|
||||
case_count := 1;
|
||||
ALLOCATE(result^.cases, TSIZE(Identifier) * 2);
|
||||
token := transpiler_lex(lexer);
|
||||
current_case := result^.cases;
|
||||
current_case^ := token.identifierKind;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
while token.kind = lexerKindComma do
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
INC(case_count);
|
||||
REALLOCATE(result^.cases, TSIZE(Identifier) * (case_count + 1));
|
||||
current_case := result^.cases;
|
||||
INC(current_case, TSIZE(Identifier) * (case_count - 1));
|
||||
current_case^ := token.identifierKind;
|
||||
|
||||
token := transpiler_lex(lexer)
|
||||
end;
|
||||
INC(current_case, TSIZE(Identifier));
|
||||
MemZero(current_case, TSIZE(Identifier));
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_named_type(lexer: PLexer) -> PAstTypeExpression;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PAstTypeExpression;
|
||||
written_bytes: CARDINAL;
|
||||
begin
|
||||
token := lexer_current(lexer);
|
||||
ALLOCATE(result, TSIZE(AstTypeExpression));
|
||||
|
||||
result^.kind := astTypeExpressionKindNamed;
|
||||
result^.name := token.identifierKind;
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_procedure_type(lexer: PLexer) -> PAstTypeExpression;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PAstTypeExpression;
|
||||
current_parameter: PPAstTypeExpression;
|
||||
parameter_count: CARDINAL;
|
||||
begin
|
||||
parameter_count := 0;
|
||||
ALLOCATE(result, TSIZE(AstTypeExpression));
|
||||
result^.kind := astTypeExpressionKindProcedure;
|
||||
|
||||
ALLOCATE(result^.parameters, 1);
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
while token.kind <> lexerKindRightParen do
|
||||
INC(parameter_count);
|
||||
REALLOCATE(result^.parameters, TSIZE(PAstTypeExpression) * (parameter_count + 1));
|
||||
current_parameter := result^.parameters;
|
||||
INC(current_parameter, TSIZE(PAstTypeExpression) * (parameter_count - 1));
|
||||
|
||||
current_parameter^ := parse_type_expression(lexer);
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
if token.kind = lexerKindComma then
|
||||
token := transpiler_lex(lexer)
|
||||
end
|
||||
end;
|
||||
current_parameter := result^.parameters;
|
||||
INC(current_parameter, TSIZE(PAstTypeExpression) * parameter_count);
|
||||
current_parameter^ := nil;
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_type_expression(lexer: PLexer) -> PAstTypeExpression;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PAstTypeExpression;
|
||||
begin
|
||||
result := nil;
|
||||
token := lexer_current(lexer);
|
||||
|
||||
if token.kind = lexerKindRecord then
|
||||
result := parse_record_type(lexer)
|
||||
end;
|
||||
if token.kind = lexerKindLeftParen then
|
||||
result := parse_enumeration_type(lexer)
|
||||
end;
|
||||
if (token.kind = lexerKindArray) or (token.kind = lexerKindLeftSquare) then
|
||||
result := parse_array_type(lexer)
|
||||
end;
|
||||
if token.kind = lexerKindHat then
|
||||
result := parse_pointer_type(lexer)
|
||||
end;
|
||||
if token.kind = lexerKindProc then
|
||||
result := parse_procedure_type(lexer)
|
||||
end;
|
||||
if token.kind = lexerKindIdentifier then
|
||||
result := parse_named_type(lexer)
|
||||
end;
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_type_declaration(lexer: PLexer) -> PAstTypeDeclaration;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PAstTypeDeclaration;
|
||||
begin
|
||||
token := lexer_current(lexer);
|
||||
|
||||
ALLOCATE(result, TSIZE(AstTypeDeclaration));
|
||||
result^.identifier := token.identifierKind;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
result^.type_expression := parse_type_expression(lexer);
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_type_part(lexer: PLexer) -> PPAstTypeDeclaration;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PPAstTypeDeclaration;
|
||||
current_declaration: PPAstTypeDeclaration;
|
||||
declaration_count: CARDINAL;
|
||||
begin
|
||||
token := lexer_current(lexer);
|
||||
|
||||
ALLOCATE(result, TSIZE(PAstTypeDeclaration));
|
||||
current_declaration := result;
|
||||
declaration_count := 0;
|
||||
|
||||
if token.kind = lexerKindType then
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
while token.kind = lexerKindIdentifier do
|
||||
INC(declaration_count);
|
||||
|
||||
REALLOCATE(result, TSIZE(PAstTypeDeclaration) * (declaration_count + 1));
|
||||
current_declaration := result;
|
||||
INC(current_declaration, TSIZE(PAstTypeDeclaration) * (declaration_count - 1));
|
||||
|
||||
current_declaration^ := parse_type_declaration(lexer);
|
||||
token := transpiler_lex(lexer)
|
||||
end
|
||||
end;
|
||||
if declaration_count <> 0 then
|
||||
INC(current_declaration, TSIZE(PAstTypeDeclaration))
|
||||
end;
|
||||
current_declaration^ := nil;
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_variable_declaration(lexer: PLexer) -> PAstVariableDeclaration;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PAstVariableDeclaration;
|
||||
begin
|
||||
ALLOCATE(result, TSIZE(AstVariableDeclaration));
|
||||
|
||||
token := lexer_current(lexer);
|
||||
result^.variable_name := token.identifierKind;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
result^.variable_type := parse_type_expression(lexer);
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_variable_part(lexer: PLexer) -> PPAstVariableDeclaration;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PPAstVariableDeclaration;
|
||||
current_declaration: PPAstVariableDeclaration;
|
||||
declaration_count: CARDINAL;
|
||||
begin
|
||||
token := lexer_current(lexer);
|
||||
|
||||
ALLOCATE(result, TSIZE(PAstVariableDeclaration));
|
||||
current_declaration := result;
|
||||
declaration_count := 0;
|
||||
|
||||
if token.kind = lexerKindVar then
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
while token.kind = lexerKindIdentifier do
|
||||
INC(declaration_count);
|
||||
|
||||
REALLOCATE(result, TSIZE(PAstVariableDeclaration) * (declaration_count + 1));
|
||||
current_declaration := result;
|
||||
INC(current_declaration, TSIZE(PAstVariableDeclaration) * (declaration_count - 1));
|
||||
|
||||
current_declaration^ := parse_variable_declaration(lexer);
|
||||
token := transpiler_lex(lexer)
|
||||
end
|
||||
end;
|
||||
if declaration_count <> 0 then
|
||||
INC(current_declaration, TSIZE(PAstVariableDeclaration))
|
||||
end;
|
||||
current_declaration^ := nil;
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_constant_declaration(lexer: PLexer) -> PAstConstantDeclaration;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PAstConstantDeclaration;
|
||||
begin
|
||||
ALLOCATE(result, TSIZE(AstConstantDeclaration));
|
||||
|
||||
token := lexer_current(lexer);
|
||||
result^.constant_name := token.identifierKind;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
result^.constant_value := token.integerKind;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_constant_part(lexer: PLexer) -> PPAstConstantDeclaration;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PPAstConstantDeclaration;
|
||||
current_declaration: PPAstConstantDeclaration;
|
||||
declaration_count: CARDINAL;
|
||||
begin
|
||||
token := lexer_current(lexer);
|
||||
|
||||
ALLOCATE(result, TSIZE(PAstConstantDeclaration));
|
||||
current_declaration := result;
|
||||
declaration_count := 0;
|
||||
|
||||
if token.kind = lexerKindConst then
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
while token.kind = lexerKindIdentifier do
|
||||
INC(declaration_count);
|
||||
|
||||
REALLOCATE(result, TSIZE(PAstConstantDeclaration) * (declaration_count + 1));
|
||||
current_declaration := result;
|
||||
INC(current_declaration, TSIZE(PAstConstantDeclaration) * (declaration_count - 1));
|
||||
|
||||
current_declaration^ := parse_constant_declaration(lexer);
|
||||
token := transpiler_lex(lexer)
|
||||
end
|
||||
end;
|
||||
if declaration_count <> 0 then
|
||||
INC(current_declaration, TSIZE(PAstConstantDeclaration))
|
||||
end;
|
||||
current_declaration^ := nil;
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_import_statement(lexer: PLexer) -> PAstImportStatement;
|
||||
var
|
||||
result: PAstImportStatement;
|
||||
token: LexerToken;
|
||||
symbol_count: CARDINAL;
|
||||
current_symbol: PIdentifier;
|
||||
begin
|
||||
ALLOCATE(result, TSIZE(AstImportStatement));
|
||||
symbol_count := 1;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
result^.package := token.identifierKind;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
ALLOCATE(result^.symbols, TSIZE(Identifier) * 2);
|
||||
|
||||
current_symbol := result^.symbols;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
current_symbol^ := token.identifierKind;
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
while token.kind <> lexerKindSemicolon do
|
||||
token := transpiler_lex(lexer);
|
||||
INC(symbol_count);
|
||||
|
||||
REALLOCATE(result^.symbols, TSIZE(Identifier) * (symbol_count + 1));
|
||||
current_symbol := result^.symbols;
|
||||
INC(current_symbol, TSIZE(Identifier) * (symbol_count - 1));
|
||||
|
||||
current_symbol^ := token.identifierKind;
|
||||
token := transpiler_lex(lexer)
|
||||
end;
|
||||
INC(current_symbol, TSIZE(Identifier));
|
||||
MemZero(current_symbol, TSIZE(Identifier));
|
||||
|
||||
token := transpiler_lex(lexer);
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc parse_import_part(lexer: PLexer) -> PPAstImportStatement;
|
||||
var
|
||||
token: LexerToken;
|
||||
import_statement: PPAstImportStatement;
|
||||
result: PPAstImportStatement;
|
||||
import_count: CARDINAL;
|
||||
begin
|
||||
token := lexer_current(lexer);
|
||||
ALLOCATE(result, TSIZE(PAstImportStatement));
|
||||
import_statement := result;
|
||||
import_count := 0;
|
||||
|
||||
while token.kind = lexerKindFrom do
|
||||
INC(import_count);
|
||||
|
||||
REALLOCATE(result, TSIZE(PAstImportStatement) * (import_count + 1));
|
||||
import_statement := result;
|
||||
INC(import_statement, TSIZE(PAstImportStatement) * (import_count - 1));
|
||||
|
||||
import_statement^ := parse_import_statement(lexer);
|
||||
token := lexer_current(lexer)
|
||||
end;
|
||||
if import_count > 0 then
|
||||
INC(import_statement, TSIZE(PAstImportStatement))
|
||||
end;
|
||||
import_statement^ := nil;
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
end.
|
@ -1,18 +0,0 @@
|
||||
DEFINITION MODULE Transpiler;
|
||||
|
||||
FROM FIO IMPORT File;
|
||||
|
||||
FROM Common IMPORT ShortString;
|
||||
FROM Lexer IMPORT PLexer, Lexer;
|
||||
|
||||
TYPE
|
||||
TranspilerContext = RECORD
|
||||
input_name: ShortString;
|
||||
output: File;
|
||||
lexer: PLexer
|
||||
END;
|
||||
PTranspilerContext = POINTER TO TranspilerContext;
|
||||
|
||||
PROCEDURE transpile(lexer: PLexer; output: File; input_name: ShortString);
|
||||
|
||||
END Transpiler.
|
@ -1,680 +0,0 @@
|
||||
module;
|
||||
|
||||
from FIO import WriteNBytes, WriteLine, WriteChar, WriteString;
|
||||
from SYSTEM import ADR, ADDRESS, TSIZE;
|
||||
|
||||
from NumberIO import IntToStr;
|
||||
from Storage import ALLOCATE, REALLOCATE;
|
||||
from MemUtils import MemCopy, MemZero;
|
||||
|
||||
from Common import Identifier, PIdentifier, ShortString;
|
||||
from Lexer import Lexer, LexerToken, lexer_current, lexer_lex, LexerKind;
|
||||
from Parser import AstModule, PAstModule, AstTypeExpressionKind,
|
||||
PAstConstantDeclaration, PPAstConstantDeclaration,
|
||||
AstTypeDeclaration, PAstTypeDeclaration, PPAstTypeDeclaration,
|
||||
PAstVariableDeclaration, PPAstVariableDeclaration, PAstImportStatement, PPAstImportStatement,
|
||||
PAstTypeExpression, PPAstTypeExpression, AstFieldDeclaration, PAstFieldDeclaration,
|
||||
parse_type_expression, parse_variable_part, parse_type_part, parse_constant_part, parse_import_part;
|
||||
|
||||
(* Calls lexer_lex() but skips the comments. *)
|
||||
proc transpiler_lex(lexer: PLexer) -> LexerToken;
|
||||
var
|
||||
result: LexerToken;
|
||||
begin
|
||||
result := lexer_lex(lexer);
|
||||
|
||||
while result.kind = lexerKindComment do
|
||||
result := lexer_lex(lexer)
|
||||
end;
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
(* Write a semicolon followed by a newline. *)
|
||||
proc write_semicolon(output: File);
|
||||
begin
|
||||
WriteChar(output, ';');
|
||||
WriteLine(output)
|
||||
end;
|
||||
|
||||
proc write_current(lexer: PLexer, output: File);
|
||||
var
|
||||
written_bytes: CARDINAL;
|
||||
begin
|
||||
written_bytes := WriteNBytes(output, ADDRESS(lexer^.Current - lexer^.Start), lexer^.Start)
|
||||
end;
|
||||
|
||||
proc transpile_import_statement(context: PTranspilerContext, import_statement: PAstImportStatement);
|
||||
var
|
||||
token: LexerToken;
|
||||
written_bytes: CARDINAL;
|
||||
current_symbol: PIdentifier;
|
||||
begin
|
||||
WriteString(context^.output, 'FROM ');
|
||||
written_bytes := WriteNBytes(context^.output, ORD(import_statement^.package[1]), ADR(import_statement^.package[2]));
|
||||
|
||||
WriteString(context^.output, ' IMPORT ');
|
||||
|
||||
current_symbol := import_statement^.symbols;
|
||||
written_bytes := WriteNBytes(context^.output, ORD(current_symbol^[1]), ADR(current_symbol^[2]));
|
||||
INC(current_symbol, TSIZE(Identifier));
|
||||
|
||||
while ORD(current_symbol^[1]) <> 0 do
|
||||
WriteString(context^.output, ', ');
|
||||
written_bytes := WriteNBytes(context^.output, ORD(current_symbol^[1]), ADR(current_symbol^[2]));
|
||||
INC(current_symbol, TSIZE(Identifier))
|
||||
end;
|
||||
write_semicolon(context^.output)
|
||||
end;
|
||||
|
||||
proc transpile_import_part(context: PTranspilerContext, imports: PPAstImportStatement);
|
||||
var
|
||||
import_statement: PAstImportStatement;
|
||||
begin
|
||||
while imports^ <> nil do
|
||||
transpile_import_statement(context, imports^);
|
||||
INC(imports, TSIZE(PAstImportStatement))
|
||||
end;
|
||||
WriteLine(context^.output)
|
||||
end;
|
||||
|
||||
proc transpile_constant_declaration(context: PTranspilerContext, declaration: PAstConstantDeclaration);
|
||||
var
|
||||
buffer: [20]CHAR;
|
||||
written_bytes: CARDINAL;
|
||||
begin
|
||||
WriteString(context^.output, ' ');
|
||||
written_bytes := WriteNBytes(context^.output, ORD(declaration^.constant_name[1]), ADR(declaration^.constant_name[2]));
|
||||
|
||||
WriteString(context^.output, ' = ');
|
||||
|
||||
IntToStr(declaration^.constant_value, 0, buffer);
|
||||
WriteString(context^.output, buffer);
|
||||
|
||||
write_semicolon(context^.output)
|
||||
end;
|
||||
|
||||
proc transpile_constant_part(context: PTranspilerContext, declarations: PPAstConstantDeclaration);
|
||||
var
|
||||
current_declaration: PPAstConstantDeclaration;
|
||||
begin
|
||||
if declarations^ <> nil then
|
||||
WriteString(context^.output, 'CONST');
|
||||
WriteLine(context^.output);
|
||||
|
||||
current_declaration := declarations;
|
||||
while current_declaration^ <> nil do
|
||||
transpile_constant_declaration(context, current_declaration^);
|
||||
|
||||
INC(current_declaration, TSIZE(PAstConstantDeclaration))
|
||||
end;
|
||||
WriteLine(context^.output)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_module(context: PTranspilerContext) -> PAstModule;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: PAstModule;
|
||||
begin
|
||||
ALLOCATE(result, TSIZE(AstModule));
|
||||
token := transpiler_lex(context^.lexer);
|
||||
|
||||
if token.kind = lexerKindModule then
|
||||
WriteString(context^.output, 'IMPLEMENTATION ')
|
||||
end;
|
||||
WriteString(context^.output, 'MODULE ');
|
||||
|
||||
(* Write the module name and end the line with a semicolon and newline. *)
|
||||
transpile_module_name(context);
|
||||
|
||||
token := transpiler_lex(context^.lexer);
|
||||
write_semicolon(context^.output);
|
||||
WriteLine(context^.output);
|
||||
|
||||
(* Write the module body. *)
|
||||
token := transpiler_lex(context^.lexer);
|
||||
|
||||
result^.imports := parse_import_part(context^.lexer);
|
||||
transpile_import_part(context, result^.imports);
|
||||
|
||||
result^.constants := parse_constant_part(context^.lexer);
|
||||
transpile_constant_part(context, result^.constants);
|
||||
result^.types := parse_type_part(context^.lexer);
|
||||
transpile_type_part(context, result^.types);
|
||||
|
||||
result^.variables := parse_variable_part(context^.lexer);
|
||||
transpile_variable_part(context, result^.variables);
|
||||
|
||||
transpile_procedure_part(context);
|
||||
transpile_statement_part(context);
|
||||
|
||||
WriteString(context^.output, 'END ');
|
||||
transpile_module_name(context);
|
||||
|
||||
token := transpiler_lex(context^.lexer);
|
||||
WriteChar(context^.output, '.');
|
||||
|
||||
token := transpiler_lex(context^.lexer);
|
||||
WriteLine(context^.output);
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc transpile_type_fields(context: PTranspilerContext, fields: PAstFieldDeclaration);
|
||||
var
|
||||
written_bytes: CARDINAL;
|
||||
current_field: PAstFieldDeclaration;
|
||||
begin
|
||||
current_field := fields;
|
||||
|
||||
while ORD(current_field^.field_name[1]) <> 0 do
|
||||
WriteString(context^.output, ' ');
|
||||
written_bytes := WriteNBytes(context^.output, ORD(current_field^.field_name[1]), ADR(current_field^.field_name[2]));
|
||||
|
||||
WriteString(context^.output, ': ');
|
||||
transpile_type_expression(context, current_field^.field_type);
|
||||
|
||||
INC(current_field , TSIZE(AstFieldDeclaration));
|
||||
|
||||
if ORD(current_field^.field_name[1]) <> 0 then
|
||||
WriteChar(context^.output, ';')
|
||||
end;
|
||||
WriteLine(context^.output)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_record_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
|
||||
begin
|
||||
WriteString(context^.output, 'RECORD');
|
||||
WriteLine(context^.output);
|
||||
transpile_type_fields(context, type_expression^.fields);
|
||||
WriteString(context^.output, ' END')
|
||||
end;
|
||||
|
||||
proc transpile_pointer_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
WriteString(context^.output, 'POINTER TO ');
|
||||
|
||||
transpile_type_expression(context, type_expression^.target)
|
||||
end;
|
||||
|
||||
proc transpile_array_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
|
||||
var
|
||||
buffer: [20]CHAR;
|
||||
begin
|
||||
WriteString(context^.output, 'ARRAY');
|
||||
|
||||
if type_expression^.length <> 0 then
|
||||
WriteString(context^.output, '[1..');
|
||||
|
||||
IntToStr(type_expression^.length, 0, buffer);
|
||||
WriteString(context^.output, buffer);
|
||||
|
||||
WriteChar(context^.output, ']')
|
||||
end;
|
||||
WriteString(context^.output, ' OF ');
|
||||
|
||||
transpile_type_expression(context, type_expression^.base)
|
||||
end;
|
||||
|
||||
proc transpile_enumeration_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
|
||||
var
|
||||
current_case: PIdentifier;
|
||||
written_bytes: CARDINAL;
|
||||
begin
|
||||
current_case := type_expression^.cases;
|
||||
|
||||
WriteString(context^.output, '(');
|
||||
WriteLine(context^.output);
|
||||
WriteString(context^.output, ' ');
|
||||
written_bytes := WriteNBytes(context^.output, ORD(current_case^[1]), ADR(current_case^[2]));
|
||||
INC(current_case, TSIZE(Identifier));
|
||||
|
||||
while ORD(current_case^[1]) <> 0 do
|
||||
WriteChar(context^.output, ',');
|
||||
WriteLine(context^.output);
|
||||
WriteString(context^.output, ' ');
|
||||
written_bytes := WriteNBytes(context^.output, ORD(current_case^[1]), ADR(current_case^[2]));
|
||||
|
||||
INC(current_case, TSIZE(Identifier))
|
||||
end;
|
||||
WriteLine(context^.output);
|
||||
WriteString(context^.output, ' )')
|
||||
end;
|
||||
|
||||
proc transpile_named_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
|
||||
var
|
||||
written_bytes: CARDINAL;
|
||||
begin
|
||||
written_bytes := WriteNBytes(context^.output, ORD(type_expression^.name[1]), ADR(type_expression^.name[2]))
|
||||
end;
|
||||
|
||||
proc transpile_procedure_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
|
||||
var
|
||||
result: PAstTypeExpression;
|
||||
current_parameter: PPAstTypeExpression;
|
||||
parameter_count: CARDINAL;
|
||||
begin
|
||||
WriteString(context^.output, 'PROCEDURE(');
|
||||
current_parameter := type_expression^.parameters;
|
||||
|
||||
while current_parameter^ <> nil do
|
||||
transpile_type_expression(context, current_parameter^);
|
||||
|
||||
INC(current_parameter, TSIZE(PAstTypeExpression));
|
||||
|
||||
if current_parameter^ <> nil then
|
||||
WriteString(context^.output, ', ')
|
||||
end
|
||||
end;
|
||||
WriteChar(context^.output, ')')
|
||||
end;
|
||||
|
||||
proc transpile_type_expression(context: PTranspilerContext, type_expression: PAstTypeExpression);
|
||||
begin
|
||||
if type_expression^.kind = astTypeExpressionKindRecord then
|
||||
transpile_record_type(context, type_expression)
|
||||
end;
|
||||
if type_expression^.kind = astTypeExpressionKindEnumeration then
|
||||
transpile_enumeration_type(context, type_expression)
|
||||
end;
|
||||
if type_expression^.kind = astTypeExpressionKindArray then
|
||||
transpile_array_type(context, type_expression)
|
||||
end;
|
||||
if type_expression^.kind = astTypeExpressionKindPointer then
|
||||
transpile_pointer_type(context, type_expression)
|
||||
end;
|
||||
if type_expression^.kind = astTypeExpressionKindProcedure then
|
||||
transpile_procedure_type(context, type_expression)
|
||||
end;
|
||||
if type_expression^.kind = astTypeExpressionKindNamed then
|
||||
transpile_named_type(context, type_expression)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_type_declaration(context: PTranspilerContext, declaration: PAstTypeDeclaration);
|
||||
var
|
||||
written_bytes: CARDINAL;
|
||||
begin
|
||||
WriteString(context^.output, ' ');
|
||||
|
||||
written_bytes := WriteNBytes(context^.output, ORD(declaration^.identifier[1]), ADR(declaration^.identifier[2]));
|
||||
WriteString(context^.output, ' = ');
|
||||
|
||||
transpile_type_expression(context, declaration^.type_expression);
|
||||
write_semicolon(context^.output)
|
||||
end;
|
||||
|
||||
proc transpile_type_part(context: PTranspilerContext, declarations: PPAstTypeDeclaration);
|
||||
var
|
||||
current_declaration: PPAstTypeDeclaration;
|
||||
begin
|
||||
if declarations^ <> nil then
|
||||
WriteString(context^.output, 'TYPE');
|
||||
WriteLine(context^.output);
|
||||
|
||||
current_declaration := declarations;
|
||||
while current_declaration^ <> nil do
|
||||
transpile_type_declaration(context, current_declaration^);
|
||||
|
||||
INC(current_declaration, TSIZE(PAstTypeDeclaration))
|
||||
end;
|
||||
WriteLine(context^.output)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_variable_declaration(context: PTranspilerContext, declaration: PAstVariableDeclaration);
|
||||
var
|
||||
written_bytes: CARDINAL;
|
||||
begin
|
||||
WriteString(context^.output, ' ');
|
||||
written_bytes := WriteNBytes(context^.output, ORD(declaration^.variable_name[1]), ADR(declaration^.variable_name[2]));
|
||||
|
||||
WriteString(context^.output, ': ');
|
||||
|
||||
transpile_type_expression(context, declaration^.variable_type);
|
||||
write_semicolon(context^.output)
|
||||
end;
|
||||
|
||||
proc transpile_variable_part(context: PTranspilerContext, declarations: PPAstVariableDeclaration);
|
||||
var
|
||||
current_declaration: PPAstVariableDeclaration;
|
||||
begin
|
||||
if declarations^ <> nil then
|
||||
WriteString(context^.output, 'VAR');
|
||||
WriteLine(context^.output);
|
||||
|
||||
current_declaration := declarations;
|
||||
while current_declaration^ <> nil do
|
||||
transpile_variable_declaration(context, current_declaration^);
|
||||
|
||||
INC(current_declaration, TSIZE(PAstVariableDeclaration))
|
||||
end;
|
||||
WriteLine(context^.output)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_procedure_heading(context: PTranspilerContext) -> LexerToken;
|
||||
var
|
||||
token: LexerToken;
|
||||
result: LexerToken;
|
||||
type_expression: PAstTypeExpression;
|
||||
begin
|
||||
WriteString(context^.output, 'PROCEDURE ');
|
||||
|
||||
result := transpiler_lex(context^.lexer);
|
||||
write_current(context^.lexer, context^.output);
|
||||
|
||||
token := transpiler_lex(context^.lexer);
|
||||
WriteChar(context^.output, '(');
|
||||
|
||||
token := transpiler_lex(context^.lexer);
|
||||
while token.kind <> lexerKindRightParen do
|
||||
write_current(context^.lexer, context^.output);
|
||||
|
||||
token := transpiler_lex(context^.lexer);
|
||||
WriteString(context^.output, ': ');
|
||||
token := transpiler_lex(context^.lexer);
|
||||
|
||||
type_expression := parse_type_expression(context^.lexer);
|
||||
transpile_type_expression(context, type_expression);
|
||||
|
||||
token := transpiler_lex(context^.lexer);
|
||||
if (token.kind = lexerKindSemicolon) or (token.kind = lexerKindComma) then
|
||||
WriteString(context^.output, '; ');
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end
|
||||
end;
|
||||
WriteString(context^.output, ')');
|
||||
token := transpiler_lex(context^.lexer);
|
||||
|
||||
(* Check for the return type and write it. *)
|
||||
if token.kind = lexerKindArrow then
|
||||
WriteString(context^.output, ': ');
|
||||
token := transpiler_lex(context^.lexer);
|
||||
write_current(context^.lexer, context^.output);
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
token := transpiler_lex(context^.lexer);
|
||||
write_semicolon(context^.output);
|
||||
|
||||
return result
|
||||
end;
|
||||
|
||||
proc transpile_expression(context: PTranspilerContext, trailing_token: LexerKind);
|
||||
var
|
||||
token: LexerToken;
|
||||
written_bytes: CARDINAL;
|
||||
begin
|
||||
token := transpiler_lex(context^.lexer);
|
||||
|
||||
while (token.kind <> trailing_token) & (token.kind <> lexerKindEnd) do
|
||||
written_bytes := 0;
|
||||
if token.kind = lexerKindNull then
|
||||
WriteString(context^.output, 'NIL ');
|
||||
written_bytes := 1
|
||||
end;
|
||||
if (token.kind = lexerKindBoolean) & token.booleanKind then
|
||||
WriteString(context^.output, 'TRUE ');
|
||||
written_bytes := 1
|
||||
end;
|
||||
if (token.kind = lexerKindBoolean) & (~token.booleanKind) then
|
||||
WriteString(context^.output, 'FALSE ');
|
||||
written_bytes := 1
|
||||
end;
|
||||
if token.kind = lexerKindOr then
|
||||
WriteString(context^.output, 'OR ');
|
||||
written_bytes := 1
|
||||
end;
|
||||
if token.kind = lexerKindAnd then
|
||||
WriteString(context^.output, 'AND ');
|
||||
written_bytes := 1
|
||||
end;
|
||||
if token.kind = lexerKindNot then
|
||||
WriteString(context^.output, 'NOT ');
|
||||
written_bytes := 1
|
||||
end;
|
||||
if written_bytes = 0 then
|
||||
write_current(context^.lexer, context^.output);
|
||||
WriteChar(context^.output, ' ')
|
||||
end;
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_if_statement(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
WriteString(context^.output, ' IF ');
|
||||
transpile_expression(context, lexerKindThen);
|
||||
|
||||
WriteString(context^.output, 'THEN');
|
||||
WriteLine(context^.output);
|
||||
transpile_statements(context);
|
||||
WriteString(context^.output, ' END');
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
|
||||
proc transpile_while_statement(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
WriteString(context^.output, ' WHILE ');
|
||||
transpile_expression(context, lexerKindDo);
|
||||
|
||||
WriteString(context^.output, 'DO');
|
||||
WriteLine(context^.output);
|
||||
transpile_statements(context);
|
||||
WriteString(context^.output, ' END');
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
|
||||
proc transpile_assignment_statement(context: PTranspilerContext);
|
||||
begin
|
||||
WriteString(context^.output, ' := ');
|
||||
transpile_expression(context, lexerKindSemicolon);
|
||||
end;
|
||||
|
||||
proc transpile_call_statement(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
WriteString(context^.output, '(');
|
||||
token := transpiler_lex(context^.lexer);
|
||||
|
||||
while (token.kind <> lexerKindSemicolon) & (token.kind <> lexerKindEnd) do
|
||||
write_current(context^.lexer, context^.output);
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_designator_expression(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
WriteString(context^.output, ' ');
|
||||
write_current(context^.lexer, context^.output);
|
||||
token := transpiler_lex(context^.lexer);
|
||||
|
||||
while token.kind = lexerKindLeftSquare do
|
||||
WriteChar(context^.output, '[');
|
||||
token := transpiler_lex(context^.lexer);
|
||||
while token.kind <> lexerKindRightSquare do
|
||||
write_current(context^.lexer, context^.output);
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
WriteChar(context^.output, ']');
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
if token.kind = lexerKindHat then
|
||||
WriteChar(context^.output, '^');
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
if token.kind = lexerKindDot then
|
||||
WriteChar(context^.output, '.');
|
||||
token := transpiler_lex(context^.lexer);
|
||||
write_current(context^.lexer, context^.output);
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
if token.kind = lexerKindHat then
|
||||
WriteChar(context^.output, '^');
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
while token.kind = lexerKindLeftSquare do
|
||||
WriteChar(context^.output, '[');
|
||||
token := transpiler_lex(context^.lexer);
|
||||
while token.kind <> lexerKindRightSquare do
|
||||
write_current(context^.lexer, context^.output);
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
WriteChar(context^.output, ']');
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_return_statement(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
WriteString(context^.output, ' RETURN ');
|
||||
transpile_expression(context, lexerKindSemicolon)
|
||||
end;
|
||||
|
||||
proc transpile_statement(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
token := transpiler_lex(context^.lexer);
|
||||
|
||||
if token.kind = lexerKindIf then
|
||||
transpile_if_statement(context)
|
||||
end;
|
||||
if token.kind = lexerKindWhile then
|
||||
transpile_while_statement(context)
|
||||
end;
|
||||
if token.kind = lexerKindReturn then
|
||||
transpile_return_statement(context)
|
||||
end;
|
||||
if token.kind = lexerKindIdentifier then
|
||||
transpile_designator_expression(context);
|
||||
token := lexer_current(context^.lexer);
|
||||
|
||||
if token.kind = lexerKindAssignment then
|
||||
transpile_assignment_statement(context)
|
||||
end;
|
||||
if token.kind = lexerKindLeftParen then
|
||||
transpile_call_statement(context)
|
||||
end
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_statements(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
token := lexer_current(context^.lexer);
|
||||
|
||||
while token.kind <> lexerKindEnd do
|
||||
transpile_statement(context);
|
||||
token := lexer_current(context^.lexer);
|
||||
|
||||
if token.kind = lexerKindSemicolon then
|
||||
WriteChar(context^.output, ';')
|
||||
end;
|
||||
WriteLine(context^.output)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_statement_part(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
token := lexer_current(context^.lexer);
|
||||
if token.kind = lexerKindBegin then
|
||||
WriteString(context^.output, 'BEGIN');
|
||||
WriteLine(context^.output);
|
||||
transpile_statements(context)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_procedure_declaration(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
seen_variables: PPAstVariableDeclaration;
|
||||
written_bytes: CARDINAL;
|
||||
seen_constants: PPAstConstantDeclaration;
|
||||
begin
|
||||
token := transpile_procedure_heading(context);
|
||||
seen_constants := parse_constant_part(context^.lexer);
|
||||
transpile_constant_part(context, seen_constants);
|
||||
|
||||
seen_variables := parse_variable_part(context^.lexer);
|
||||
transpile_variable_part(context, seen_variables);
|
||||
transpile_statement_part(context);
|
||||
|
||||
WriteString(context^.output, 'END ');
|
||||
written_bytes := WriteNBytes(context^.output, ORD(token.identifierKind[1]), ADR(token.identifierKind[2]));
|
||||
|
||||
token := transpiler_lex(context^.lexer);
|
||||
write_semicolon(context^.output);
|
||||
token := transpiler_lex(context^.lexer)
|
||||
end;
|
||||
|
||||
proc transpile_procedure_part(context: PTranspilerContext);
|
||||
var
|
||||
token: LexerToken;
|
||||
begin
|
||||
token := lexer_current(context^.lexer);
|
||||
|
||||
while token.kind = lexerKindProc do
|
||||
transpile_procedure_declaration(context);
|
||||
token := lexer_current(context^.lexer);
|
||||
WriteLine(context^.output)
|
||||
end
|
||||
end;
|
||||
|
||||
proc transpile_module_name(context: PTranspilerContext);
|
||||
var
|
||||
counter: CARDINAL;
|
||||
last_slash: CARDINAL;
|
||||
begin
|
||||
counter := 1;
|
||||
last_slash := 0;
|
||||
|
||||
while (context^.input_name[counter] <> '.') & (ORD(context^.input_name[counter]) <> 0) do
|
||||
if context^.input_name[counter] = '/' then
|
||||
last_slash := counter
|
||||
end;
|
||||
INC(counter)
|
||||
end;
|
||||
|
||||
if last_slash = 0 then
|
||||
counter := 1
|
||||
end;
|
||||
if last_slash <> 0 then
|
||||
counter := last_slash + 1
|
||||
end;
|
||||
while (context^.input_name[counter] <> '.') & (ORD(context^.input_name[counter]) <> 0) do
|
||||
WriteChar(context^.output, context^.input_name[counter]);
|
||||
INC(counter)
|
||||
end;
|
||||
end;
|
||||
|
||||
proc transpile(lexer: PLexer, output: File, input_name: ShortString);
|
||||
var
|
||||
token: LexerToken;
|
||||
context: TranspilerContext;
|
||||
ast_module: PAstModule;
|
||||
begin
|
||||
context.input_name := input_name;
|
||||
context.output := output;
|
||||
context.lexer := lexer;
|
||||
|
||||
ast_module := transpile_module(ADR(context))
|
||||
end;
|
||||
|
||||
end.
|
Loading…
x
Reference in New Issue
Block a user