Compare commits

...

No commits in common. "cpp" and "haskell" have entirely different histories.
cpp ... haskell

120 changed files with 4906 additions and 4763 deletions

2
.gitignore vendored
View File

@ -2,3 +2,5 @@
.cache/
CMakeFiles/
CMakeCache.txt
node_modules/
/dist-newstyle/

View File

@ -1,34 +0,0 @@
cmake_minimum_required(VERSION 3.21)
project(Elna)
set(CMAKE_EXPORT_COMPILE_COMMANDS 1)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_CXX_STANDARD 14)
find_package(Boost CONFIG COMPONENTS process program_options REQUIRED)
find_package(FLEX REQUIRED)
find_package(BISON REQUIRED)
FLEX_TARGET(lexer source/lexer.ll ${CMAKE_CURRENT_BINARY_DIR}/lexer.cc)
BISON_TARGET(parser source/parser.yy ${CMAKE_CURRENT_BINARY_DIR}/parser.cc)
add_flex_bison_dependency(lexer parser)
add_library(elna-frontend
source/ast.cc include/elna/source/ast.h
source/types.cc include/elna/source/types.h
source/driver.cc include/elna/source/driver.h
source/result.cc include/elna/source/result.h
${BISON_parser_OUTPUTS} ${FLEX_lexer_OUTPUTS}
)
target_include_directories(elna-frontend PRIVATE ${CMAKE_CURRENT_BINARY_DIR} include)
target_compile_options(elna-frontend PRIVATE
$<$<COMPILE_LANGUAGE:CXX>:-fno-exceptions -fno-rtti>
)
add_executable(elna cli/main.cc)
target_link_libraries(elna PRIVATE elna-frontend)
target_include_directories(elna PRIVATE ${CMAKE_CURRENT_BINARY_DIR} include ${Boost_INCLUDE_DIR})
target_link_libraries(elna LINK_PUBLIC ${Boost_LIBRARIES})
target_compile_options(elna PRIVATE
$<$<COMPILE_LANGUAGE:CXX>:-fno-exceptions -fno-rtti>
)

373
LICENSE Normal file
View File

@ -0,0 +1,373 @@
Mozilla Public License Version 2.0
==================================
1. Definitions
--------------
1.1. "Contributor"
means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case
including portions thereof.
1.5. "Incompatible With Secondary Licenses"
means
(a) that the initial Contributor has attached the notice described
in Exhibit B to the Covered Software; or
(b) that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in
a separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.
1.10. "Modifications"
means any of the following:
(a) any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered
Software; or
(b) any new file in Source Code Form that contains any Covered
Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the
License, by the making, using, selling, offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General
Public License, Version 3.0, or any later versions of those
licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that
controls, is controlled by, or is under common control with You. For
purposes of this definition, "control" means (a) the power, direct
or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.
2. License Grants and Conditions
--------------------------------
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
(a) under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
(b) under Patent Claims of such Contributor to make, use, sell, offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
(a) for any code that a Contributor has removed from Covered Software;
or
(b) for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
(c) under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.
3. Responsibilities
-------------------
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
(a) such Covered Software must also be made available in Source Code
Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and
(b) You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
---------------------------------------------------
If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute, judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation, such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it.
5. Termination
--------------
5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant, then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally, unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non-compliance by some reasonable means prior to 60 days after You have
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the
first time You have received notice of non-compliance with this License
from such Contributor, and You become compliant prior to 30 days after
Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.
************************************************************************
* *
* 6. Disclaimer of Warranty *
* ------------------------- *
* *
* Covered Software is provided under this License on an "as is" *
* basis, without warranty of any kind, either expressed, implied, or *
* statutory, including, without limitation, warranties that the *
* Covered Software is free of defects, merchantable, fit for a *
* particular purpose or non-infringing. The entire risk as to the *
* quality and performance of the Covered Software is with You. *
* Should any Covered Software prove defective in any respect, You *
* (not any Contributor) assume the cost of any necessary servicing, *
* repair, or correction. This disclaimer of warranty constitutes an *
* essential part of this License. No use of any Covered Software is *
* authorized under this License except under this disclaimer. *
* *
************************************************************************
************************************************************************
* *
* 7. Limitation of Liability *
* -------------------------- *
* *
* Under no circumstances and under no legal theory, whether tort *
* (including negligence), contract, or otherwise, shall any *
* Contributor, or anyone who distributes Covered Software as *
* permitted above, be liable to You for any direct, indirect, *
* special, incidental, or consequential damages of any character *
* including, without limitation, damages for lost profits, loss of *
* goodwill, work stoppage, computer failure or malfunction, or any *
* and all other commercial damages or losses, even if such party *
* shall have been informed of the possibility of such damages. This *
* limitation of liability shall not apply to liability for death or *
* personal injury resulting from such party's negligence to the *
* extent applicable law prohibits such limitation. Some *
* jurisdictions do not allow the exclusion or limitation of *
* incidental or consequential damages, so this exclusion and *
* limitation may not apply to You. *
* *
************************************************************************
8. Litigation
-------------
Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions.
Nothing in this Section shall prevent a party's ability to bring
cross-claims or counter-claims.
9. Miscellaneous
----------------
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.
10. Versions of the License
---------------------------
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
-------------------------------------------
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular
file, then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look
for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
---------------------------------------------------------
This Source Code Form is "Incompatible With Secondary Licenses", as
defined by the Mozilla Public License, v. 2.0.

37
README Normal file
View File

@ -0,0 +1,37 @@
# Elna programming language
Elna compiles simple mathematical operations to machine code.
The compiled program returns the result of the operation.
## File extension
.elna
## Grammar PL/0
program = block "." ;
block = [ "const" ident "=" number {"," ident "=" number} ";"]
[ "var" ident {"," ident} ";"]
{ "procedure" ident ";" block ";" } statement ;
statement = [ ident ":=" expression | "call" ident
| "?" ident | "!" expression
| "begin" statement {";" statement } "end"
| "if" condition "then" statement
| "while" condition "do" statement ];
condition = "odd" expression |
expression ("="|"#"|"<"|"<="|">"|">=") expression ;
expression = [ "+"|"-"] term { ("+"|"-") term};
term = factor {("*"|"/") factor};
factor = ident | number | "(" expression ")";
## Operations
"!" - Write a line.
"?" - Read user input.
"odd" - The only function, returns whether a number is odd.

101
README.md
View File

@ -1,101 +0,0 @@
# Elna programming language
Elna is a simple, imperative, low-level programming language.
It is intendet to accompany other languages in the areas, where a high-level
language doesn't fit well. It is also supposed to be an intermediate
representation for a such high-level hypothetical programming language.
## File extension
.elna
## Current implementation
This repository contains a GCC frontend for Elna. After finishing the frontend
I'm planning to rewrite the compiler in Elna itself with its own backend and
a hand-written parser. So GCC gives a way to have a simple bootstrap compiler
and a possbility to compile Elna programs for different platforms.
## Grammar
```ebnf
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";
letter = "A" | "B" | … | "Z" | "a" | "b" | … | "z";
ident = letter { letter | digit | "_" };
integer = digit { digit };
float = integer "." integer;
boolean = "true" | "false";
literal = integer | float | boolean | "'" character "'" | """ { character } """;
program = [ "type" type_definitions ";" ]
[ constant_part ]
{ procedure_definition }
[ variable_part ]
"begin" [ statement_list ] "end" ".";
procedure_definition = "proc" ident formal_parameter_list ";" ( block | "extern" ) ";";
block = [ constant_part ]
[ variable_part ]
statement;
constant_part = "const" ident "=" integer { "," ident "=" integer } ";";
variable_part = "var" variable_declarations ";";
statement = ident ":=" expression
| ident actual_parameter_list
| while_do
| if_then_else;
while_do = "while" condition "do" [ statement_list ] "end";
if_then_else = "if" expression
"then" [ statement_list ]
[ else statement_list ] "end";
statement_list = statement {";" statement };
condition = "odd" expression |
expression ("="|"#"|"<"|"<="|">"|">=") expression;
comparison_operator = "=", "/=", "<", ">", "<=", ">=";
unary_prefix = "not", "@";
expression = logical_operand { ("and" | "or") logical_operand };
logical_operand = comparand { comparison_operator comparand };
comparand = summand { ("+" | "-") summand };
summand = factor { ("*" | "/") factor };
factor = pointer { unary_prefix pointer };
pointer = literal
| designator_expression { $$ = $1; }
| "(" expression ")";
designator_expression = designator_expression "[" expression "]"
| designator_expression "." ident
| designator_expression "^"
| ident;
formal_parameter_list = "(" [ variable_declarations ] ")";
actual_parameter_list = "(" [ expressions ] ")";
expressions = expression { "," expression };
variable_declarations = variable_declaration { ";" variable_declaration };
variable_declaration = ident ":" type_expression;
type_expression = "array" integer "of" type_expression
| "pointer" "to" type_expression
| "record" field_list "end"
| "union" field_list "end"
| ident;
field_list = field_declaration { ";" field_declaration };
field_declaration = ident ":" type_expression;
```

View File

@ -1,15 +0,0 @@
# MacOS:
# ---
# CC=gcc-14 CXX=g++-14 \
# CFLAGS="-I/opt/homebrew/Cellar/flex/2.6.4_2/include" \
# CXXFLAGS="-I/opt/homebrew/Cellar/flex/2.6.4_2/include" \
# ../gcc-14.2.0/configure \
# --disable-bootstrap \
# --enable-languages=c,c++,elna \
# --with-sysroot=/Library/Developer/CommandLineTools/SDKs/MacOSX15.2.sdk \
# --prefix=$(realpath ../gcc-install)
task :default do
sh 'make -C build'
sh './build/bin/elna'
end

10
TODO Normal file
View File

@ -0,0 +1,10 @@
# ELF generation
- Don't ignore relocations where the symbol is not defined in the symbol table.
Report an error about an undefined symbol.
# Register allocation
- Each temporary variable gets a tn register where n is the variable index. If
there more variables the allocation will fail with out of bounds runtime
error. Implement spill over.

View File

@ -1,41 +0,0 @@
#include <elna/source/driver.h>
#include "parser.hh"
#include <sstream>
constexpr std::size_t pointer_size = 4;
int main()
{
elna::source::driver driver{ "-" };
std::istringstream inp(R"(
proc f();
begin
end;
var x: Int;
begin
x := 4 + 2
end.
)");
elna::source::lexer lexer(inp);
yy::parser parser(lexer, driver);
if (auto result = parser())
{
for (const auto& error : driver.errors())
{
std::cerr << error->path << ':'
<< error->line() << ':' << error->column()
<< ": error: " << error->what()
<< '.' << std::endl;
}
return result;
}
for (auto& definition : driver.tree->definitions())
{
std::cout << "Definition identifier: " << definition->identifier() << std::endl;
}
return 0;
}

View File

@ -1,4 +0,0 @@
language="elna"
gcc_subdir="elna/gcc"
. ${srcdir}/elna/gcc/config-lang.in

88
elna.cabal Normal file
View File

@ -0,0 +1,88 @@
cabal-version: 3.4
name: elna
version: 0.1.0.0
synopsis:
Elna programming language compiles simple mathematical operations to RISC-V code
license: MPL-2.0
license-file: LICENSE
author: Eugen Wissner
maintainer: belka@caraus.de
category: Language
build-type: Simple
extra-doc-files: TODO README
common warnings
build-depends:
base >=4.7 && <5,
bytestring ^>= 0.12.1,
filepath ^>= 1.5.3,
megaparsec ^>= 9.6,
optparse-applicative ^>= 0.18.1,
vector ^>= 0.13.1,
text ^>= 2.0
ghc-options: -Wall
default-extensions:
DataKinds,
ExplicitForAll,
LambdaCase,
OverloadedStrings,
DuplicateRecordFields,
RecordWildCards
default-language: GHC2021
library elna-internal
import: warnings
exposed-modules:
Language.Elna.Architecture.RiscV
Language.Elna.Backend.Allocator
Language.Elna.Backend.Intermediate
Language.Elna.Driver
Language.Elna.Driver.CommandLine
Language.Elna.Frontend.AST
Language.Elna.Frontend.NameAnalysis
Language.Elna.Frontend.Parser
Language.Elna.Frontend.SymbolTable
Language.Elna.Frontend.TypeAnalysis
Language.Elna.Frontend.Types
Language.Elna.Glue
Language.Elna.Location
Language.Elna.Object.Elf
Language.Elna.Object.ElfCoder
Language.Elna.Object.StringTable
Language.Elna.RiscV.CodeGenerator
Language.Elna.RiscV.ElfWriter
build-depends:
exceptions ^>= 0.10,
hashable ^>= 1.4.3,
parser-combinators ^>= 1.3,
transformers ^>= 0.6.1,
unordered-containers ^>= 0.2.20
hs-source-dirs: lib
executable elna
import: warnings
main-is: Main.hs
build-depends:
elna:elna-internal
hs-source-dirs: src
test-suite elna-test
import: warnings
type: exitcode-stdio-1.0
main-is: Spec.hs
other-modules:
Language.Elna.NameAnalysisSpec
Language.Elna.ParserSpec
hs-source-dirs:
tests
ghc-options: -threaded -rtsopts -with-rtsopts=-N -Wall
build-depends:
elna:elna-internal,
hspec >= 2.10.9 && < 2.12,
hspec-expectations ^>= 0.8.2,
hspec-megaparsec ^>= 2.2.0,
text
build-tool-depends:
hspec-discover:hspec-discover

View File

@ -1,154 +0,0 @@
type
T = array 5 of Int,
R = record
x: Int;
y: Int
end,
U = union
a: Int;
b: Int
end;
proc test_string();
var s: String;
begin
s := "Test string.";
writei("");
writei(s)
end;
proc test_array();
var a: T, x: Int;
begin
a[0] := 2;
a[1] := 5;
writei("");
writei("Test array:");
x := 0;
while x < 2 do
writei(a[x]);
x := x + 1
end
end;
proc test_pointer();
var x: Int, p: pointer to Int;
begin
x := 5;
p := @x;
writei("");
writei("Test pointer:");
writei(p);
writei(p^)
end;
proc test_record();
var r: R;
begin
writei("");
writei("Test record:");
r.x := 4;
r.y := 8;
writei(r.y)
end;
proc test_union();
var u: U;
begin
writei("");
writei("Test union:");
u.a := 9;
writei(u.b)
end;
proc test_primitive();
var c: Char, z: Float;
begin
c := 'x';
z := 8.2;
writei("");
writei("Test primitives:");
writei(c);
writei(z)
end;
proc test_const();
const t = 5;
var x: Int;
begin
x := t;
writei("");
writei("Test const:");
writei(x)
end;
proc test_if();
var x: Bool, y: Bool;
begin
x := true;
y := false;
writei("");
if x and y then
writei("Test if: True")
else
writei("Test if: False")
end
end;
proc test_not();
var x: Bool;
begin
x := false;
writei("");
if not x then
writei("Test not true.")
else
writei("Test not false")
end
end;
proc test_param(d: Int, e: Int);
begin
writei("");
writei("Test param");
writei(d);
writei(e)
end;
proc test_const_char();
const x = 'u';
begin
writei("");
writei("Test constant character");
writei(x)
end;
proc exit(code: Int); extern;
begin
test_primitive();
test_string();
test_array();
test_pointer();
test_record();
test_const();
test_if();
test_not();
test_param(8, 7);
test_const_char();
test_union();
exit(0)
end.

View File

@ -1,112 +0,0 @@
ELNA_INSTALL_NAME := $(shell echo gelna|sed '$(program_transform_name)')
ELNA_TARGET_INSTALL_NAME := $(target_noncanonical)-$(shell echo gelna|sed '$(program_transform_name)')
elna: elna1$(exeext)
.PHONY: elna
# Driver
ELNA_OBJS = \
$(GCC_OBJS) \
elna/elna-spec.o \
$(END)
gelna$(exeext): $(ELNA_OBJS) $(EXTRA_GCC_OBJS) libcommon-target.a $(LIBDEPS)
+$(LINKER) $(ALL_LINKERFLAGS) $(LDFLAGS) -o $@ \
$(ELNA_OBJS) $(EXTRA_GCC_OBJS) libcommon-target.a \
$(EXTRA_GCC_LIBS) $(LIBS)
# The compiler proper
elna_OBJS = \
elna/elna1.o \
elna/elna-generic.o \
elna/elna-convert.o \
elna/elna-diagnostic.o \
elna/elna-tree.o \
elna/ast.o \
elna/driver.o \
elna/lexer.o \
elna/parser.o \
elna/result.o \
$(END)
elna1$(exeext): attribs.o $(elna_OBJS) $(BACKEND) $(LIBDEPS)
+$(LLINKER) $(ALL_LINKERFLAGS) $(LDFLAGS) -o $@ \
attribs.o $(elna_OBJS) $(BACKEND) $(LIBS) $(BACKENDLIBS)
elna.all.cross:
elna.start.encap: gelna$(exeext)
elna.rest.encap:
# No elna-specific selftests.
selftest-elna:
elna.install-common: installdirs
-rm -f $(DESTDIR)$(bindir)/$(ELNA_INSTALL_NAME)$(exeext)
$(INSTALL_PROGRAM) gelna$(exeext) $(DESTDIR)$(bindir)/$(ELNA_INSTALL_NAME)$(exeext)
rm -f $(DESTDIR)$(bindir)/$(ELNA_TARGET_INSTALL_NAME)$(exeext); \
( cd $(DESTDIR)$(bindir) && \
$(LN) $(ELNA_INSTALL_NAME)$(exeext) $(ELNA_TARGET_INSTALL_NAME)$(exeext) ); \
# Required goals, they still do nothing
elna.install-man:
elna.install-info:
elna.install-pdf:
elna.install-plugin:
elna.install-html:
elna.info:
elna.dvi:
elna.pdf:
elna.html:
elna.man:
elna.mostlyclean:
elna.clean:
elna.distclean:
elna.maintainer-clean:
# make uninstall
elna.uninstall:
-rm -f gelna$(exeext) elna1$(exeext)
-rm -f $(elna_OBJS)
# Used for handling bootstrap
elna.stage1: stage1-start
-mv elna/*$(objext) stage1/elna
elna.stage2: stage2-start
-mv elna/*$(objext) stage2/elna
elna.stage3: stage3-start
-mv elna/*$(objext) stage3/elna
elna.stage4: stage4-start
-mv elna/*$(objext) stage4/elna
elna.stageprofile: stageprofile-start
-mv elna/*$(objext) stageprofile/elna
elna.stagefeedback: stagefeedback-start
-mv elna/*$(objext) stagefeedback/elna
ELNA_INCLUDES = -I $(srcdir)/elna/include -I elna/generated
elna/%.o: elna/source/%.cc elna/generated/parser.hh elna/generated/location.hh
$(COMPILE) $(ELNA_INCLUDES) $<
$(POSTCOMPILE)
elna/%.o: elna/generated/%.cc elna/generated/parser.hh elna/generated/location.hh
$(COMPILE) $(ELNA_INCLUDES) $<
$(POSTCOMPILE)
elna/%.o: elna/gcc/%.cc elna/generated/parser.hh elna/generated/location.hh
$(COMPILE) $(ELNA_INCLUDES) $<
$(POSTCOMPILE)
elna/generated/parser.cc: elna/source/parser.yy
mkdir -p $(dir $@)
$(BISON) -d -o $@ $<
elna/generated/parser.hh elna/generated/location.hh: elna/generated/parser.cc
@touch $@
elna/generated/lexer.cc: elna/source/lexer.ll
mkdir -p $(dir $@)
$(FLEX) -o $@ $<

View File

@ -1,13 +0,0 @@
language="elna"
gcc_subdir="elna/gcc"
compilers="elna1\$(exeext)"
target_libs=""
gtfiles="\$(srcdir)/elna/gcc/elna1.cc"
lang_requires_boot_languages=c++
# Do not build by default
build_by_default="no"

View File

@ -1,14 +0,0 @@
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "fold-const.h"
#include "convert.h"
/* Creates an expression whose value is that of EXPR, converted to type TYPE.
This function implements all reasonable scalar conversions. */
tree convert(tree /* type */, tree expr)
{
return expr;
}

View File

@ -1,61 +0,0 @@
#include "elna/gcc/elna-diagnostic.h"
#include "elna/gcc/elna-tree.h"
namespace elna
{
namespace gcc
{
location_t get_location(const elna::source::position *position)
{
linemap_line_start(line_table, position->line, 0);
return linemap_position_for_column(line_table, position->column);
}
const char *print_type(tree type)
{
gcc_assert(TYPE_P(type));
if (type == integer_type_node)
{
return "Int";
}
else if (type == boolean_type_node)
{
return "Bool";
}
else if (type == double_type_node)
{
return "Float";
}
else if (type == elna_char_type_node)
{
return "Char";
}
else if (is_string_type(type))
{
return "String";
}
else if (is_pointer_type(type))
{
return "pointer";
}
else if (TREE_CODE(type) == ARRAY_TYPE)
{
return "array";
}
else if (TREE_CODE(type) == RECORD_TYPE)
{
return "record";
}
else if (TREE_CODE(type) == UNION_TYPE)
{
return "union";
}
else
{
return "<<unknown-type>>";
}
}
}
}

View File

@ -1,859 +0,0 @@
#include "elna/gcc/elna-generic.h"
#include "elna/gcc/elna-diagnostic.h"
#include "input.h"
#include "cgraph.h"
#include "gimplify.h"
#include "stringpool.h"
#include "diagnostic.h"
#include "realmpfr.h"
#include "stor-layout.h"
#include "varasm.h"
#include <set>
namespace elna
{
namespace gcc
{
generic_visitor::generic_visitor(std::shared_ptr<source::symbol_table<tree>> symbol_table)
{
this->symbol_map = symbol_table;
}
void generic_visitor::visit(source::call_expression *statement)
{
auto symbol = this->symbol_map->lookup(statement->name());
if (statement->name() == "writei")
{
if (statement->arguments().size() != 1)
{
error_at(get_location(&statement->position()),
"procedure '%s' expects 1 argument, %lu given",
statement->name().c_str(), statement->arguments().size());
return;
}
auto& argument = statement->arguments().at(0);
argument->accept(this);
auto argument_type = TREE_TYPE(this->current_expression);
const char *format_number{ nullptr };
if (argument_type == integer_type_node)
{
format_number = "%d\n";
}
else if (argument_type == double_type_node)
{
format_number = "%f\n";
}
else if (argument_type == elna_char_type_node)
{
format_number = "%c\n";
}
else if (is_string_type(argument_type))
{
format_number = "%s\n";
}
else if (is_pointer_type(argument_type))
{
format_number = "%p\n";
}
else
{
error_at(get_location(&argument->position()),
"invalid argument of type %s for procedure %s",
print_type(argument_type), statement->name().c_str());
this->current_expression = error_mark_node;
return;
}
tree args[] = {
build_string_literal(strlen(format_number) + 1, format_number),
this->current_expression
};
tree fndecl_type_param[] = {
build_pointer_type(build_qualified_type(char_type_node, TYPE_QUAL_CONST)) /* const char* */
};
tree fndecl_type = build_varargs_function_type_array(integer_type_node, 1, fndecl_type_param);
tree printf_fn_decl = build_fn_decl("printf", fndecl_type);
DECL_EXTERNAL(printf_fn_decl) = 1;
tree printf_fn = build1(ADDR_EXPR, build_pointer_type(fndecl_type), printf_fn_decl);
tree stmt = build_call_array(integer_type_node, printf_fn, 2, args);
append_to_statement_list(stmt, &this->current_statements);
this->current_expression = NULL_TREE;
}
else if (symbol)
{
tree return_type = TREE_TYPE(TREE_TYPE(symbol->payload));
tree fndecl_type = build_function_type(return_type, TYPE_ARG_TYPES(symbol->payload));
tree printf_fn = build1(ADDR_EXPR, build_pointer_type(fndecl_type), symbol->payload);
std::vector<tree> arguments(statement->arguments().size());
for (std::size_t i = 0; i < statement->arguments().size(); ++i)
{
statement->arguments().at(i)->accept(this);
arguments[i] = this->current_expression;
}
tree stmt = build_call_array_loc(get_location(&statement->position()),
return_type, printf_fn, arguments.size(), arguments.data());
if (return_type == void_type_node)
{
append_to_statement_list(stmt, &this->current_statements);
this->current_expression = NULL_TREE;
}
else
{
this->current_expression = stmt;
}
}
else
{
error_at(get_location(&statement->position()),
"procedure '%s' not declared",
statement->name().c_str());
}
}
void generic_visitor::visit(source::program *program)
{
for (const auto& constant : program->type_definitions)
{
constant->accept(this);
}
tree parameter_types[] = {
integer_type_node,
build_pointer_type(build_pointer_type(char_type_node))
};
tree declaration_type = build_function_type_array(integer_type_node, 2, parameter_types);
this->main_fndecl = build_fn_decl("main", declaration_type);
tree resdecl = build_decl(UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, integer_type_node);
DECL_CONTEXT(resdecl) = this->main_fndecl;
DECL_RESULT(this->main_fndecl) = resdecl;
enter_scope();
for (const auto definition : program->value_definitions)
{
definition->accept(this);
}
for (const auto body_statement : program->body)
{
body_statement->accept(this);
}
tree set_result = build2(INIT_EXPR, void_type_node, DECL_RESULT(main_fndecl),
build_int_cst_type(integer_type_node, 0));
tree return_stmt = build1(RETURN_EXPR, void_type_node, set_result);
append_to_statement_list(return_stmt, &this->current_statements);
tree_symbol_mapping mapping = leave_scope();
BLOCK_SUPERCONTEXT(mapping.block()) = this->main_fndecl;
DECL_INITIAL(this->main_fndecl) = mapping.block();
DECL_SAVED_TREE(this->main_fndecl) = mapping.bind_expression();
DECL_EXTERNAL(this->main_fndecl) = 0;
DECL_PRESERVE_P(this->main_fndecl) = 1;
gimplify_function_tree(this->main_fndecl);
cgraph_node::finalize_function(this->main_fndecl, true);
}
void generic_visitor::visit(source::procedure_definition *definition)
{
std::vector<tree> parameter_types(definition->parameters.size());
for (std::size_t i = 0; i < definition->parameters.size(); ++i)
{
parameter_types[i] = build_type(definition->parameters.at(i)->type());
}
tree return_type = definition->return_type() == nullptr
? void_type_node
: build_type(*definition->return_type());
tree declaration_type = build_function_type_array(return_type,
definition->parameters.size(), parameter_types.data());
this->main_fndecl = build_fn_decl(definition->identifier().c_str(), declaration_type);
this->symbol_map->enter(definition->identifier(), source::make_info(this->main_fndecl));
if (definition->body() != nullptr)
{
tree resdecl = build_decl(UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, return_type);
DECL_CONTEXT(resdecl) = this->main_fndecl;
DECL_RESULT(this->main_fndecl) = resdecl;
enter_scope();
}
gcc::tree_chain argument_chain;
for (std::size_t i = 0; i < definition->parameters.size(); ++i)
{
auto parameter = definition->parameters.at(i);
tree declaration_tree = build_decl(get_location(&parameter->position()), PARM_DECL,
get_identifier(parameter->identifier().c_str()), parameter_types[i]);
DECL_CONTEXT(declaration_tree) = this->main_fndecl;
DECL_ARG_TYPE(declaration_tree) = parameter_types[i];
if (definition->body() != nullptr)
{
this->symbol_map->enter(parameter->identifier(), source::make_info(declaration_tree));
}
argument_chain.append(declaration_tree);
}
DECL_ARGUMENTS(this->main_fndecl) = argument_chain.head();
if (definition->body() != nullptr)
{
definition->body()->accept(this);
tree_symbol_mapping mapping = leave_scope();
BLOCK_SUPERCONTEXT(mapping.block()) = this->main_fndecl;
DECL_INITIAL(this->main_fndecl) = mapping.block();
DECL_SAVED_TREE(this->main_fndecl) = mapping.bind_expression();
DECL_EXTERNAL(this->main_fndecl) = 0;
DECL_PRESERVE_P(this->main_fndecl) = 1;
gimplify_function_tree(this->main_fndecl);
cgraph_node::finalize_function(this->main_fndecl, true);
}
else
{
DECL_EXTERNAL(this->main_fndecl) = 1;
}
}
void generic_visitor::enter_scope()
{
this->current_statements = alloc_stmt_list();
this->variable_chain = tree_chain();
this->symbol_map = std::make_shared<source::symbol_table<tree>>(this->symbol_map);
}
tree_symbol_mapping generic_visitor::leave_scope()
{
tree new_block = build_block(variable_chain.head(),
NULL_TREE, NULL_TREE, NULL_TREE);
tree bind_expr = build3(BIND_EXPR, void_type_node, variable_chain.head(),
this->current_statements, new_block);
this->symbol_map = this->symbol_map->scope();
return tree_symbol_mapping{ bind_expr, new_block };
}
void generic_visitor::visit(source::number_literal<std::int32_t> *literal)
{
this->current_expression = build_int_cst_type(integer_type_node, literal->number());
}
void generic_visitor::visit(source::number_literal<double> *literal)
{
REAL_VALUE_TYPE real_value1;
mpfr_t number;
mpfr_init2(number, SIGNIFICAND_BITS);
mpfr_set_d(number, literal->number(), MPFR_RNDN);
real_from_mpfr(&real_value1, number, double_type_node, MPFR_RNDN);
this->current_expression = build_real(double_type_node, real_value1);
mpfr_clear(number);
}
void generic_visitor::visit(source::number_literal<bool> *boolean)
{
this->current_expression = build_int_cst_type(boolean_type_node, boolean->number());
}
void generic_visitor::visit(source::number_literal<unsigned char> *character)
{
this->current_expression = build_int_cstu(elna_char_type_node, character->number());
}
void generic_visitor::visit(source::string_literal *string)
{
this->current_expression = build_string_literal(string->string().size() + 1, string->string().c_str());
}
void generic_visitor::build_binary_operation(bool condition, source::binary_expression *expression,
tree_code operator_code, tree left, tree right, tree target_type)
{
auto expression_location = get_location(&expression->position());
auto left_type = TREE_TYPE(left);
auto right_type = TREE_TYPE(right);
if (condition)
{
this->current_expression = build2_loc(expression_location,
operator_code, target_type, left, right);
}
else
{
error_at(expression_location,
"invalid operands of type %s and %s for operator %s",
print_type(left_type), print_type(right_type),
elna::source::print_binary_operator(expression->operation()));
this->current_expression = error_mark_node;
}
}
void generic_visitor::visit(source::binary_expression *expression)
{
expression->lhs().accept(this);
auto left = this->current_expression;
auto left_type = TREE_TYPE(left);
expression->rhs().accept(this);
auto right = this->current_expression;
auto right_type = TREE_TYPE(right);
auto expression_location = get_location(&expression->position());
tree_code operator_code = ERROR_MARK;
tree target_type = error_mark_node;
if (left_type != right_type)
{
error_at(expression_location,
"invalid operands of type %s and %s for operator %s",
print_type(left_type), print_type(right_type),
elna::source::print_binary_operator(expression->operation()));
this->current_expression = error_mark_node;
return;
}
switch (expression->operation())
{
case source::binary_operator::sum:
operator_code = PLUS_EXPR;
target_type = left_type;
break;
case source::binary_operator::subtraction:
operator_code = MINUS_EXPR;
target_type = left_type;
break;
case source::binary_operator::division:
operator_code = TRUNC_DIV_EXPR;
target_type = left_type;
break;
case source::binary_operator::multiplication:
operator_code = MULT_EXPR;
target_type = left_type;
break;
case source::binary_operator::less:
operator_code = LT_EXPR;
target_type = boolean_type_node;
break;
case source::binary_operator::greater:
operator_code = GT_EXPR;
target_type = boolean_type_node;
break;
case source::binary_operator::less_equal:
operator_code = LE_EXPR;
target_type = boolean_type_node;
break;
case source::binary_operator::greater_equal:
operator_code = GE_EXPR;
target_type = boolean_type_node;
break;
default:
break;
}
if (operator_code != ERROR_MARK) // An arithmetic operation.
{
build_binary_operation(left_type == integer_type_node || left_type == double_type_node,
expression, operator_code, left, right, target_type);
return;
}
switch (expression->operation())
{
case source::binary_operator::conjunction:
operator_code = TRUTH_ANDIF_EXPR;
target_type = boolean_type_node;
break;
case source::binary_operator::disjunction:
operator_code = TRUTH_ORIF_EXPR;
target_type = boolean_type_node;
break;
default:
break;
}
if (operator_code != ERROR_MARK) // A logical operation.
{
build_binary_operation(left_type == boolean_type_node,
expression, operator_code, left, right, target_type);
return;
}
switch (expression->operation())
{
case source::binary_operator::equals:
operator_code = EQ_EXPR;
target_type = boolean_type_node;
break;
case source::binary_operator::not_equals:
operator_code = NE_EXPR;
target_type = boolean_type_node;
break;
default:
break;
}
gcc_assert(operator_code != ERROR_MARK);
gcc_assert(target_type != error_mark_node);
this->current_expression = build2_loc(expression_location,
operator_code, target_type, left, right);
}
void generic_visitor::visit(source::unary_expression *expression)
{
expression->operand().accept(this);
switch (expression->operation())
{
case source::unary_operator::reference:
this->current_expression = build1_loc(get_location(&expression->position()), ADDR_EXPR,
build_pointer_type_for_mode(TREE_TYPE(this->current_expression), VOIDmode, true),
this->current_expression);
break;
case source::unary_operator::negation:
this->current_expression = build1_loc(get_location(&expression->position()), TRUTH_NOT_EXPR,
boolean_type_node, this->current_expression);
break;
}
}
void generic_visitor::visit(source::constant_definition *definition)
{
location_t definition_location = get_location(&definition->position());
definition->body().accept(this);
tree definition_tree = build_decl(definition_location, CONST_DECL,
get_identifier(definition->identifier().c_str()), TREE_TYPE(this->current_expression));
auto result = this->symbol_map->enter(definition->identifier(), source::make_info(definition_tree));
if (result)
{
DECL_INITIAL(definition_tree) = this->current_expression;
TREE_CONSTANT(definition_tree) = 1;
TREE_READONLY(definition_tree) = 1;
auto declaration_statement = build1_loc(definition_location, DECL_EXPR,
void_type_node, definition_tree);
append_to_statement_list(declaration_statement, &this->current_statements);
}
else
{
error_at(definition_location,
"variable '%s' already declared in this scope",
definition->identifier().c_str());
}
this->current_expression = NULL_TREE;
}
void generic_visitor::visit(source::type_definition *definition)
{
tree tree_type = build_type(definition->body());
if (tree_type == NULL_TREE)
{
return;
}
location_t definition_location = get_location(&definition->position());
tree definition_tree = build_decl(definition_location, TYPE_DECL,
get_identifier(definition->identifier().c_str()), tree_type);
auto result = this->symbol_map->enter(definition->identifier(), source::make_info(tree_type));
if (result)
{
DECL_CONTEXT(definition_tree) = this->main_fndecl;
variable_chain.append(definition_tree);
auto declaration_statement = build1_loc(definition_location, DECL_EXPR,
void_type_node, definition_tree);
append_to_statement_list(declaration_statement, &this->current_statements);
}
else
{
error_at(definition_location,
"type '%s' already declared in this scope",
definition->identifier().c_str());
}
}
tree generic_visitor::build_type(source::type_expression& type)
{
if (source::basic_type_expression *basic_type = type.is_basic())
{
auto symbol = this->symbol_map->lookup(basic_type->base_name());
if (symbol && TYPE_P(symbol->payload))
{
return symbol->payload;
}
error_at(get_location(&basic_type->position()),
"type '%s' not declared", basic_type->base_name().c_str());
return error_mark_node;
}
else if (source::array_type_expression *array_type = type.is_array())
{
tree lower_bound = build_int_cst_type(integer_type_node, 0);
tree upper_bound = build_int_cst_type(integer_type_node, array_type->size);
tree base_type = build_type(array_type->base());
if (base_type == NULL_TREE || base_type == error_mark_node)
{
return base_type;
}
tree range_type = build_range_type(integer_type_node, lower_bound, upper_bound);
return build_array_type(base_type, range_type);
}
else if (source::pointer_type_expression *pointer_type = type.is_pointer())
{
tree base_type = build_type(pointer_type->base());
if (base_type == NULL_TREE || base_type == error_mark_node)
{
return base_type;
}
return build_pointer_type_for_mode(base_type, VOIDmode, true);
}
else if (source::record_type_expression *record_type = type.is_record())
{
std::set<std::string> field_names;
tree record_type_node = make_node(RECORD_TYPE);
tree_chain record_chain;
for (auto& field : record_type->fields)
{
if (field_names.find(field.first) != field_names.cend())
{
error_at(get_location(&field.second->position()), "repeated field name");
return error_mark_node;
}
field_names.insert(field.first);
tree field_type = build_type(*field.second);
if (field_type == NULL_TREE || field_type == error_mark_node)
{
return field_type;
}
tree field_declaration = build_decl(get_location(&field.second->position()),
FIELD_DECL, get_identifier(field.first.c_str()), field_type);
TREE_ADDRESSABLE(field_declaration) = 1;
DECL_CONTEXT(field_declaration) = record_type_node;
record_chain.append(field_declaration);
}
TYPE_FIELDS(record_type_node) = record_chain.head();
layout_type(record_type_node);
return record_type_node;
}
else if (source::union_type_expression *union_type = type.is_union())
{
std::set<std::string> field_names;
tree union_type_node = make_node(UNION_TYPE);
tree_chain union_chain;
for (auto& field : union_type->fields)
{
if (field_names.find(field.first) != field_names.cend())
{
error_at(get_location(&field.second->position()), "repeated field name");
return error_mark_node;
}
field_names.insert(field.first);
tree field_type = build_type(*field.second);
if (field_type == NULL_TREE || field_type == error_mark_node)
{
return field_type;
}
tree field_declaration = build_decl(get_location(&field.second->position()),
FIELD_DECL, get_identifier(field.first.c_str()), field_type);
TREE_ADDRESSABLE(field_declaration) = 1;
DECL_CONTEXT(field_declaration) = union_type_node;
union_chain.append(field_declaration);
}
TYPE_FIELDS(union_type_node) = union_chain.head();
layout_type(union_type_node);
return union_type_node;
}
return NULL_TREE;
}
void generic_visitor::visit(source::variable_declaration *declaration)
{
tree declaration_type = build_type(declaration->type());
gcc_assert(declaration_type != NULL_TREE);
auto declaration_location = get_location(&declaration->position());
tree declaration_tree = build_decl(declaration_location, VAR_DECL,
get_identifier(declaration->identifier().c_str()), declaration_type);
auto result = this->symbol_map->enter(declaration->identifier(), source::make_info(declaration_tree));
if (result)
{
DECL_CONTEXT(declaration_tree) = this->main_fndecl;
variable_chain.append(declaration_tree);
auto declaration_statement = build1_loc(declaration_location, DECL_EXPR,
void_type_node, declaration_tree);
append_to_statement_list(declaration_statement, &this->current_statements);
}
else
{
error_at(declaration_location,
"variable '%s' already declared in this scope",
declaration->identifier().c_str());
}
}
void generic_visitor::visit(source::variable_expression *expression)
{
auto symbol = this->symbol_map->lookup(expression->name());
if (!symbol)
{
error_at(get_location(&expression->position()),
"variable '%s' not declared in the current scope",
expression->name().c_str());
this->current_expression = error_mark_node;
return;
}
this->current_expression = symbol->payload;
}
void generic_visitor::visit(source::array_access_expression *expression)
{
expression->base().accept(this);
tree designator = this->current_expression;
expression->index().accept(this);
tree index = this->current_expression;
tree element_type = TREE_TYPE(TREE_TYPE(designator));
this->current_expression = build4_loc(get_location(&expression->position()),
ARRAY_REF, element_type, designator, index, NULL_TREE, NULL_TREE);
}
void generic_visitor::visit(source::field_access_expression *expression)
{
expression->base().accept(this);
tree field_declaration = TYPE_FIELDS(TREE_TYPE(this->current_expression));
while (field_declaration != NULL_TREE)
{
tree declaration_name = DECL_NAME(field_declaration);
const char *identifier_pointer = IDENTIFIER_POINTER(declaration_name);
if (expression->field() == identifier_pointer)
{
break;
}
field_declaration = TREE_CHAIN(field_declaration);
}
location_t expression_location = get_location(&expression->position());
if (field_declaration == NULL_TREE)
{
error_at(expression_location,
"record type does not have a field named '%s'",
expression->field().c_str());
this->current_expression = error_mark_node;
}
else
{
this->current_expression = build3_loc(expression_location, COMPONENT_REF,
TREE_TYPE(field_declaration), this->current_expression,
field_declaration, NULL_TREE);
}
}
void generic_visitor::visit(source::dereference_expression *expression)
{
expression->base().accept(this);
this->current_expression = build1_loc(get_location(&expression->position()), INDIRECT_REF,
TREE_TYPE(TREE_TYPE(this->current_expression)), this->current_expression);
}
void generic_visitor::visit(source::assign_statement *statement)
{
statement->lvalue().accept(this);
auto lvalue = this->current_expression;
auto statement_location = get_location(&statement->position());
statement->rvalue().accept(this);
if (TREE_CODE(lvalue) == CONST_DECL)
{
error_at(statement_location, "cannot modify constant '%s'",
statement->lvalue().is_variable()->name().c_str());
this->current_expression = error_mark_node;
return;
}
if (TREE_TYPE(this->current_expression) != TREE_TYPE(lvalue))
{
error_at(statement_location,
"cannot assign value of type %s to variable of type %s",
print_type(TREE_TYPE(this->current_expression)),
print_type(TREE_TYPE(lvalue)));
this->current_expression = error_mark_node;
return;
}
auto assignment = build2_loc(statement_location, MODIFY_EXPR,
void_type_node, lvalue, this->current_expression);
append_to_statement_list(assignment, &this->current_statements);
this->current_expression = NULL_TREE;
}
void generic_visitor::visit(source::if_statement *statement)
{
statement->prerequisite().accept(this);
if (TREE_TYPE(this->current_expression) != boolean_type_node)
{
error_at(get_location(&statement->prerequisite().position()),
"expected expression of boolean type but its type is %s",
print_type(TREE_TYPE(this->current_expression)));
this->current_expression = error_mark_node;
return;
}
auto then_location = get_location(&statement->body().position());
auto prerequisite_location = get_location(&statement->prerequisite().position());
auto then_label_decl = build_label_decl("then", then_location);
auto endif_label_decl = build_label_decl("end_if", then_location);
auto goto_then = build1_loc(prerequisite_location, GOTO_EXPR,
void_type_node, then_label_decl);
auto goto_endif = build1_loc(prerequisite_location, GOTO_EXPR,
void_type_node, endif_label_decl);
tree else_label_decl = NULL_TREE;
tree goto_else_or_endif = NULL_TREE;
if (statement->alternative() != nullptr)
{
auto else_location = get_location(&statement->alternative()->position());
else_label_decl = build_label_decl("else", else_location);
goto_else_or_endif = build1_loc(else_location, GOTO_EXPR, void_type_node, else_label_decl);
}
else
{
goto_else_or_endif = goto_endif;
}
auto cond_expr = build3_loc(prerequisite_location, COND_EXPR,
void_type_node, this->current_expression, goto_then, goto_else_or_endif);
append_to_statement_list(cond_expr, &this->current_statements);
auto then_label_expr = build1_loc(then_location, LABEL_EXPR,
void_type_node, then_label_decl);
append_to_statement_list(then_label_expr, &this->current_statements);
statement->body().accept(this);
if (statement->alternative() != nullptr)
{
append_to_statement_list(goto_endif, &this->current_statements);
auto else_label_expr = build1(LABEL_EXPR, void_type_node, else_label_decl);
append_to_statement_list(else_label_expr, &this->current_statements);
statement->alternative()->accept(this);
}
auto endif_label_expr = build1(LABEL_EXPR, void_type_node, endif_label_decl);
append_to_statement_list(endif_label_expr, &this->current_statements);
this->current_expression = NULL_TREE;
}
tree generic_visitor::build_label_decl(const char *name, location_t loc)
{
auto label_decl = build_decl(loc,
LABEL_DECL, get_identifier(name), void_type_node);
DECL_CONTEXT(label_decl) = this->main_fndecl;
return label_decl;
}
void generic_visitor::visit(source::while_statement *statement)
{
statement->prerequisite().accept(this);
if (TREE_TYPE(this->current_expression) != boolean_type_node)
{
error_at(get_location(&statement->prerequisite().position()),
"expected expression of boolean type but its type is %s",
print_type(TREE_TYPE(this->current_expression)));
this->current_expression = error_mark_node;
return;
}
auto prerequisite_location = get_location(&statement->prerequisite().position());
auto body_location = get_location(&statement->body().position());
auto prerequisite_label_decl = build_label_decl("while_check", prerequisite_location);
auto prerequisite_label_expr = build1_loc(prerequisite_location, LABEL_EXPR,
void_type_node, prerequisite_label_decl);
append_to_statement_list(prerequisite_label_expr, &this->current_statements);
auto body_label_decl = build_label_decl("while_body", body_location);
auto end_label_decl = build_label_decl("end_while", UNKNOWN_LOCATION);
auto goto_body = build1_loc(prerequisite_location, GOTO_EXPR,
void_type_node, body_label_decl);
auto goto_end = build1_loc(prerequisite_location, GOTO_EXPR,
void_type_node, end_label_decl);
auto cond_expr = build3_loc(prerequisite_location, COND_EXPR,
void_type_node, this->current_expression, goto_body, goto_end);
append_to_statement_list(cond_expr, &this->current_statements);
auto body_label_expr = build1_loc(body_location, LABEL_EXPR,
void_type_node, body_label_decl);
append_to_statement_list(body_label_expr, &this->current_statements);
statement->body().accept(this);
auto goto_check = build1(GOTO_EXPR, void_type_node, prerequisite_label_decl);
append_to_statement_list(goto_check, &this->current_statements);
auto endif_label_expr = build1(LABEL_EXPR, void_type_node, end_label_decl);
append_to_statement_list(endif_label_expr, &this->current_statements);
this->current_expression = NULL_TREE;
}
void generic_visitor::visit(source::expression_statement *statement)
{
statement->body().accept(this);
}
void generic_visitor::visit(source::return_statement *statement)
{
source::expression *return_expression = statement->return_expression();
if (return_expression == nullptr)
{
return;
}
return_expression->accept(this);
tree set_result = build2(INIT_EXPR, void_type_node, DECL_RESULT(main_fndecl),
this->current_expression);
tree return_stmt = build1(RETURN_EXPR, void_type_node, set_result);
append_to_statement_list(return_stmt, &this->current_statements);
}
}
}

View File

@ -1,16 +0,0 @@
void
lang_specific_driver (struct cl_decoded_option ** /* in_decoded_options */,
unsigned int * /* in_decoded_options_count */,
int * /*in_added_libraries */)
{
}
/* Called before linking. Returns 0 on success and -1 on failure. */
int
lang_specific_pre_link (void)
{
return 0;
}
/* Number of extra output files that lang_specific_pre_link may generate. */
int lang_specific_extra_outfiles = 0;

View File

@ -1,85 +0,0 @@
#include "elna/gcc/elna-tree.h"
#include "stor-layout.h"
tree elna_global_trees[ELNA_TI_MAX];
namespace elna
{
namespace gcc
{
void init_ttree()
{
elna_char_type_node = make_unsigned_type(8);
elna_string_type_node = build_pointer_type(
build_qualified_type(char_type_node, TYPE_QUAL_CONST)); /* const char* */
TYPE_STRING_FLAG(elna_char_type_node) = 1;
}
bool is_pointer_type(tree type)
{
gcc_assert(TYPE_P(type));
return TREE_CODE(type) == POINTER_TYPE;
}
bool is_string_type(tree type)
{
return is_pointer_type(type)
&& TYPE_MAIN_VARIANT(TREE_TYPE(type)) == char_type_node;
}
tree tree_chain_base::head()
{
return first;
}
void tree_chain_base::append(tree t)
{
gcc_assert(t != NULL_TREE);
if (this->first == NULL_TREE)
{
this->first = this->last = t;
}
else
{
chain(t);
this->last = t;
}
}
void tree_chain::chain(tree t)
{
TREE_CHAIN(this->last) = t;
}
tree_symbol_mapping::tree_symbol_mapping(tree bind_expression, tree block)
: m_bind_expression(bind_expression), m_block(block)
{
}
tree tree_symbol_mapping::bind_expression()
{
return m_bind_expression;
}
tree tree_symbol_mapping::block()
{
return m_block;
}
std::shared_ptr<elna::source::symbol_table<tree>> builtin_symbol_table()
{
std::shared_ptr<elna::source::symbol_table<tree>> initial_table =
std::make_shared<elna::source::symbol_table<tree>>();
initial_table->enter("Int", source::make_info(integer_type_node));
initial_table->enter("Bool", source::make_info(boolean_type_node));
initial_table->enter("Float", source::make_info(double_type_node));
initial_table->enter("Char", source::make_info(elna_char_type_node));
initial_table->enter("String", source::make_info(elna_string_type_node));
return initial_table;
}
}
}

View File

@ -1,243 +0,0 @@
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "tree.h"
#include "tree-iterator.h"
#include "gimple-expr.h"
#include "diagnostic.h"
#include "opts.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "debug.h"
#include "langhooks.h"
#include "langhooks-def.h"
#include "common/common-target.h"
#include <fstream>
#include <elna/source/driver.h>
#include "elna/gcc/elna-tree.h"
#include "elna/gcc/elna-generic.h"
#include "elna/gcc/elna-diagnostic.h"
#include "parser.hh"
/* Language-dependent contents of a type. */
struct GTY (()) lang_type
{
char dummy;
};
/* Language-dependent contents of a decl. */
struct GTY (()) lang_decl
{
char dummy;
};
/* Language-dependent contents of an identifier. This must include a
tree_identifier. */
struct GTY (()) lang_identifier
{
struct tree_identifier common;
};
/* The resulting tree type. */
union GTY ((desc ("TREE_CODE (&%h.generic) == IDENTIFIER_NODE"),
chain_next ("CODE_CONTAINS_STRUCT (TREE_CODE (&%h.generic), "
"TS_COMMON) ? ((union lang_tree_node *) TREE_CHAIN "
"(&%h.generic)) : NULL"))) lang_tree_node
{
union tree_node GTY ((tag ("0"), desc ("tree_node_structure (&%h)"))) generic;
struct lang_identifier GTY ((tag ("1"))) identifier;
};
/* We don't use language_function. */
struct GTY (()) language_function
{
int dummy;
};
/* Language hooks. */
static bool elna_langhook_init(void)
{
build_common_tree_nodes(false);
elna::gcc::init_ttree();
void_list_node = build_tree_list(NULL_TREE, void_type_node);
build_common_builtin_nodes();
return true;
}
static void elna_parse_file(const char *filename)
{
std::ifstream file{ filename, std::ios::in };
if (!file)
{
fatal_error(UNKNOWN_LOCATION, "cannot open filename %s: %m", filename);
}
elna::source::driver driver{ filename };
elna::source::lexer lexer(file);
yy::parser parser(lexer, driver);
linemap_add(line_table, LC_ENTER, 0, filename, 1);
if (parser())
{
for (const auto& error : driver.errors())
{
auto gcc_location = elna::gcc::get_location(&error->position);
error_at(gcc_location, error->what().c_str());
}
}
else
{
elna::gcc::generic_visitor generic_visitor{ elna::gcc::builtin_symbol_table() };
generic_visitor.visit(driver.tree.get());
}
linemap_add(line_table, LC_LEAVE, 0, NULL, 0);
}
static void elna_langhook_parse_file(void)
{
for (unsigned int i = 0; i < num_in_fnames; i++)
{
elna_parse_file(in_fnames[i]);
}
}
static tree elna_langhook_type_for_mode(enum machine_mode mode, int unsignedp)
{
if (mode == TYPE_MODE(float_type_node))
{
return float_type_node;
}
else if (mode == TYPE_MODE(double_type_node))
{
return double_type_node;
}
if (mode == TYPE_MODE(intQI_type_node))
{
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
}
else if (mode == TYPE_MODE(intHI_type_node))
{
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
}
else if (mode == TYPE_MODE(intSI_type_node))
{
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
}
else if (mode == TYPE_MODE(intDI_type_node))
{
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
}
else if (mode == TYPE_MODE(intTI_type_node))
{
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
}
else if (mode == TYPE_MODE(integer_type_node))
{
return unsignedp ? unsigned_type_node : integer_type_node;
}
else if (mode == TYPE_MODE(long_integer_type_node))
{
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
}
else if (mode == TYPE_MODE(long_long_integer_type_node))
{
return unsignedp
? long_long_unsigned_type_node
: long_long_integer_type_node;
}
if (COMPLEX_MODE_P(mode))
{
if (mode == TYPE_MODE(complex_float_type_node))
{
return complex_float_type_node;
}
if (mode == TYPE_MODE(complex_double_type_node))
{
return complex_double_type_node;
}
if (mode == TYPE_MODE(complex_long_double_type_node))
{
return complex_long_double_type_node;
}
if (mode == TYPE_MODE(complex_integer_type_node) && !unsignedp)
{
return complex_integer_type_node;
}
}
/* gcc_unreachable */
return nullptr;
}
static tree elna_langhook_type_for_size(unsigned int bits ATTRIBUTE_UNUSED,
int unsignedp ATTRIBUTE_UNUSED)
{
gcc_unreachable();
}
/* Record a builtin function. We just ignore builtin functions. */
static tree elna_langhook_builtin_function(tree decl)
{
return decl;
}
static bool elna_langhook_global_bindings_p(void)
{
return false;
}
static tree elna_langhook_pushdecl(tree decl ATTRIBUTE_UNUSED)
{
gcc_unreachable();
}
static tree elna_langhook_getdecls(void)
{
return NULL;
}
#undef LANG_HOOKS_NAME
#define LANG_HOOKS_NAME "Elna"
#undef LANG_HOOKS_INIT
#define LANG_HOOKS_INIT elna_langhook_init
#undef LANG_HOOKS_PARSE_FILE
#define LANG_HOOKS_PARSE_FILE elna_langhook_parse_file
#undef LANG_HOOKS_TYPE_FOR_MODE
#define LANG_HOOKS_TYPE_FOR_MODE elna_langhook_type_for_mode
#undef LANG_HOOKS_TYPE_FOR_SIZE
#define LANG_HOOKS_TYPE_FOR_SIZE elna_langhook_type_for_size
#undef LANG_HOOKS_BUILTIN_FUNCTION
#define LANG_HOOKS_BUILTIN_FUNCTION elna_langhook_builtin_function
#undef LANG_HOOKS_GLOBAL_BINDINGS_P
#define LANG_HOOKS_GLOBAL_BINDINGS_P elna_langhook_global_bindings_p
#undef LANG_HOOKS_PUSHDECL
#define LANG_HOOKS_PUSHDECL elna_langhook_pushdecl
#undef LANG_HOOKS_GETDECLS
#define LANG_HOOKS_GETDECLS elna_langhook_getdecls
struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;
#include "gt-elna-elna1.h"
#include "gtype-elna.h"

View File

@ -1,6 +0,0 @@
/* gcc/gcc.cc */
{".elna", "@elna", nullptr, 0, 0},
{"@elna",
"elna1 %{!Q:-quiet} \
%i %{!fsyntax-only:%(invoke_as)}",
nullptr, 0, 0},

View File

@ -1,19 +0,0 @@
#pragma once
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "input.h"
#include "tree.h"
#include "elna/source/result.h"
namespace elna
{
namespace gcc
{
location_t get_location(const elna::source::position *position);
const char *print_type(tree type);
}
}

View File

@ -1,64 +0,0 @@
#pragma once
#include "elna/source/ast.h"
#include "elna/source/symbol.h"
#include "elna/gcc/elna-tree.h"
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "tree-iterator.h"
#include <unordered_map>
#include <string>
namespace elna
{
namespace gcc
{
class generic_visitor final : public source::empty_visitor
{
tree current_statements{ NULL_TREE };
tree current_expression{ NULL_TREE };
std::shared_ptr<source::symbol_table<tree>> symbol_map;
tree main_fndecl{ NULL_TREE };
tree_chain variable_chain;
tree build_label_decl(const char *name, location_t loc);
tree build_type(source::type_expression& type);
void enter_scope();
tree_symbol_mapping leave_scope();
void build_binary_operation(bool condition, source::binary_expression *expression,
tree_code operator_code, tree left, tree right, tree target_type);
public:
generic_visitor(std::shared_ptr<source::symbol_table<tree>> symbol_table);
void visit(source::program *program) override;
void visit(source::procedure_definition *definition) override;
void visit(source::call_expression *statement) override;
void visit(source::number_literal<std::int32_t> *literal) override;
void visit(source::number_literal<double> *literal) override;
void visit(source::number_literal<bool> *boolean) override;
void visit(source::number_literal<unsigned char> *character) override;
void visit(source::string_literal *string) override;
void visit(source::binary_expression *expression) override;
void visit(source::unary_expression *expression) override;
void visit(source::constant_definition *definition) override;
void visit(source::type_definition *definition) override;
void visit(source::variable_declaration *declaration) override;
void visit(source::variable_expression *expression) override;
void visit(source::array_access_expression *expression) override;
void visit(source::field_access_expression *expression) override;
void visit(source::dereference_expression *expression) override;
void visit(source::assign_statement *statement) override;
void visit(source::if_statement *statement) override;
void visit(source::while_statement *statement) override;
void visit(source::expression_statement *statement) override;
void visit(source::return_statement *statement) override;
};
}
}

View File

@ -1,64 +0,0 @@
#pragma once
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "tree.h"
#include "elna/source/symbol.h"
enum elna_tree_index
{
ELNA_TI_CHAR_TYPE,
ELNA_TI_STRING_TYPE,
ELNA_TI_MAX
};
extern GTY(()) tree elna_global_trees[ELNA_TI_MAX];
#define elna_char_type_node elna_global_trees[ELNA_TI_CHAR_TYPE]
#define elna_string_type_node elna_global_trees[ELNA_TI_STRING_TYPE]
namespace elna
{
namespace gcc
{
void init_ttree();
bool is_pointer_type(tree type);
bool is_string_type(tree type);
class tree_chain_base
{
protected:
tree first{};
tree last{};
public:
tree head();
void append(tree t);
protected:
virtual void chain(tree t) = 0;
};
class tree_chain final : public tree_chain_base
{
void chain(tree t) override;
};
class tree_symbol_mapping final
{
tree m_bind_expression;
tree m_block;
public:
tree_symbol_mapping(tree bind_expression, tree block);
tree bind_expression();
tree block();
};
std::shared_ptr<source::symbol_table<tree>> builtin_symbol_table();
}
}

View File

@ -1,750 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#pragma once
#include <cstdint>
#include <memory>
#include <string>
#include <vector>
#include "elna/source/result.h"
namespace elna
{
namespace source
{
enum class binary_operator
{
sum,
subtraction,
multiplication,
division,
equals,
not_equals,
less,
greater,
less_equal,
greater_equal,
disjunction,
conjunction
};
enum class unary_operator
{
reference,
negation
};
class variable_declaration;
class constant_definition;
class procedure_definition;
class type_definition;
class call_expression;
class compound_statement;
class assign_statement;
class if_statement;
class while_statement;
class return_statement;
class expression_statement;
class block;
class program;
class binary_expression;
class unary_expression;
class basic_type_expression;
class array_type_expression;
class pointer_type_expression;
class record_type_expression;
class union_type_expression;
class variable_expression;
class array_access_expression;
class field_access_expression;
class dereference_expression;
template<typename T>
class number_literal;
class char_literal;
class string_literal;
/**
* Interface for AST visitors.
*/
struct parser_visitor
{
virtual void visit(variable_declaration *) = 0;
virtual void visit(constant_definition *) = 0;
virtual void visit(procedure_definition *) = 0;
virtual void visit(type_definition *) = 0;
virtual void visit(call_expression *) = 0;
virtual void visit(expression_statement *) = 0;
virtual void visit(compound_statement *) = 0;
virtual void visit(assign_statement *) = 0;
virtual void visit(if_statement *) = 0;
virtual void visit(while_statement *) = 0;
virtual void visit(return_statement *) = 0;
virtual void visit(block *) = 0;
virtual void visit(program *) = 0;
virtual void visit(binary_expression *) = 0;
virtual void visit(unary_expression *) = 0;
virtual void visit(basic_type_expression *) = 0;
virtual void visit(array_type_expression *) = 0;
virtual void visit(pointer_type_expression *) = 0;
virtual void visit(record_type_expression *) = 0;
virtual void visit(union_type_expression *) = 0;
virtual void visit(variable_expression *) = 0;
virtual void visit(array_access_expression *) = 0;
virtual void visit(field_access_expression *is_field_access) = 0;
virtual void visit(dereference_expression *is_dereference) = 0;
virtual void visit(number_literal<std::int32_t> *) = 0;
virtual void visit(number_literal<double> *) = 0;
virtual void visit(number_literal<bool> *) = 0;
virtual void visit(number_literal<unsigned char> *) = 0;
virtual void visit(string_literal *) = 0;
};
/**
* A visitor which visits all nodes but does nothing.
*/
struct empty_visitor : parser_visitor
{
virtual void visit(variable_declaration *) override;
virtual void visit(constant_definition *definition) override;
virtual void visit(procedure_definition *definition) override;
virtual void visit(type_definition *definition) override;
virtual void visit(call_expression *statement) override;
virtual void visit(expression_statement *statement) override;
virtual void visit(compound_statement *statement) override;
virtual void visit(assign_statement *statement) override;
virtual void visit(if_statement *) override;
virtual void visit(while_statement *) override;
virtual void visit(return_statement *) override;
virtual void visit(block *block) override;
virtual void visit(program *program) override;
virtual void visit(binary_expression *expression) override;
virtual void visit(unary_expression *expression) override;
virtual void visit(basic_type_expression *) override;
virtual void visit(array_type_expression *expression) override;
virtual void visit(pointer_type_expression *) override;
virtual void visit(record_type_expression *expression) override;
virtual void visit(union_type_expression *expression) override;
virtual void visit(variable_expression *) override;
virtual void visit(array_access_expression *expression) override;
virtual void visit(field_access_expression *expression) override;
virtual void visit(dereference_expression *expression) override;
virtual void visit(number_literal<std::int32_t> *) override;
virtual void visit(number_literal<double> *) override;
virtual void visit(number_literal<bool> *) override;
virtual void visit(number_literal<unsigned char> *) override;
virtual void visit(string_literal *) override;
};
/**
* Operand representing a subexpression in the 3 address code.
*/
struct operand
{
public:
virtual ~operand() = 0;
};
struct integer_operand final : public operand
{
std::int32_t m_value;
public:
explicit integer_operand(const std::int32_t value);
std::int32_t value() const;
};
class variable_operand final : public operand
{
std::string m_name;
public:
explicit variable_operand(const std::string& name);
const std::string& name() const;
};
struct temporary_variable final : public operand
{
std::size_t m_counter;
public:
explicit temporary_variable(const std::size_t counter);
std::size_t counter() const;
};
struct label_operand final : public operand
{
std::size_t m_counter;
public:
explicit label_operand(const std::size_t counter);
std::size_t counter() const;
};
/**
* AST node.
*/
class node
{
const struct position source_position;
protected:
/**
* \param position Source code position.
*/
explicit node(const position position);
public:
virtual ~node() = default;
virtual void accept(parser_visitor *) = 0;
/**
* \return Node position in the source code.
*/
const struct position& position() const;
};
class statement : public node
{
protected:
/**
* \param position Source code position.
*/
explicit statement(const struct position position);
};
class expression : public node
{
public:
std::shared_ptr<operand> place;
protected:
/**
* \param position Source code position.
*/
explicit expression(const struct position position);
};
/**
* Symbol definition.
*/
class definition : public node
{
std::string m_identifier;
protected:
/**
* Constructs a definition identified by some name.
*
* \param position Source code position.
* \param identifier Definition name.
*/
definition(const struct position position, const std::string& identifier);
public:
/**
* \return Definition name.
*/
std::string& identifier();
};
/**
* Some type expression.
*/
class type_expression : public node
{
public:
virtual basic_type_expression *is_basic();
virtual array_type_expression *is_array();
virtual pointer_type_expression *is_pointer();
virtual record_type_expression *is_record();
virtual union_type_expression *is_union();
protected:
type_expression(const struct position position);
};
/**
* Expression defining a basic type.
*/
class basic_type_expression final : public type_expression
{
const std::string m_name;
public:
/**
* \param position Source code position.
* \param name Type name.
*/
basic_type_expression(const struct position position, const std::string& name);
virtual void accept(parser_visitor *visitor) override;
const std::string& base_name();
basic_type_expression *is_basic() override;
};
class array_type_expression final : public type_expression
{
type_expression *m_base;
public:
const std::uint32_t size;
array_type_expression(const struct position position, type_expression *base, const std::uint32_t size);
virtual void accept(parser_visitor *visitor) override;
type_expression& base();
array_type_expression *is_array() override;
virtual ~array_type_expression() override;
};
class pointer_type_expression final : public type_expression
{
type_expression *m_base;
public:
pointer_type_expression(const struct position position, type_expression *base);
virtual void accept(parser_visitor *visitor) override;
type_expression& base();
pointer_type_expression *is_pointer() override;
virtual ~pointer_type_expression() override;
};
using field_t = std::pair<std::string, type_expression *>;
using fields_t = std::vector<field_t>;
class composite_type_expression : public type_expression
{
protected:
composite_type_expression(const struct position position, fields_t&& fields);
public:
fields_t fields;
virtual ~composite_type_expression() override;
};
class record_type_expression final : public composite_type_expression
{
public:
record_type_expression(const struct position position, fields_t&& fields);
virtual void accept(parser_visitor *visitor) override;
record_type_expression *is_record() override;
};
class union_type_expression final : public composite_type_expression
{
public:
union_type_expression(const struct position position, fields_t&& fields);
virtual void accept(parser_visitor *visitor) override;
union_type_expression *is_union() override;
};
/**
* Variable declaration.
*/
class variable_declaration : public definition
{
type_expression *m_type;
public:
/**
* Constructs a declaration with a name and a type.
*
* \param position Source code position.
* \param identifier Definition name.
* \param type Declared type.
*/
variable_declaration(const struct position position, const std::string& identifier,
type_expression *type);
virtual void accept(parser_visitor *visitor) override;
type_expression& type();
virtual ~variable_declaration() override;
};
class literal : public expression
{
protected:
explicit literal(const struct position position);
};
/**
* Constant definition.
*/
class constant_definition : public definition
{
literal *m_body;
public:
/**
* \param position Source code position.
* \param identifier Constant name.
* \param body Constant value.
*/
constant_definition(const struct position position, const std::string& identifier,
literal *body);
virtual void accept(parser_visitor *visitor) override;
literal& body();
virtual ~constant_definition() override;
};
/**
* Procedure definition.
*/
class procedure_definition : public definition
{
type_expression *m_return_type{ nullptr };
block *m_body{ nullptr };
public:
std::vector<variable_declaration *> parameters;
/**
* \param position Source code position.
* \param identifier Procedure name.
* \param parameters Procedure formal parameters.
* \param return_type Return type if any.
* \param body Procedure body.
*/
procedure_definition(const struct position position, const std::string& identifier,
std::vector<variable_declaration *>&& parameters,
type_expression *return_type = nullptr, block *body = nullptr);
virtual void accept(parser_visitor *visitor) override;
type_expression *return_type();
block *body();
virtual ~procedure_definition() override;
};
class type_definition : public definition
{
type_expression *m_body;
public:
type_definition(const struct position position, const std::string& identifier,
type_expression *expression);
virtual void accept(parser_visitor *visitor) override;
type_expression& body();
virtual ~type_definition() override;
};
/**
* Call statement.
*/
class call_expression : public expression
{
std::string m_name;
std::vector<expression *> m_arguments;
public:
/**
* \param position Source code position.
* \param name Callable's name.
*/
call_expression(const struct position position, const std::string& name);
virtual void accept(parser_visitor *visitor) override;
std::string& name();
std::vector<expression *>& arguments();
virtual ~call_expression() override;
};
class expression_statement : public statement
{
expression *m_body;
public:
expression_statement(const struct position position, expression *body);
virtual void accept(parser_visitor *visitor) override;
expression& body();
virtual ~expression_statement() override;
};
class compound_statement : public node
{
public:
std::vector<statement *> statements;
compound_statement(const struct position position, std::vector<statement *>&& statements);
virtual void accept(parser_visitor *visitor) override;
virtual ~compound_statement() override;
};
class return_statement : public statement
{
expression *m_return_expression{ nullptr };
public:
return_statement(const struct position position, expression *return_expression);
virtual void accept(parser_visitor *visitor) override;
expression *return_expression();
virtual ~return_statement() override;
};
class designator_expression : public expression
{
public:
virtual variable_expression *is_variable();
virtual array_access_expression *is_array_access();
virtual field_access_expression *is_field_access();
virtual dereference_expression *is_dereference();
protected:
designator_expression(const struct position position);
};
class variable_expression : public designator_expression
{
std::string m_name;
public:
variable_expression(const struct position position, const std::string& name);
virtual void accept(parser_visitor *visitor) override;
const std::string& name() const;
variable_expression *is_variable() override;
};
class array_access_expression : public designator_expression
{
designator_expression *m_base;
expression *m_index;
public:
array_access_expression(const struct position position, designator_expression *base, expression *index);
virtual void accept(parser_visitor *visitor) override;
designator_expression& base();
expression& index();
array_access_expression *is_array_access() override;
~array_access_expression() override;
};
class field_access_expression : public designator_expression
{
designator_expression *m_base;
std::string m_field;
public:
field_access_expression(const struct position position, designator_expression *base,
const std::string& field);
virtual void accept(parser_visitor *visitor) override;
designator_expression& base();
std::string& field();
field_access_expression *is_field_access() override;
~field_access_expression() override;
};
class dereference_expression : public designator_expression
{
designator_expression *m_base;
public:
dereference_expression(const struct position position, designator_expression *base);
virtual void accept(parser_visitor *visitor) override;
designator_expression& base();
dereference_expression *is_dereference() override;
~dereference_expression() override;
};
class assign_statement : public statement
{
designator_expression *m_lvalue;
expression *m_rvalue;
public:
/**
* \param position Source code position.
* \param lvalue Left-hand side.
* \param rvalue Assigned expression.
*/
assign_statement(const struct position position, designator_expression *lvalue,
expression *rvalue);
virtual void accept(parser_visitor *visitor) override;
designator_expression& lvalue();
expression& rvalue();
virtual ~assign_statement() override;
};
/**
* If-statement.
*/
class if_statement : public statement
{
expression *m_prerequisite;
compound_statement *m_body;
compound_statement *m_alternative;
public:
/**
* \param position Source code position.
* \param prerequisite Condition.
* \param body Statement executed if the condition is met.
* \param alternative Statement executed if the condition is not met.
*/
if_statement(const struct position position, expression *prerequisite,
compound_statement *body, compound_statement *alternative = nullptr);
virtual void accept(parser_visitor *visitor) override;
expression& prerequisite();
compound_statement& body();
compound_statement *alternative();
virtual ~if_statement() override;
};
/**
* While-statement.
*/
class while_statement : public statement
{
expression *m_prerequisite;
compound_statement *m_body;
public:
/**
* \param position Source code position.
* \param prerequisite Condition.
* \param body Statement executed while the condition is met.
*/
while_statement(const struct position position, expression *prerequisite,
compound_statement *body);
virtual void accept(parser_visitor *visitor) override;
expression& prerequisite();
compound_statement& body();
virtual ~while_statement() override;
};
class block : public node
{
public:
std::vector<definition *> value_definitions;
std::vector<statement *> body;
block(const struct position position, std::vector<definition *>&& value_definitions,
std::vector<statement *>&& body);
virtual void accept(parser_visitor *visitor) override;
virtual ~block() override;
};
class program : public block
{
public:
std::vector<definition *> type_definitions;
program(const struct position position, std::vector<definition *>&& type_definitions,
std::vector<definition *>&& value_definitions, std::vector<statement *>&& body);
virtual void accept(parser_visitor *visitor) override;
virtual ~program() override;
};
template<typename T>
class number_literal : public literal
{
T m_number;
public:
number_literal(const struct position position, const T value)
: literal(position), m_number(value)
{
}
virtual void accept(parser_visitor *visitor) override
{
visitor->visit(this);
}
T number() const
{
return m_number;
}
};
class string_literal : public literal
{
std::string m_string;
public:
string_literal(const struct position position, const std::string& value);
virtual void accept(parser_visitor *visitor) override;
const std::string& string() const;
};
class binary_expression : public expression
{
expression *m_lhs;
expression *m_rhs;
binary_operator m_operator;
public:
binary_expression(const struct position position, expression *lhs,
expression *rhs, const unsigned char operation);
virtual void accept(parser_visitor *visitor) override;
expression& lhs();
expression& rhs();
binary_operator operation() const;
virtual ~binary_expression() override;
};
class unary_expression : public expression
{
expression *m_operand;
unary_operator m_operator;
public:
unary_expression(const struct position position, expression *operand,
const unsigned char operation);
virtual void accept(parser_visitor *visitor) override;
expression& operand();
unary_operator operation() const;
virtual ~unary_expression() override;
};
const char *print_binary_operator(const binary_operator operation);
}
}

View File

@ -1,41 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#pragma once
#include <list>
#include "elna/source/ast.h"
#include "location.hh"
namespace elna
{
namespace source
{
position make_position(const yy::location& location);
class syntax_error final : public error
{
std::string message;
public:
syntax_error(const std::string& message,
const char *input_file, const yy::location& location);
virtual std::string what() const override;
};
class driver
{
std::list<std::unique_ptr<struct error>> m_errors;
const char *input_file;
public:
std::unique_ptr<program> tree;
driver(const char *input_file);
void error(const yy::location& loc, const std::string& message);
const std::list<std::unique_ptr<struct error>>& errors() const noexcept;
};
}
}

View File

@ -1,55 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#pragma once
#include <cstddef>
#include <string>
namespace elna
{
namespace source
{
/**
* Position in the source text.
*/
struct position
{
/// Line.
std::size_t line = 1;
/// Column.
std::size_t column = 1;
};
/**
* A compilation error consists of an error message and position.
*/
class error
{
protected:
/**
* Constructs an error.
*
* \param path Source file name.
* \param position Error position in the source text.
*/
error(const char *path, const struct position position);
public:
const struct position position;
const char *path;
virtual ~error() noexcept = default;
/// Error text.
virtual std::string what() const = 0;
/// Error line in the source text.
std::size_t line() const noexcept;
/// Error column in the source text.
std::size_t column() const noexcept;
};
}
}

View File

@ -1,106 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#pragma once
#include <cstdint>
#include <unordered_map>
#include <string>
#include <memory>
namespace elna
{
namespace source
{
/**
* Generic language entity information.
*/
template<typename T>
class info
{
public:
T payload;
info(T payload)
: payload(payload)
{
}
};
template<typename T>
std::shared_ptr<info<T>> make_info(T payload)
{
return std::make_shared<info<T>>(info(payload));
}
/**
* Symbol table.
*/
template<typename T>
class symbol_table
{
public:
using symbol_ptr = std::shared_ptr<info<T>>;
private:
std::unordered_map<std::string, symbol_ptr> entries;
std::shared_ptr<symbol_table> outer_scope;
public:
/**
* Constructs a new symbol with an optional outer scope.
*
* \param scope Outer scope.
*/
explicit symbol_table(std::shared_ptr<symbol_table> scope = nullptr)
: outer_scope(scope)
{
}
/**
* Looks for symbol in the table by name. Returns nullptr if the symbol
* can not be found.
*
* \param name Symbol name.
* \return Symbol from the table if found.
*/
symbol_ptr lookup(const std::string& name)
{
auto entry = entries.find(name);
if (entry != entries.cend())
{
return entry->second;
}
if (this->outer_scope != nullptr)
{
return this->outer_scope->lookup(name);
}
return nullptr;
}
/**
* Registers new symbol.
*
* \param name Symbol name.
* \param entry Symbol information.
*
* \return Whether the insertion took place.
*/
bool enter(const std::string& name, symbol_ptr entry)
{
return entries.insert({ name, entry }).second;
}
/**
* Returns the outer scope or nullptr if the this is the global scope.
*
* \return Outer scope.
*/
std::shared_ptr<symbol_table> scope()
{
return this->outer_scope;
}
};
}
}

View File

@ -1,116 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#pragma once
#include <memory>
#include <string>
#include <vector>
namespace elna
{
namespace source
{
class primitive_type;
class pointer_type;
class procedure_type;
/**
* Type representation.
*/
class type
{
const std::size_t byte_size;
protected:
/**
* Constructor.
*
* \param byte_size The type size in bytes.
*/
explicit type(const std::size_t byte_size);
public:
/**
* \return The type size in bytes.
*/
virtual std::size_t size() const noexcept;
/**
* \return Unique type representation.
*/
virtual std::string type_name() const = 0;
virtual const pointer_type *is_pointer_type() const;
friend bool operator==(const type& lhs, const type& rhs) noexcept;
friend bool operator!=(const type& lhs, const type& rhs) noexcept;
};
/**
* Built-in type representation.
*/
class primitive_type final : public type
{
/// Type name.
const std::string m_type_name;
public:
/**
* Constructor.
*
* \param type_name Type name.
* \param byte_size The type size in bytes.
*/
primitive_type(const std::string& type_name, const std::size_t byte_size);
virtual std::string type_name() const override;
};
/**
* Typed pointer.
*/
struct pointer_type final : public type
{
/// Pointer target type.
std::shared_ptr<const type> base_type;
/**
* Constructor.
*
* \param base_type Pointer target type.
* \param byte_size The type size in bytes.
*/
pointer_type(std::shared_ptr<const type> base_type, const std::size_t byte_size);
virtual std::string type_name() const override;
virtual const pointer_type *is_pointer_type() const override;
};
/**
* Type of a procedure.
*/
struct procedure_type final : public type
{
/// Argument types.
std::vector<std::shared_ptr<const type>> arguments;
/**
* Constructor.
*
* \param arguments Argument types.
* \param byte_size Function pointer size.
*/
procedure_type(std::vector<std::shared_ptr<const type>> arguments, const std::size_t byte_size);
virtual std::string type_name() const override;
};
bool operator==(const type& lhs, const type& rhs) noexcept;
bool operator!=(const type& lhs, const type& rhs) noexcept;
extern const primitive_type boolean_type;
extern const primitive_type int_type;
}
}

View File

@ -0,0 +1,326 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Architecture.RiscV
( BaseOpcode(..)
, RelocationType(..)
, Funct3(..)
, Funct7(..)
, Funct12(..)
, Instruction(..)
, Type(..)
, XRegister(..)
, baseOpcode
, funct3
, funct12
, instruction
, xRegister
) where
import qualified Data.ByteString.Builder as ByteString.Builder
import Data.Bits (Bits(..))
import Data.Text (Text)
import Data.Word (Word8, Word32)
data XRegister
= Zero
| RA
| SP
| GP
| TP
| T0
| T1
| T2
| S0
| S1
| A0
| A1
| A2
| A3
| A4
| A5
| A6
| A7
| S2
| S3
| S4
| S5
| S6
| S7
| S8
| S9
| S10
| S11
| T3
| T4
| T5
| T6
deriving Eq
data Funct3
= ADDI
| SLTI
| SLTIU
| ANDI
| ORI
| XORI
| SLLI
| SRLI
| SRAI
| ADD
| SLT
| SLTU
| AND
| OR
| XOR
| SLL
| SRL
| SUB
| SRA
| BEQ
| BNE
| BLT
| BLTU
| BGE
| BGEU
| FENCE
| FENCEI
| CSRRW
| CSRRS
| CSRRC
| CSRRWI
| CSRRSI
| CSRRCI
| PRIV
| SB
| SH
| SW
| LB
| LH
| LW
| LBU
| LHU
| JALR
| MUL
| MULH
| MULHSU
| MULHU
| DIV
| DIVU
| REM
| REMU
deriving Eq
data Funct12
= ECALL
| EBREAK
deriving Eq
newtype Funct7 = Funct7
{ funct7 :: Word8
} deriving Eq
data BaseOpcode
= OpImm
| Lui
| Auipc
| Op
| Jal
| Jalr
| Branch
| Load
| Store
| MiscMem
| System
deriving Eq
data Type
= I XRegister Funct3 XRegister Word32
| S Word32 Funct3 XRegister XRegister
| B Word32 Funct3 XRegister XRegister
| R XRegister Funct3 XRegister XRegister Funct7
| U XRegister Word32
| J XRegister Word32
| Type XRegister Funct3 XRegister Funct12 -- Privileged.
deriving Eq
data RelocationType
= RLower12I XRegister Funct3 XRegister Text
| RLower12S Text Funct3 XRegister XRegister
| RHigher20 XRegister Text -- Type U.
| RBranch Text Funct3 XRegister XRegister -- Type B.
| RJal XRegister Text -- Type J.
deriving Eq
data Instruction
= BaseInstruction BaseOpcode Type
| RelocatableInstruction BaseOpcode RelocationType
| CallInstruction Text
deriving Eq
xRegister :: XRegister -> Word8
xRegister Zero = 0
xRegister RA = 1
xRegister SP = 2
xRegister GP = 3
xRegister TP = 4
xRegister T0 = 5
xRegister T1 = 6
xRegister T2 = 7
xRegister S0 = 8
xRegister S1 = 9
xRegister A0 = 10
xRegister A1 = 11
xRegister A2 = 12
xRegister A3 = 13
xRegister A4 = 14
xRegister A5 = 15
xRegister A6 = 16
xRegister A7 = 17
xRegister S2 = 18
xRegister S3 = 19
xRegister S4 = 20
xRegister S5 = 21
xRegister S6 = 22
xRegister S7 = 23
xRegister S8 = 24
xRegister S9 = 25
xRegister S10 = 26
xRegister S11 = 27
xRegister T3 = 28
xRegister T4 = 29
xRegister T5 = 30
xRegister T6 = 31
funct3 :: Funct3 -> Word8
funct3 ADDI = 0b000
funct3 SLTI = 0b001
funct3 SLTIU = 0b011
funct3 ANDI = 0b111
funct3 ORI = 0b110
funct3 XORI = 0b100
funct3 SLLI = 0b000
funct3 SRLI = 0b101
funct3 SRAI = 0b101
funct3 ADD = 0b000
funct3 SLT = 0b010
funct3 SLTU = 0b011
funct3 AND = 0b111
funct3 OR = 0b110
funct3 XOR = 0b100
funct3 SLL = 0b001
funct3 SRL = 0b101
funct3 SUB = 0b000
funct3 SRA = 0b101
funct3 BEQ = 0b000
funct3 BNE = 0b001
funct3 BLT = 0b100
funct3 BLTU = 0b110
funct3 BGE = 0b101
funct3 BGEU = 0b111
funct3 FENCE = 0b000
funct3 FENCEI = 0b001
funct3 CSRRW = 0b001
funct3 CSRRS = 0b010
funct3 CSRRC = 0b011
funct3 CSRRWI = 0b101
funct3 CSRRSI = 0b110
funct3 CSRRCI = 0b111
funct3 PRIV = 0b000
funct3 SB = 0b000
funct3 SH = 0b001
funct3 SW = 0b010
funct3 LB = 0b000
funct3 LH = 0b001
funct3 LW = 0b010
funct3 LBU = 0b100
funct3 LHU = 0b101
funct3 JALR = 0b000
funct3 MUL = 0b000
funct3 MULH = 0b001
funct3 MULHSU = 0b010
funct3 MULHU = 0b011
funct3 DIV = 0b100
funct3 DIVU = 0b101
funct3 REM = 0b110
funct3 REMU = 0b111
funct12 :: Funct12 -> Word8
funct12 ECALL = 0b000000000000
funct12 EBREAK = 0b000000000001
baseOpcode :: BaseOpcode -> Word8
baseOpcode OpImm = 0b0010011
baseOpcode Lui = 0b0110111
baseOpcode Auipc = 0b0010111
baseOpcode Op = 0b0110011
baseOpcode Jal = 0b1101111
baseOpcode Jalr = 0b1100111
baseOpcode Branch = 0b1100011
baseOpcode Load = 0b0000011
baseOpcode Store = 0b0100011
baseOpcode MiscMem = 0b0001111
baseOpcode System = 0b1110011
type' :: Type -> Word32
type' (I rd funct3' rs1 immediate)
= (fromIntegral (xRegister rd) `shiftL` 7)
.|. (fromIntegral (funct3 funct3') `shiftL` 12)
.|. (fromIntegral (xRegister rs1) `shiftL` 15)
.|. (immediate `shiftL` 20);
type' (S immediate funct3' rs1 rs2)
= ((immediate .&. 0x1f) `shiftL` 7)
.|. (fromIntegral (funct3 funct3') `shiftL` 12)
.|. (fromIntegral (xRegister rs1) `shiftL` 15)
.|. (fromIntegral (xRegister rs2) `shiftL` 20)
.|. ((immediate .&. 0xfe0) `shiftL` 20)
type' (B immediate funct3' rs1 rs2)
= ((immediate .&. 0x800) `shiftR` 4)
.|. ((immediate .&. 0x1e) `shiftL` 7)
.|. (fromIntegral (funct3 funct3') `shiftL` 12)
.|. (fromIntegral (xRegister rs1) `shiftL` 15)
.|. (fromIntegral (xRegister rs2) `shiftL` 20)
.|. ((immediate .&. 0x7e0) `shiftL` 20)
.|. ((immediate .&. 0x1000) `shiftL` 19)
type' (R rd funct3' rs1 rs2 funct7')
= (fromIntegral (xRegister rd) `shiftL` 7)
.|. (fromIntegral (funct3 funct3') `shiftL` 12)
.|. (fromIntegral (xRegister rs1) `shiftL` 15)
.|. (fromIntegral (xRegister rs2) `shiftL` 20)
.|. (fromIntegral (funct7 funct7') `shiftL` 25);
type' (U rd immediate)
= (fromIntegral (xRegister rd) `shiftL` 7)
.|. (immediate `shiftL` 12)
type' (J rd immediate)
= (fromIntegral (xRegister rd) `shiftL` 7)
.|. (immediate .&. 0xff000)
.|. ((immediate .&. 0x800) `shiftL` 9)
.|. ((immediate .&. 0x7fe) `shiftL` 20)
.|. ((immediate .&. 0x100000) `shiftL` 11);
type' (Type rd funct3' rs1 funct12')
= (fromIntegral (xRegister rd) `shiftL` 7)
.|. (fromIntegral (funct3 funct3') `shiftL` 12)
.|. (fromIntegral (xRegister rs1) `shiftL` 15)
.|. (fromIntegral (funct12 funct12') `shiftL` 20);
relocationType :: RelocationType -> Word32
relocationType (RLower12I rd funct3' rs1 _) = type' $ I rd funct3' rs1 0
relocationType (RLower12S _ funct3' rs1 rs2) = type' $ S 0 funct3' rs1 rs2
relocationType (RHigher20 rd _) = type' $ U rd 0
relocationType (RBranch _ funct3' rs1 rs2) = type' $ B 0 funct3' rs1 rs2
relocationType (RJal rd _) = type' $ J rd 0
instruction :: Instruction -> ByteString.Builder.Builder
instruction = \case
(BaseInstruction base instructionType) -> go base $ type' instructionType
(RelocatableInstruction base instructionType) -> go base $ relocationType instructionType
(CallInstruction _) -> foldMap instruction
[ BaseInstruction Auipc $ U RA 0
, BaseInstruction Jalr $ I RA JALR RA 0
]
where
go base instructionType
= ByteString.Builder.word32LE
$ fromIntegral (baseOpcode base)
.|. instructionType

View File

@ -0,0 +1,182 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Backend.Allocator
( MachineConfiguration(..)
, Store(..)
, allocate
) where
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.Int (Int32)
import Data.Vector (Vector)
import Language.Elna.Backend.Intermediate
( ProcedureQuadruples(..)
, Operand(..)
, Quadruple(..)
, Variable(..)
)
import Language.Elna.Location (Identifier(..))
import Control.Monad.Trans.Reader (ReaderT, asks, runReaderT)
import Control.Monad.Trans.State (State, runState)
import GHC.Records (HasField(..))
import Control.Monad.Trans.Class (MonadTrans(..))
import Control.Monad.Trans.Except (ExceptT(..), runExceptT, throwE)
import Data.List ((!?))
import Language.Elna.Frontend.SymbolTable (Info(..), SymbolTable)
import qualified Language.Elna.Frontend.SymbolTable as SymbolTable
data Store r
= RegisterStore r
| StackStore Int32 r
data AllocationError
= OutOfRegistersError
| UnexpectedProcedureInfoError Info
| UndefinedSymbolError Identifier
deriving Eq
instance Show AllocationError
where
show OutOfRegistersError = "Ran out of registers during register allocation"
show (UnexpectedProcedureInfoError info) =
"Expected to encounter a procedure, got: " <> show info
show (UndefinedSymbolError identifier) =
concat ["Symbol \"", show identifier, "\" is not defined"]
newtype MachineConfiguration r = MachineConfiguration
{ temporaryRegisters :: [r]
}
newtype MachineState = MachineState
{ symbolTable :: SymbolTable
} deriving (Eq, Show)
newtype Allocator r a = Allocator
{ runAllocator :: ExceptT AllocationError (ReaderT (MachineConfiguration r) (State MachineState)) a
}
instance forall r. Functor (Allocator r)
where
fmap f = Allocator . fmap f . runAllocator
instance forall r. Applicative (Allocator r)
where
pure = Allocator . pure
(Allocator x) <*> (Allocator y) = Allocator $ x <*> y
instance forall r. Monad (Allocator r)
where
(Allocator allocator) >>= f = Allocator $ allocator >>= (runAllocator . f)
allocate
:: forall r
. MachineConfiguration r
-> SymbolTable
-> HashMap Identifier (Vector (Quadruple Variable))
-> Either AllocationError (HashMap Identifier (ProcedureQuadruples (Store r)))
allocate machineConfiguration globalTable = HashMap.traverseWithKey function
where
run localTable = flip runState (MachineState{ symbolTable = localTable })
. flip runReaderT machineConfiguration
. runExceptT
. runAllocator
. mapM quadruple
function :: Identifier -> Vector (Quadruple Variable) -> Either AllocationError (ProcedureQuadruples (Store r))
function procedureName quadruples' =
case SymbolTable.lookup procedureName globalTable of
Just (ProcedureInfo localTable _) ->
let (result, lastState) = run localTable quadruples'
in makeResult lastState <$> result
Just anotherInfo -> Left $ UnexpectedProcedureInfoError anotherInfo
Nothing -> Left $ UndefinedSymbolError procedureName
makeResult MachineState{ symbolTable } result = ProcedureQuadruples
{ quadruples = result
, stackSize = fromIntegral $ SymbolTable.size symbolTable * 4
}
quadruple :: Quadruple Variable -> Allocator r (Quadruple (Store r))
quadruple = \case
StartQuadruple -> pure StartQuadruple
StopQuadruple -> pure StopQuadruple
ParameterQuadruple operand1 -> ParameterQuadruple
<$> operand operand1
CallQuadruple name count -> pure $ CallQuadruple name count
AddQuadruple operand1 operand2 variable -> AddQuadruple
<$> operand operand1
<*> operand operand2
<*> storeVariable variable
SubtractionQuadruple operand1 operand2 variable -> SubtractionQuadruple
<$> operand operand1
<*> operand operand2
<*> storeVariable variable
NegationQuadruple operand1 variable -> NegationQuadruple
<$> operand operand1
<*> storeVariable variable
ProductQuadruple operand1 operand2 variable -> ProductQuadruple
<$> operand operand1
<*> operand operand2
<*> storeVariable variable
DivisionQuadruple operand1 operand2 variable -> DivisionQuadruple
<$> operand operand1
<*> operand operand2
<*> storeVariable variable
LabelQuadruple label -> pure $ LabelQuadruple label
GoToQuadruple label -> pure $ GoToQuadruple label
EqualQuadruple operand1 operand2 goToLabel -> EqualQuadruple
<$> operand operand1
<*> operand operand2
<*> pure goToLabel
NonEqualQuadruple operand1 operand2 goToLabel -> NonEqualQuadruple
<$> operand operand1
<*> operand operand2
<*> pure goToLabel
LessQuadruple operand1 operand2 goToLabel -> LessQuadruple
<$> operand operand1
<*> operand operand2
<*> pure goToLabel
GreaterQuadruple operand1 operand2 goToLabel -> do
operand1' <- operand operand1
operand2' <- operand operand2
pure $ GreaterQuadruple operand1' operand2' goToLabel
LessOrEqualQuadruple operand1 operand2 goToLabel -> LessOrEqualQuadruple
<$> operand operand1
<*> operand operand2
<*> pure goToLabel
GreaterOrEqualQuadruple operand1 operand2 goToLabel -> GreaterOrEqualQuadruple
<$> operand operand1
<*> operand operand2
<*> pure goToLabel
AssignQuadruple operand1 variable -> AssignQuadruple
<$> operand operand1
<*> storeVariable variable
ArrayAssignQuadruple operand1 operand2 variable -> ArrayAssignQuadruple
<$> operand operand1
<*> operand operand2
<*> storeVariable variable
ArrayQuadruple variable1 operand1 variable2 -> ArrayQuadruple
<$> storeVariable variable1
<*> operand operand1
<*> storeVariable variable2
operand :: Operand Variable -> Allocator r (Operand (Store r))
operand (IntOperand literalOperand) = pure $ IntOperand literalOperand
operand (VariableOperand variableOperand) =
VariableOperand <$> storeVariable variableOperand
storeVariable :: Variable -> Allocator r (Store r)
storeVariable (TempVariable index) = do
temporaryRegisters' <- Allocator $ lift $ asks $ getField @"temporaryRegisters"
maybe (Allocator $ throwE OutOfRegistersError) (pure . RegisterStore)
$ temporaryRegisters' !? fromIntegral index
storeVariable (LocalVariable index) = do
temporaryRegisters' <- Allocator $ lift $ asks $ getField @"temporaryRegisters"
maybe (Allocator $ throwE OutOfRegistersError) (pure . StackStore (fromIntegral (succ index) * (-4)))
$ temporaryRegisters' !? pred (length temporaryRegisters' - fromIntegral index)
storeVariable (ParameterVariable index) = do
temporaryRegisters' <- Allocator $ lift $ asks $ getField @"temporaryRegisters"
maybe (Allocator $ throwE OutOfRegistersError) (pure . StackStore (fromIntegral index * 4))
$ temporaryRegisters' !? fromIntegral index

View File

@ -0,0 +1,66 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Backend.Intermediate
( ProcedureQuadruples(..)
, Operand(..)
, Quadruple(..)
, Label(..)
, Variable(..)
) where
import Data.Int (Int32)
import Data.Vector (Vector)
import Data.Word (Word32)
import Data.Text (Text)
import qualified Data.Text as Text
newtype Label = Label { unLabel :: Text }
deriving Eq
instance Show Label
where
show (Label label) = '.' : Text.unpack label
data Variable = TempVariable Word32 | LocalVariable Word32 | ParameterVariable Word32
deriving Eq
instance Show Variable
where
show (LocalVariable variable) = '@' : show variable
show (TempVariable variable) = '$' : show variable
show (ParameterVariable variable) = '%' : show variable
data Operand v
= IntOperand Int32
| VariableOperand v
deriving (Eq, Show)
data ProcedureQuadruples v = ProcedureQuadruples
{ quadruples :: Vector (Quadruple v)
, stackSize :: Word32
} deriving (Eq, Show)
data Quadruple v
= StartQuadruple
| StopQuadruple
| ParameterQuadruple (Operand v)
| CallQuadruple Text Word32
| AddQuadruple (Operand v) (Operand v) v
| SubtractionQuadruple (Operand v) (Operand v) v
| NegationQuadruple (Operand v) v
| ProductQuadruple (Operand v) (Operand v) v
| DivisionQuadruple (Operand v) (Operand v) v
| GoToQuadruple Label
| AssignQuadruple (Operand v) v
| ArrayQuadruple v (Operand v) v
| ArrayAssignQuadruple (Operand v) (Operand v) v
| LessOrEqualQuadruple (Operand v) (Operand v) Label
| GreaterOrEqualQuadruple (Operand v) (Operand v) Label
| GreaterQuadruple (Operand v) (Operand v) Label
| LessQuadruple (Operand v) (Operand v) Label
| NonEqualQuadruple (Operand v) (Operand v) Label
| EqualQuadruple (Operand v) (Operand v) Label
| LabelQuadruple Label
deriving (Eq, Show)

View File

@ -0,0 +1,37 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Driver
( Driver(..)
, IntermediateStage(..)
, drive
, execParser
) where
import Data.Maybe (fromMaybe)
import Language.Elna.Driver.CommandLine
( CommandLine(..)
, IntermediateStage(..)
, commandLine
)
import Options.Applicative (execParser)
import System.FilePath (replaceExtension, takeFileName)
data Driver = Driver
{ input :: FilePath
, output :: FilePath
, intermediateStage :: Maybe IntermediateStage
} deriving (Eq, Show)
drive :: IO Driver
drive = rewrite <$> execParser commandLine
where
rewrite CommandLine{..} =
let defaultOutputName = replaceExtension (takeFileName input) "o"
outputName = fromMaybe defaultOutputName output
in Driver
{ input = input
, output = outputName
, intermediateStage = intermediateStage
}

View File

@ -0,0 +1,69 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Driver.CommandLine
( CommandLine(..)
, IntermediateStage(..)
, commandLine
) where
import Options.Applicative
( Parser
, ParserInfo(..)
, argument
, flag'
, fullDesc
, help
, helper
, info
, long
, metavar
, optional
, progDesc
, short
, str
, strOption
)
import Control.Applicative (Alternative(..), (<**>))
data IntermediateStage
= ParseStage
| ValidateStage
| CodeGenStage
deriving (Eq, Show)
data CommandLine = CommandLine
{ input :: FilePath
, output :: Maybe FilePath
, intermediateStage :: Maybe IntermediateStage
} deriving (Eq, Show)
intermediateStageP :: Parser IntermediateStage
intermediateStageP
= flag' ParseStage parseStageP
<|> flag' ValidateStage validateStageP
<|> flag' CodeGenStage codeGenStageP
where
parseStageP = long "parse"
<> help "Run the lexer and parser, but stop before assembly generation"
validateStageP = long "validate"
<> help "Run through the semantic analysis stage, stopping before TAC generation"
codeGenStageP = long "codegen"
<> help "Perform lexing, parsing, and assembly generation, but stop before code emission"
commandLineP :: Parser CommandLine
commandLineP = CommandLine
<$> argument str inFile
<*> optional (strOption outFile)
<*> optional intermediateStageP
where
inFile = metavar "INFILE" <> help "Input file."
outFile = long "output"
<> short 'o'
<> metavar "OUTFILE"
<> help "Output file."
commandLine :: ParserInfo CommandLine
commandLine = info (commandLineP <**> helper)
$ fullDesc <> progDesc "Elna compiler."

View File

@ -0,0 +1,210 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Frontend.AST
( Declaration(..)
, Identifier(..)
, Parameter(..)
, Program(..)
, Statement(..)
, TypeExpression(..)
, VariableDeclaration(..)
, VariableAccess(..)
, Condition(..)
, Expression(..)
, Literal(..)
) where
import Data.Char (chr)
import Data.Int (Int32)
import Data.List (intercalate)
import Data.Word (Word8)
import Language.Elna.Location (Identifier(..), showArrayType)
import Numeric (showHex)
import Data.Bifunctor (Bifunctor(bimap))
newtype Program = Program [Declaration]
deriving Eq
instance Show Program
where
show (Program declarations) = unlines (show <$> declarations)
data Declaration
= ProcedureDeclaration Identifier [Parameter] [VariableDeclaration] [Statement]
| TypeDefinition Identifier TypeExpression
deriving Eq
instance Show Declaration
where
show (TypeDefinition identifier typeExpression) =
concat ["type ", show identifier, " = ", show typeExpression, ";"]
show (ProcedureDeclaration procedureName parameters variables body)
= "proc " <> show procedureName <> showParameters parameters <> " {\n"
<> unlines ((" " <>) . show <$> variables)
<> unlines ((" " <>) . show <$> body)
<> "}"
data Parameter = Parameter Identifier TypeExpression Bool
deriving Eq
instance Show Parameter
where
show (Parameter identifier typeName ref) = concat
[ if ref then "ref " else ""
, show identifier, ": ", show typeName
]
showParameters :: [Parameter] -> String
showParameters parameters =
"(" <> intercalate ", " (show <$> parameters) <> ")"
data TypeExpression
= NamedType Identifier
| ArrayType Literal TypeExpression
deriving Eq
instance Show TypeExpression
where
show (NamedType typeName) = show typeName
show (ArrayType elementCount typeName) =
showArrayType elementCount typeName
data Statement
= EmptyStatement
| IfStatement Condition Statement (Maybe Statement)
| AssignmentStatement VariableAccess Expression
| WhileStatement Condition Statement
| CompoundStatement [Statement]
| CallStatement Identifier [Expression]
deriving Eq
instance Show Statement
where
show EmptyStatement = ";"
show (IfStatement condition if' else') = concat
[ "if (", show condition, ") "
, show if'
, maybe "" ((<> " else ") . show) else'
]
show (AssignmentStatement lhs rhs) =
concat [show lhs, " := ", show rhs, ";"]
show (WhileStatement expression statement) =
concat ["while (", show expression, ") ", show statement, ";"]
show (CompoundStatement statements) =
concat ["{\n", unlines (show <$> statements), " }"]
show (CallStatement name parameters) = show name <> "("
<> intercalate ", " (show <$> parameters) <> ")"
data VariableDeclaration =
VariableDeclaration Identifier TypeExpression
deriving Eq
data Literal
= DecimalLiteral Int32
| HexadecimalLiteral Int32
| CharacterLiteral Word8
deriving Eq
instance Show Literal
where
show (DecimalLiteral integer) = show integer
show (HexadecimalLiteral integer) = '0' : 'x' : showHex integer ""
show (CharacterLiteral character) =
'\'' : chr (fromEnum character) : ['\'']
instance Ord Literal
where
compare x y = compare (int32Literal x) (int32Literal y)
instance Num Literal
where
x + y = DecimalLiteral $ int32Literal x + int32Literal y
x * y = DecimalLiteral $ int32Literal x * int32Literal y
abs (DecimalLiteral x) = DecimalLiteral $ abs x
abs (HexadecimalLiteral x) = HexadecimalLiteral $ abs x
abs (CharacterLiteral x) = CharacterLiteral $ abs x
negate (DecimalLiteral x) = DecimalLiteral $ negate x
negate (HexadecimalLiteral x) = HexadecimalLiteral $ negate x
negate (CharacterLiteral x) = CharacterLiteral $ negate x
signum (DecimalLiteral x) = DecimalLiteral $ signum x
signum (HexadecimalLiteral x) = HexadecimalLiteral $ signum x
signum (CharacterLiteral x) = CharacterLiteral $ signum x
fromInteger = DecimalLiteral . fromInteger
instance Real Literal
where
toRational (DecimalLiteral integer) = toRational integer
toRational (HexadecimalLiteral integer) = toRational integer
toRational (CharacterLiteral integer) = toRational integer
instance Enum Literal
where
toEnum = DecimalLiteral . fromIntegral
fromEnum = fromEnum . int32Literal
instance Integral Literal
where
toInteger = toInteger . int32Literal
quotRem x y = bimap DecimalLiteral DecimalLiteral
$ quotRem (int32Literal x) (int32Literal y)
int32Literal :: Literal -> Int32
int32Literal (DecimalLiteral integer) = integer
int32Literal (HexadecimalLiteral integer) = integer
int32Literal (CharacterLiteral integer) = fromIntegral integer
instance Show VariableDeclaration
where
show (VariableDeclaration identifier typeExpression) =
concat ["var ", show identifier, ": " <> show typeExpression, ";"]
data Expression
= LiteralExpression Literal
| SumExpression Expression Expression
| SubtractionExpression Expression Expression
| NegationExpression Expression
| ProductExpression Expression Expression
| DivisionExpression Expression Expression
| VariableExpression VariableAccess
deriving Eq
instance Show Expression
where
show (LiteralExpression literal) = show literal
show (SumExpression lhs rhs) = concat [show lhs, " + ", show rhs]
show (SubtractionExpression lhs rhs) = concat [show lhs, " - ", show rhs]
show (NegationExpression negation) = '-' : show negation
show (ProductExpression lhs rhs) = concat [show lhs, " * ", show rhs]
show (DivisionExpression lhs rhs) = concat [show lhs, " / ", show rhs]
show (VariableExpression variable) = show variable
data VariableAccess
= VariableAccess Identifier
| ArrayAccess VariableAccess Expression
deriving Eq
instance Show VariableAccess
where
show (VariableAccess variableName) = show variableName
show (ArrayAccess arrayAccess elementIndex) =
concat [show arrayAccess, "[", show elementIndex, "]"]
data Condition
= EqualCondition Expression Expression
| NonEqualCondition Expression Expression
| LessCondition Expression Expression
| GreaterCondition Expression Expression
| LessOrEqualCondition Expression Expression
| GreaterOrEqualCondition Expression Expression
deriving Eq
instance Show Condition
where
show (EqualCondition lhs rhs) = concat [show lhs, " = ", show rhs]
show (NonEqualCondition lhs rhs) = concat [show lhs, " # ", show rhs]
show (LessCondition lhs rhs) = concat [show lhs, " < ", show rhs]
show (GreaterCondition lhs rhs) = concat [show lhs, " > ", show rhs]
show (LessOrEqualCondition lhs rhs) = concat [show lhs, " <= ", show rhs]
show (GreaterOrEqualCondition lhs rhs) = concat [show lhs, " >= ", show rhs]

View File

@ -0,0 +1,211 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Frontend.NameAnalysis
( nameAnalysis
, Error(..)
) where
import qualified Data.List.NonEmpty as NonEmpty
import qualified Data.Vector as Vector
import qualified Language.Elna.Frontend.AST as AST
import qualified Language.Elna.Frontend.SymbolTable as SymbolTable
import Language.Elna.Frontend.SymbolTable
( SymbolTable
, Info(..)
, ParameterInfo(..)
)
import Control.Monad.Trans.Except (Except, runExcept, throwE)
import Data.Functor ((<&>))
import Language.Elna.Location (Identifier(..))
import Language.Elna.Frontend.Types (Type(..))
import Data.Foldable (traverse_)
import Control.Monad (foldM, unless)
data Error
= UndefinedTypeError Identifier
| UnexpectedTypeInfoError Info
| IdentifierAlreadyDefinedError Identifier
| UndefinedSymbolError Identifier
| UnexpectedArrayByValue Identifier
deriving Eq
instance Show Error
where
show (UndefinedTypeError identifier) =
concat ["Type \"", show identifier, "\" is not defined"]
show (UnexpectedTypeInfoError info) = show info
<> " expected to be a type"
show (IdentifierAlreadyDefinedError identifier) =
concat ["The identifier \"", show identifier, "\" is already defined"]
show (UndefinedSymbolError identifier) =
concat ["Symbol \"", show identifier, "\" is not defined"]
show (UnexpectedArrayByValue identifier) = concat
[ "Array \""
, show identifier
, "\" cannot be passed by value, only by reference"
]
newtype NameAnalysis a = NameAnalysis
{ runNameAnalysis :: Except Error a
}
instance Functor NameAnalysis
where
fmap f (NameAnalysis x) = NameAnalysis $ f <$> x
instance Applicative NameAnalysis
where
pure = NameAnalysis . pure
(NameAnalysis f) <*> (NameAnalysis x) = NameAnalysis $ f <*> x
instance Monad NameAnalysis
where
(NameAnalysis x) >>= f = NameAnalysis $ x >>= (runNameAnalysis . f)
nameAnalysis :: AST.Program -> Either Error SymbolTable
nameAnalysis = runExcept
. runNameAnalysis
. program SymbolTable.builtInSymbolTable
program :: SymbolTable -> AST.Program -> NameAnalysis SymbolTable
program symbolTable (AST.Program declarations) = do
globalTable <- foldM procedureDeclaration symbolTable declarations
foldM declaration globalTable declarations
procedureDeclaration :: SymbolTable -> AST.Declaration -> NameAnalysis SymbolTable
procedureDeclaration globalTable = \case
(AST.ProcedureDeclaration identifier parameters _ _)
-> mapM (parameter globalTable) parameters
>>= enterOrFail identifier
. ProcedureInfo SymbolTable.empty
. Vector.fromList
(AST.TypeDefinition identifier typeExpression)
-> dataType globalTable typeExpression
>>= enterOrFail identifier . SymbolTable.TypeInfo
where
enterOrFail identifier declarationInfo =
maybe (NameAnalysis $ throwE $ IdentifierAlreadyDefinedError identifier) pure
$ SymbolTable.enter identifier declarationInfo globalTable
declaration :: SymbolTable -> AST.Declaration -> NameAnalysis SymbolTable
declaration globalTable (AST.ProcedureDeclaration identifier parameters variables body) = do
variableInfo <- mapM (variableDeclaration globalTable) variables
parameterInfo <- mapM (parameterToVariableInfo globalTable) parameters
procedureTable <- fmap (SymbolTable.scope globalTable)
$ either (NameAnalysis . throwE . IdentifierAlreadyDefinedError . NonEmpty.head) pure
$ SymbolTable.fromList
$ parameterInfo <> variableInfo
traverse_ (statement procedureTable) body
pure $ SymbolTable.update (updater procedureTable) identifier globalTable
where
updater procedureTable (ProcedureInfo _ parameters') = Just
$ ProcedureInfo procedureTable parameters'
updater _ _ = Nothing
declaration globalTable (AST.TypeDefinition _ _) = pure globalTable
parameterToVariableInfo :: SymbolTable -> AST.Parameter -> NameAnalysis (Identifier, Info)
parameterToVariableInfo symbolTable (AST.Parameter identifier typeExpression isReferenceParameter')
= (identifier,) . VariableInfo isReferenceParameter'
<$> dataType symbolTable typeExpression
variableDeclaration :: SymbolTable -> AST.VariableDeclaration -> NameAnalysis (Identifier, Info)
variableDeclaration globalTable (AST.VariableDeclaration identifier typeExpression)
= (identifier,) . VariableInfo False
<$> dataType globalTable typeExpression
parameter :: SymbolTable -> AST.Parameter -> NameAnalysis ParameterInfo
parameter environmentSymbolTable (AST.Parameter identifier typeExpression isReferenceParameter') = do
parameterType <- dataType environmentSymbolTable typeExpression
case parameterType of
ArrayType _ _
| not isReferenceParameter' -> NameAnalysis
$ throwE $ UnexpectedArrayByValue identifier
_ ->
let parameterInfo = ParameterInfo
{ name = identifier
, type' = parameterType
, isReferenceParameter = isReferenceParameter'
}
in pure parameterInfo
dataType :: SymbolTable -> AST.TypeExpression -> NameAnalysis Type
dataType environmentSymbolTable (AST.NamedType baseType) = do
case SymbolTable.lookup baseType environmentSymbolTable of
Just baseInfo
| TypeInfo baseType' <- baseInfo -> pure baseType'
| otherwise -> NameAnalysis $ throwE $ UnexpectedTypeInfoError baseInfo
_ -> NameAnalysis $ throwE $ UndefinedTypeError baseType
dataType environmentSymbolTable (AST.ArrayType arraySize baseType) =
dataType environmentSymbolTable baseType <&> ArrayType (fromIntegral arraySize)
checkSymbol :: SymbolTable -> Identifier -> NameAnalysis ()
checkSymbol globalTable identifier
= unless (SymbolTable.member identifier globalTable)
$ NameAnalysis $ throwE
$ UndefinedSymbolError identifier
expression :: SymbolTable -> AST.Expression -> NameAnalysis ()
expression _ (AST.LiteralExpression _) = pure ()
expression globalTable (AST.SumExpression lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
expression globalTable (AST.SubtractionExpression lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
expression globalTable (AST.NegationExpression negation) =
expression globalTable negation
expression globalTable (AST.ProductExpression lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
expression globalTable (AST.DivisionExpression lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
expression globalTable (AST.VariableExpression variableExpression) =
variableAccess globalTable variableExpression
statement :: SymbolTable -> AST.Statement -> NameAnalysis ()
statement _ AST.EmptyStatement = pure ()
statement globalTable (AST.CallStatement name arguments)
= checkSymbol globalTable name
>> traverse_ (expression globalTable) arguments
statement globalTable (AST.CompoundStatement statements) =
traverse_ (statement globalTable) statements
statement globalTable (AST.IfStatement ifCondition ifStatement elseStatement)
= condition globalTable ifCondition
>> statement globalTable ifStatement
>> maybe (pure ()) (statement globalTable) elseStatement
statement globalTable (AST.AssignmentStatement lvalue rvalue)
= variableAccess globalTable lvalue
>> expression globalTable rvalue
statement globalTable (AST.WhileStatement whileCondition loop)
= condition globalTable whileCondition
>> statement globalTable loop
condition :: SymbolTable -> AST.Condition -> NameAnalysis ()
condition globalTable (AST.EqualCondition lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
condition globalTable (AST.NonEqualCondition lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
condition globalTable (AST.LessCondition lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
condition globalTable (AST.GreaterCondition lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
condition globalTable (AST.LessOrEqualCondition lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
condition globalTable (AST.GreaterOrEqualCondition lhs rhs)
= expression globalTable lhs
>> expression globalTable rhs
variableAccess :: SymbolTable -> AST.VariableAccess -> NameAnalysis ()
variableAccess globalTable (AST.VariableAccess identifier) =
checkSymbol globalTable identifier
variableAccess globalTable (AST.ArrayAccess arrayExpression indexExpression)
= variableAccess globalTable arrayExpression
>> expression globalTable indexExpression

View File

@ -0,0 +1,227 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Frontend.Parser
( Parser
, programP
) where
import Control.Monad (void)
import Control.Monad.Combinators.Expr (Operator(..), makeExprParser)
import Data.Text (Text)
import qualified Data.Text as Text
import Data.Void (Void)
import Language.Elna.Frontend.AST
( Declaration(..)
, Identifier(..)
, Parameter(..)
, Program(..)
, Statement(..)
, TypeExpression(..)
, VariableDeclaration(..)
, VariableAccess(..)
, Condition(..)
, Expression(..)
, Literal(..)
)
import Text.Megaparsec
( Parsec
, (<?>)
, MonadParsec(..)
, eof
, optional
, between
, sepBy
, choice
)
import qualified Text.Megaparsec.Char.Lexer as Lexer
import Text.Megaparsec.Char
( alphaNumChar
, char
, letterChar
, space1
, string
)
import Control.Applicative (Alternative(..))
import Data.Maybe (isJust)
type Parser = Parsec Void Text
literalP :: Parser Literal
literalP
= HexadecimalLiteral <$> Lexer.signed space hexadecimalP
<|> DecimalLiteral <$> Lexer.signed space decimalP
<|> CharacterLiteral <$> lexeme charP
where
charP = fromIntegral . fromEnum
<$> between (char '\'') (char '\'') Lexer.charLiteral
typeDefinitionP :: Parser Declaration
typeDefinitionP = TypeDefinition
<$> (symbol "type" *> identifierP)
<*> (symbol "=" *> typeExpressionP)
<* semicolonP
<?> "type definition"
termP :: Parser Expression
termP = choice
[ parensP expressionP
, LiteralExpression <$> literalP
, VariableExpression <$> variableAccessP
]
operatorTable :: [[Operator Parser Expression]]
operatorTable =
[ unaryOperator
, factorOperator
, termOperator
]
where
unaryOperator =
[ prefix "-" NegationExpression
, prefix "+" id
]
factorOperator =
[ binary "*" ProductExpression
, binary "/" DivisionExpression
]
termOperator =
[ binary "+" SumExpression
, binary "-" SubtractionExpression
]
prefix name f = Prefix (f <$ symbol name)
binary name f = InfixL (f <$ symbol name)
expressionP :: Parser Expression
expressionP = makeExprParser termP operatorTable
variableAccessP :: Parser VariableAccess
variableAccessP = do
identifier <- identifierP
indices <- many $ bracketsP expressionP
pure $ foldr (flip ArrayAccess) (VariableAccess identifier) indices
conditionP :: Parser Condition
conditionP = do
lhs <- expressionP
conditionCons <- choice comparisonOperator
conditionCons lhs <$> expressionP
where
comparisonOperator =
[ symbol "<=" >> pure LessOrEqualCondition
, symbol "<" >> pure LessCondition
, symbol ">=" >> pure GreaterOrEqualCondition
, symbol ">" >> pure GreaterCondition
, symbol "=" >> pure EqualCondition
, symbol "#" >> pure NonEqualCondition
]
symbol :: Text -> Parser Text
symbol = Lexer.symbol space
space :: Parser ()
space = Lexer.space space1 (Lexer.skipLineComment "//")
$ Lexer.skipBlockComment "/*" "*/"
lexeme :: forall a. Parser a -> Parser a
lexeme = Lexer.lexeme space
blockP :: forall a. Parser a -> Parser a
blockP = between (symbol "{") (symbol "}")
parensP :: forall a. Parser a -> Parser a
parensP = between (symbol "(") (symbol ")")
bracketsP :: forall a. Parser a -> Parser a
bracketsP = between (symbol "[") (symbol "]")
colonP :: Parser ()
colonP = void $ symbol ":"
commaP :: Parser ()
commaP = void $ symbol ","
semicolonP :: Parser ()
semicolonP = void $ symbol ";"
decimalP :: Integral a => Parser a
decimalP = lexeme Lexer.decimal
hexadecimalP :: Integral a => Parser a
hexadecimalP = string "0x" *> lexeme Lexer.hexadecimal
identifierP :: Parser Identifier
identifierP =
let wordParser = (:) <$> letterChar <*> many alphaNumChar <?> "identifier"
in fmap Identifier $ lexeme $ Text.pack <$> wordParser
procedureP :: Parser ()
procedureP = void $ symbol "proc"
parameterP :: Parser Parameter
parameterP = paramCons
<$> optional (symbol "ref")
<*> identifierP
<*> (colonP *> typeExpressionP)
where
paramCons ref name typeName = Parameter name typeName (isJust ref)
typeExpressionP :: Parser TypeExpression
typeExpressionP = arrayTypeExpression
<|> NamedType <$> identifierP
<?> "type expression"
where
arrayTypeExpression = ArrayType
<$> (symbol "array" *> bracketsP literalP)
<*> (symbol "of" *> typeExpressionP)
procedureDeclarationP :: Parser Declaration
procedureDeclarationP = procedureCons
<$> (procedureP *> identifierP)
<*> parensP (sepBy parameterP commaP)
<*> blockP ((,) <$> many variableDeclarationP <*> many statementP)
<?> "procedure definition"
where
procedureCons procedureName parameters (variables, body) =
ProcedureDeclaration procedureName parameters variables body
statementP :: Parser Statement
statementP
= EmptyStatement <$ semicolonP
<|> ifElseP
<|> CompoundStatement <$> blockP (many statementP)
<|> try assignmentP
<|> try whileP
<|> callP
<?> "statement"
where
callP = CallStatement
<$> identifierP
<*> parensP (sepBy expressionP commaP)
<* semicolonP
ifElseP = IfStatement
<$> (symbol "if" *> parensP conditionP)
<*> statementP
<*> optional (symbol "else" *> statementP)
whileP = WhileStatement
<$> (symbol "while" *> parensP conditionP)
<*> statementP
assignmentP = AssignmentStatement
<$> variableAccessP
<* symbol ":="
<*> expressionP
<* semicolonP
variableDeclarationP :: Parser VariableDeclaration
variableDeclarationP = VariableDeclaration
<$> (symbol "var" *> identifierP)
<*> (colonP *> typeExpressionP)
<* semicolonP
<?> "variable declaration"
declarationP :: Parser Declaration
declarationP = procedureDeclarationP <|> typeDefinitionP
programP :: Parser Program
programP = Program <$> many declarationP <* eof

View File

@ -0,0 +1,109 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Frontend.SymbolTable
( SymbolTable
, Info(..)
, ParameterInfo(..)
, builtInSymbolTable
, empty
, enter
, fromList
, lookup
, member
, scope
, size
, toMap
, update
) where
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.List (sort)
import Data.List.NonEmpty (NonEmpty)
import qualified Data.List.NonEmpty as NonEmpty
import Data.Maybe (isJust)
import Data.Vector (Vector)
import qualified Data.Vector as Vector
import Language.Elna.Location (Identifier(..))
import Language.Elna.Frontend.Types (Type(..), intType)
import Prelude hiding (lookup)
data SymbolTable = SymbolTable (Maybe SymbolTable) (HashMap Identifier Info)
deriving (Eq, Show)
empty :: SymbolTable
empty = SymbolTable Nothing HashMap.empty
update :: (Info -> Maybe Info) -> Identifier -> SymbolTable -> SymbolTable
update updater key (SymbolTable parent mappings) = SymbolTable parent
$ HashMap.update updater key mappings
scope :: SymbolTable -> SymbolTable -> SymbolTable
scope parent (SymbolTable _ mappings) = SymbolTable (Just parent) mappings
builtInSymbolTable :: SymbolTable
builtInSymbolTable = SymbolTable Nothing $ HashMap.fromList
[ ("printi", ProcedureInfo empty (Vector.singleton printiX))
, ("printc", ProcedureInfo empty (Vector.singleton printcI))
, ("exit", ProcedureInfo empty Vector.empty)
, ("int", TypeInfo intType)
]
where
printiX = ParameterInfo
{ name = "x"
, type' = intType
, isReferenceParameter = False
}
printcI = ParameterInfo
{ name = "i"
, type' = intType
, isReferenceParameter = False
}
toMap :: SymbolTable -> HashMap Identifier Info
toMap (SymbolTable _ map') = map'
enter :: Identifier -> Info -> SymbolTable -> Maybe SymbolTable
enter identifier info table@(SymbolTable parent hashTable)
| member identifier table = Nothing
| otherwise = Just
$ SymbolTable parent (HashMap.insert identifier info hashTable)
lookup :: Identifier -> SymbolTable -> Maybe Info
lookup identifier (SymbolTable parent table)
| Just found <- HashMap.lookup identifier table = Just found
| Just parent' <- parent = lookup identifier parent'
| otherwise = Nothing
member :: Identifier -> SymbolTable -> Bool
member identifier table =
isJust $ lookup identifier table
size :: SymbolTable -> Int
size (SymbolTable _ map') = HashMap.size map'
fromList :: [(Identifier, Info)] -> Either (NonEmpty Identifier) SymbolTable
fromList elements
| Just identifierDuplicates' <- identifierDuplicates =
Left identifierDuplicates'
| otherwise = Right $ SymbolTable Nothing $ HashMap.fromList elements
where
identifierDuplicates = NonEmpty.nonEmpty
$ fmap NonEmpty.head
$ filter ((> 1) . NonEmpty.length)
$ NonEmpty.group . sort
$ fst <$> elements
data ParameterInfo = ParameterInfo
{ name :: Identifier
, type' :: Type
, isReferenceParameter :: Bool
} deriving (Eq, Show)
data Info
= TypeInfo Type
| VariableInfo Bool Type
| ProcedureInfo SymbolTable (Vector ParameterInfo)
deriving (Eq, Show)

View File

@ -0,0 +1,208 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Frontend.TypeAnalysis
( typeAnalysis
, -- Error(..)
) where
import Control.Applicative (Alternative(..))
import Control.Monad (unless)
import Control.Monad.Trans.Class (MonadTrans(..))
import Control.Monad.Trans.Except (Except, runExcept, throwE)
import Control.Monad.Trans.Reader (ReaderT, runReaderT, withReaderT, ask, asks)
import Data.Foldable (traverse_)
import qualified Data.Vector as Vector
import qualified Language.Elna.Frontend.AST as AST
import Language.Elna.Frontend.SymbolTable (Info(..), ParameterInfo(..), SymbolTable)
import qualified Language.Elna.Frontend.SymbolTable as SymbolTable
import Language.Elna.Frontend.Types (Type(..), booleanType, intType)
import Language.Elna.Location (Identifier(..))
typeAnalysis :: SymbolTable -> AST.Program -> Maybe Error
typeAnalysis globalTable = either Just (const Nothing)
. runExcept
. flip runReaderT globalTable
. runTypeAnalysis
. program
data Error
= UnexpectedProcedureInfoError Info
| UndefinedSymbolError Identifier
| ParameterCountMismatchError Int Int
| UnexpectedVariableInfoError Info
| ArithmeticExpressionError Type
| ComparisonExpressionError Type Type
| InvalidConditionTypeError Type
{- | ExpectedLvalueError AST.Expression
| ArgumentTypeMismatchError Type Type -}
| ArrayIndexError Type
| ArrayAccessError Type
deriving Eq
instance Show Error
where
show (UnexpectedProcedureInfoError info) =
"Expected to encounter a procedure, got: " <> show info
show (UndefinedSymbolError identifier) =
concat ["Symbol \"", show identifier, "\" is not defined"]
show (ParameterCountMismatchError parameterCount argumentCount)
= "The function was expected to receive " <> show argumentCount
<> " arguments, but got " <> show parameterCount
show (UnexpectedVariableInfoError info) =
"Expected to encounter a variable, got: " <> show info
show (ArithmeticExpressionError got) =
"Expected an arithmetic expression to be an integer, got: " <> show got
show (ComparisonExpressionError lhs rhs)
= "Expected an arithmetic expression to be an integer, got \""
<> show lhs <> "\" and \"" <> show rhs <> "\""
show (InvalidConditionTypeError got) =
"Expected a condition to be a boolean, got: " <> show got
show (ArrayIndexError got) =
"Expected an array index expression to be an integer, got: " <> show got
show (ArrayAccessError got) =
"Expected to encounter an array, got: " <> show got
newtype TypeAnalysis a = TypeAnalysis
{ runTypeAnalysis :: ReaderT SymbolTable (Except Error) a
}
instance Functor TypeAnalysis
where
fmap f (TypeAnalysis x) = TypeAnalysis $ f <$> x
instance Applicative TypeAnalysis
where
pure = TypeAnalysis . pure
(TypeAnalysis f) <*> (TypeAnalysis x) = TypeAnalysis $ f <*> x
instance Monad TypeAnalysis
where
(TypeAnalysis x) >>= f = TypeAnalysis $ x >>= (runTypeAnalysis . f)
program :: AST.Program -> TypeAnalysis ()
program (AST.Program declarations) = traverse_ declaration declarations
declaration :: AST.Declaration -> TypeAnalysis ()
declaration (AST.ProcedureDeclaration procedureName _ _ body) = do
globalTable <- TypeAnalysis ask
case SymbolTable.lookup procedureName globalTable of
Just (ProcedureInfo localTable _) -> TypeAnalysis
$ withReaderT (const localTable)
$ runTypeAnalysis
$ traverse_ (statement globalTable) body
Just anotherInfo -> TypeAnalysis $ lift $ throwE
$ UnexpectedProcedureInfoError anotherInfo
Nothing -> TypeAnalysis $ lift $ throwE
$ UndefinedSymbolError procedureName
declaration (AST.TypeDefinition _ _) = pure ()
statement :: SymbolTable -> AST.Statement -> TypeAnalysis ()
statement globalTable = \case
AST.EmptyStatement -> pure ()
AST.AssignmentStatement lhs rhs -> do
lhsType <- variableAccess globalTable lhs
rhsType <- expression globalTable rhs
unless (lhsType == intType)
$ TypeAnalysis $ lift $ throwE $ InvalidConditionTypeError lhsType
unless (rhsType == intType)
$ TypeAnalysis $ lift $ throwE $ InvalidConditionTypeError rhsType
AST.WhileStatement whileCondition whileStatement -> do
conditionType <- condition globalTable whileCondition
unless (conditionType == booleanType)
$ TypeAnalysis $ lift $ throwE $ InvalidConditionTypeError conditionType
statement globalTable whileStatement
AST.IfStatement ifCondition ifStatement elseStatement -> do
conditionType <- condition globalTable ifCondition
unless (conditionType == booleanType)
$ TypeAnalysis $ lift $ throwE $ InvalidConditionTypeError conditionType
statement globalTable ifStatement
maybe (pure ()) (statement globalTable) elseStatement
AST.CompoundStatement statements -> traverse_ (statement globalTable) statements
AST.CallStatement procedureName arguments ->
case SymbolTable.lookup procedureName globalTable of
Just (ProcedureInfo _ parameters)
| parametersLength <- Vector.length parameters
, argumentsLength <- length arguments
, Vector.length parameters /= length arguments -> TypeAnalysis $ lift $ throwE
$ ParameterCountMismatchError parametersLength argumentsLength
| otherwise -> traverse_ (uncurry checkArgument)
$ Vector.zip parameters (Vector.fromList arguments)
Just anotherInfo -> TypeAnalysis $ lift $ throwE
$ UnexpectedVariableInfoError anotherInfo
Nothing -> TypeAnalysis $ lift $ throwE
$ UndefinedSymbolError procedureName
where
checkArgument ParameterInfo{} _argument = pure () {-
argumentType <- expression globalTable argument
unless (argumentType == type')
$ TypeAnalysis $ lift $ throwE $ ArgumentTypeMismatchError type' argumentType
when (isReferenceParameter && not (isLvalue argument))
$ TypeAnalysis $ lift $ throwE $ ExpectedLvalueError argument
isLvalue (AST.VariableExpression _) = True
isLvalue _ = False -}
variableAccess :: SymbolTable -> AST.VariableAccess -> TypeAnalysis Type
variableAccess globalTable (AST.VariableAccess identifier) = do
localLookup <- TypeAnalysis $ asks $ SymbolTable.lookup identifier
case localLookup <|> SymbolTable.lookup identifier globalTable of
Just (VariableInfo _ variableType) -> pure variableType
Just anotherInfo -> TypeAnalysis $ lift $ throwE
$ UnexpectedVariableInfoError anotherInfo
Nothing -> TypeAnalysis $ lift $ throwE
$ UndefinedSymbolError identifier
variableAccess globalTable (AST.ArrayAccess arrayExpression indexExpression) = do
arrayType <- variableAccess globalTable arrayExpression
indexType <- expression globalTable indexExpression
unless (indexType == intType)
$ TypeAnalysis $ lift $ throwE $ ArrayIndexError indexType
case arrayType of
ArrayType _ baseType -> pure baseType
nonArrayType -> TypeAnalysis $ lift $ throwE
$ ArrayAccessError nonArrayType
expression :: SymbolTable -> AST.Expression -> TypeAnalysis Type
expression globalTable = \case
AST.VariableExpression variableExpression ->
variableAccess globalTable variableExpression
AST.LiteralExpression literal' -> literal literal'
AST.NegationExpression negation -> do
operandType <- expression globalTable negation
if operandType == intType
then pure intType
else TypeAnalysis $ lift $ throwE $ ArithmeticExpressionError operandType
AST.SumExpression lhs rhs -> arithmeticExpression lhs rhs
AST.SubtractionExpression lhs rhs -> arithmeticExpression lhs rhs
AST.ProductExpression lhs rhs -> arithmeticExpression lhs rhs
AST.DivisionExpression lhs rhs -> arithmeticExpression lhs rhs
where
arithmeticExpression lhs rhs = do
lhsType <- expression globalTable lhs
unless (lhsType == intType)
$ TypeAnalysis $ lift $ throwE $ ArithmeticExpressionError lhsType
rhsType <- expression globalTable rhs
unless (rhsType == intType)
$ TypeAnalysis $ lift $ throwE $ ArithmeticExpressionError rhsType
pure intType
condition :: SymbolTable -> AST.Condition -> TypeAnalysis Type
condition globalTable = \case
AST.EqualCondition lhs rhs -> comparisonExpression lhs rhs
AST.NonEqualCondition lhs rhs -> comparisonExpression lhs rhs
AST.LessCondition lhs rhs -> comparisonExpression lhs rhs
AST.GreaterCondition lhs rhs -> comparisonExpression lhs rhs
AST.LessOrEqualCondition lhs rhs -> comparisonExpression lhs rhs
AST.GreaterOrEqualCondition lhs rhs -> comparisonExpression lhs rhs
where
comparisonExpression lhs rhs = do
lhsType <- expression globalTable lhs
rhsType <- expression globalTable rhs
if lhsType == intType && rhsType == intType
then pure booleanType
else TypeAnalysis $ lift $ throwE $ ComparisonExpressionError lhsType rhsType
literal :: AST.Literal -> TypeAnalysis Type
literal (AST.DecimalLiteral _) = pure intType
literal (AST.HexadecimalLiteral _) = pure intType
literal (AST.CharacterLiteral _) = pure intType

View File

@ -0,0 +1,33 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Frontend.Types
( Type(..)
, addressByteSize
, booleanType
, intType
) where
import Data.Text (Text)
import Data.Word (Word32)
import Language.Elna.Location (showArrayType)
addressByteSize :: Int
addressByteSize = 4
data Type
= PrimitiveType Text Int
| ArrayType Word32 Type
deriving Eq
instance Show Type
where
show (PrimitiveType typeName _) = show typeName
show (ArrayType elementCount typeName) = showArrayType elementCount typeName
intType :: Type
intType = PrimitiveType "int" 4
booleanType :: Type
booleanType = PrimitiveType "boolean" 1

312
lib/Language/Elna/Glue.hs Normal file
View File

@ -0,0 +1,312 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Glue
( glue
) where
import Control.Monad.Trans.State (State, gets, modify', runState)
import Data.Bifunctor (Bifunctor(..))
import Data.Foldable (Foldable(..), traverse_)
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.Maybe (catMaybes)
import Data.Vector (Vector)
import qualified Data.Text.Lazy.Builder.Int as Text.Builder
import qualified Data.Text.Lazy.Builder as Text.Builder
import qualified Data.Text.Lazy as Text.Lazy
import qualified Data.Vector as Vector
import Data.Word (Word32)
import qualified Language.Elna.Frontend.AST as AST
import Language.Elna.Frontend.Types (Type(..))
import Language.Elna.Backend.Intermediate
( Label(..)
, Operand(..)
, Quadruple(..)
, Variable(..)
)
import Language.Elna.Frontend.SymbolTable (Info(..), SymbolTable)
import qualified Language.Elna.Frontend.SymbolTable as SymbolTable
import GHC.Records (HasField(..))
import Language.Elna.Frontend.AST (Identifier(..))
import Debug.Trace (traceShow)
data Paste = Paste
{ temporaryCounter :: Word32
, labelCounter :: Word32
, localMap :: HashMap Identifier Variable
}
newtype Glue a = Glue
{ runGlue :: State Paste a }
instance Functor Glue
where
fmap f (Glue x) = Glue $ f <$> x
instance Applicative Glue
where
pure = Glue . pure
(Glue f) <*> (Glue x) = Glue $ f <*> x
instance Monad Glue
where
(Glue x) >>= f = Glue $ x >>= (runGlue . f)
glue :: SymbolTable -> AST.Program -> HashMap Identifier (Vector (Quadruple Variable))
glue globalTable
= fst
. flip runState emptyPaste
. runGlue
. program globalTable
where
emptyPaste = Paste
{ temporaryCounter = 0
, labelCounter = 0
, localMap = mempty
}
program :: SymbolTable -> AST.Program -> Glue (HashMap Identifier (Vector (Quadruple Variable)))
program globalTable (AST.Program declarations)
= HashMap.fromList . catMaybes
<$> traverse (declaration globalTable) declarations
declaration
:: SymbolTable
-> AST.Declaration
-> Glue (Maybe (AST.Identifier, Vector (Quadruple Variable)))
declaration globalTable (AST.ProcedureDeclaration procedureName parameters variableDeclarations statements) =
let Just (ProcedureInfo localTable _) = SymbolTable.lookup procedureName globalTable
in Glue (modify' resetTemporaryCounter)
>> traverseWithIndex registerVariable variableDeclarations
>> traverseWithIndex registerParameter (reverse parameters)
>> nameQuadruplesTuple <$> traverse (statement localTable) statements
where
traverseWithIndex f = traverse_ (uncurry f) . zip [0..]
registerParameter index (AST.Parameter identifier _ _) =
Glue $ modify' $ modifier identifier $ ParameterVariable index
registerVariable index (AST.VariableDeclaration identifier _) =
Glue $ modify' $ modifier identifier $ LocalVariable index
modifier identifier currentCounter generator = generator
{ localMap = HashMap.insert identifier currentCounter
$ getField @"localMap" generator
}
nameQuadruplesTuple quadrupleList = Just
( procedureName
, Vector.cons StartQuadruple
$ flip Vector.snoc StopQuadruple
$ fold quadrupleList
)
resetTemporaryCounter paste = paste
{ temporaryCounter = 0
, localMap = mempty
}
declaration _ (AST.TypeDefinition _ _) = pure Nothing
statement :: SymbolTable -> AST.Statement -> Glue (Vector (Quadruple Variable))
statement _ AST.EmptyStatement = pure mempty
statement localTable (AST.CallStatement (AST.Identifier callName) arguments) = do
visitedArguments <- traverse (expression localTable) arguments
let (parameterStatements, argumentStatements)
= bimap (Vector.fromList . fmap ParameterQuadruple) Vector.concat
$ unzip visitedArguments
in pure
$ Vector.snoc (argumentStatements <> parameterStatements)
$ CallQuadruple callName
$ fromIntegral
$ length arguments
statement localTable (AST.CompoundStatement statements) =
fold <$> traverse (statement localTable) statements
statement localTable (AST.IfStatement ifCondition ifStatement elseStatement) = do
(conditionStatements, jumpConstructor) <- condition localTable ifCondition
ifLabel <- createLabel
endLabel <- createLabel
ifStatements <- statement localTable ifStatement
possibleElseStatements <- traverse (statement localTable) elseStatement
pure $ conditionStatements <> case possibleElseStatements of
Just elseStatements -> Vector.cons (jumpConstructor ifLabel) elseStatements
<> Vector.fromList [GoToQuadruple endLabel, LabelQuadruple ifLabel]
<> Vector.snoc ifStatements (LabelQuadruple endLabel)
Nothing -> Vector.fromList [jumpConstructor ifLabel, GoToQuadruple endLabel, LabelQuadruple ifLabel]
<> Vector.snoc ifStatements (LabelQuadruple endLabel)
statement localTable (AST.AssignmentStatement variableAccess' assignee) = do
(rhsOperand, rhsStatements) <- expression localTable assignee
let variableType' = variableType variableAccess' localTable
accessResult <- variableAccess localTable variableAccess' Nothing variableType' mempty
lhsStatements <- case accessResult of
(identifier, Just accumulatedIndex, accumulatedStatements)
-> Vector.snoc accumulatedStatements
. ArrayAssignQuadruple rhsOperand accumulatedIndex
<$> lookupLocal identifier
(identifier, Nothing, accumulatedStatements)
-> Vector.snoc accumulatedStatements
. AssignQuadruple rhsOperand
<$> lookupLocal identifier
pure $ rhsStatements <> lhsStatements
statement localTable (AST.WhileStatement whileCondition whileStatement) = do
(conditionStatements, jumpConstructor) <- condition localTable whileCondition
startLabel <- createLabel
endLabel <- createLabel
conditionLabel <- createLabel
whileStatements <- statement localTable whileStatement
pure $ Vector.fromList [LabelQuadruple conditionLabel]
<> conditionStatements
<> Vector.fromList [jumpConstructor startLabel, GoToQuadruple endLabel, LabelQuadruple startLabel]
<> whileStatements
<> Vector.fromList [GoToQuadruple conditionLabel, LabelQuadruple endLabel]
createTemporary :: Glue Variable
createTemporary = do
currentCounter <- Glue $ gets $ getField @"temporaryCounter"
Glue $ modify' modifier
pure $ TempVariable currentCounter
where
modifier generator = generator
{ temporaryCounter = getField @"temporaryCounter" generator + 1
}
lookupLocal :: Identifier -> Glue Variable
lookupLocal identifier =
fmap (HashMap.! identifier) $ Glue $ gets $ getField @"localMap"
createLabel :: Glue Label
createLabel = do
currentCounter <- Glue $ gets $ getField @"labelCounter"
Glue $ modify' modifier
pure $ Label
$ Text.Lazy.toStrict
$ Text.Builder.toLazyText
$ ".L" <> Text.Builder.decimal currentCounter
where
modifier generator = generator
{ labelCounter = getField @"labelCounter" generator + 1
}
condition
:: SymbolTable
-> AST.Condition
-> Glue (Vector (Quadruple Variable), Label -> Quadruple Variable)
condition localTable (AST.EqualCondition lhs rhs) = do
(lhsOperand, lhsStatements) <- expression localTable lhs
(rhsOperand, rhsStatements) <- expression localTable rhs
pure
( lhsStatements <> rhsStatements
, EqualQuadruple lhsOperand rhsOperand
)
condition localTable (AST.NonEqualCondition lhs rhs) = do
(lhsOperand, lhsStatements) <- expression localTable lhs
(rhsOperand, rhsStatements) <- expression localTable rhs
pure
( lhsStatements <> rhsStatements
, NonEqualQuadruple lhsOperand rhsOperand
)
condition localTable (AST.LessCondition lhs rhs) = do
(lhsOperand, lhsStatements) <- expression localTable lhs
(rhsOperand, rhsStatements) <- expression localTable rhs
pure (lhsStatements <> rhsStatements, LessQuadruple lhsOperand rhsOperand)
condition localTable (AST.GreaterCondition lhs rhs) = do
(lhsOperand, lhsStatements) <- expression localTable lhs
(rhsOperand, rhsStatements) <- expression localTable rhs
pure
( lhsStatements <> rhsStatements
, GreaterQuadruple lhsOperand rhsOperand
)
condition localTable (AST.LessOrEqualCondition lhs rhs) = do
(lhsOperand, lhsStatements) <- expression localTable lhs
(rhsOperand, rhsStatements) <- expression localTable rhs
pure
( lhsStatements <> rhsStatements
, LessOrEqualQuadruple lhsOperand rhsOperand
)
condition localTable (AST.GreaterOrEqualCondition lhs rhs) = do
(lhsOperand, lhsStatements) <- expression localTable lhs
(rhsOperand, rhsStatements) <- expression localTable rhs
pure
( lhsStatements <> rhsStatements
, GreaterOrEqualQuadruple lhsOperand rhsOperand
)
variableAccess
:: SymbolTable
-> AST.VariableAccess
-> Maybe (Operand Variable)
-> Type
-> Vector (Quadruple Variable)
-> Glue (AST.Identifier, Maybe (Operand Variable), Vector (Quadruple Variable))
variableAccess _ (AST.VariableAccess identifier) accumulatedIndex _ accumulatedStatements =
pure (identifier, accumulatedIndex, accumulatedStatements)
variableAccess localTable accessKind accumulatedIndex arrayType statements
| (AST.ArrayAccess access1 index1) <- accessKind
, (ArrayType arraySize baseType) <- arrayType = do
(indexPlace, statements') <- expression localTable index1
case accumulatedIndex of
Just baseIndex -> do
resultVariable <- createTemporary
let resultOperand = VariableOperand resultVariable
indexCalculation = Vector.fromList
[ ProductQuadruple (IntOperand $ fromIntegral arraySize) baseIndex resultVariable
, AddQuadruple indexPlace resultOperand resultVariable
]
in variableAccess localTable access1 (Just resultOperand) baseType
$ statements <> indexCalculation <> statements'
Nothing ->
variableAccess localTable access1 (Just indexPlace) baseType statements'
variableAccess _ _ _ _ _ = error "Array access operator doesn't match the type."
variableType :: AST.VariableAccess -> SymbolTable -> Type
variableType (AST.VariableAccess identifier) symbolTable
| Just (TypeInfo type') <- SymbolTable.lookup identifier symbolTable = type'
| Just (VariableInfo _ type') <- SymbolTable.lookup identifier symbolTable = type'
| otherwise = traceShow identifier $ error "Undefined type."
variableType (AST.ArrayAccess arrayAccess' _) symbolTable =
variableType arrayAccess' symbolTable
expression :: SymbolTable -> AST.Expression -> Glue (Operand Variable, Vector (Quadruple Variable))
expression localTable = \case
(AST.LiteralExpression literal') -> pure (literal literal', mempty)
(AST.SumExpression lhs rhs) -> binaryExpression AddQuadruple lhs rhs
(AST.SubtractionExpression lhs rhs) ->
binaryExpression SubtractionQuadruple lhs rhs
(AST.NegationExpression negation) -> do
(operand, statements) <- expression localTable negation
tempVariable <- createTemporary
let negationQuadruple = NegationQuadruple operand tempVariable
pure
( VariableOperand tempVariable
, Vector.snoc statements negationQuadruple
)
(AST.ProductExpression lhs rhs) ->
binaryExpression ProductQuadruple lhs rhs
(AST.DivisionExpression lhs rhs) ->
binaryExpression DivisionQuadruple lhs rhs
(AST.VariableExpression variableExpression) -> do
let variableType' = variableType variableExpression localTable
variableAccess' <- variableAccess localTable variableExpression Nothing variableType' mempty
case variableAccess' of
(identifier, Nothing, statements)
-> (, statements) . VariableOperand
<$> lookupLocal identifier
(identifier, Just operand, statements) -> do
arrayAddress <- createTemporary
localVariable <- lookupLocal identifier
let arrayStatement = ArrayQuadruple localVariable operand arrayAddress
pure
( VariableOperand arrayAddress
, Vector.snoc statements arrayStatement
)
where
binaryExpression f lhs rhs = do
(lhsOperand, lhsStatements) <- expression localTable lhs
(rhsOperand, rhsStatements) <- expression localTable rhs
tempVariable <- createTemporary
let newQuadruple = f lhsOperand rhsOperand tempVariable
pure
( VariableOperand tempVariable
, Vector.snoc (lhsStatements <> rhsStatements) newQuadruple
)
literal :: AST.Literal -> Operand Variable
literal (AST.DecimalLiteral integer) = IntOperand integer
literal (AST.HexadecimalLiteral integer) = IntOperand integer
literal (AST.CharacterLiteral character) = IntOperand $ fromIntegral character

View File

@ -0,0 +1,62 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Location
( Identifier(..)
, Location(..)
, Node(..)
, showArrayType
) where
import Data.Hashable (Hashable(..))
import Data.String (IsString(..))
import Data.Text (Text)
import qualified Data.Text as Text
import Data.Word (Word32)
data Location = Location
{ line :: Word32
, column :: Word32
} deriving (Eq, Show)
instance Semigroup Location
where
(Location thisLine thisColumn) <> (Location thatLine thatColumn) = Location
{ line = thisLine + thatLine
, column = thisColumn + thatColumn
}
instance Monoid Location
where
mempty = Location{ line = 1, column = 1 }
data Node a = Node a Location
deriving (Eq, Show)
instance Functor Node
where
fmap f (Node node location) = Node (f node) location
newtype Identifier = Identifier { unIdentifier :: Text }
deriving Eq
instance Show Identifier
where
show (Identifier identifier) = Text.unpack identifier
instance IsString Identifier
where
fromString = Identifier . Text.pack
instance Ord Identifier
where
compare (Identifier lhs) (Identifier rhs) = compare lhs rhs
instance Hashable Identifier
where
hashWithSalt salt (Identifier identifier) = hashWithSalt salt identifier
showArrayType :: (Show a, Show b) => a -> b -> String
showArrayType elementCount typeName = concat
["array[", show elementCount, "] of ", show typeName]

View File

@ -0,0 +1,492 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Object.Elf
( ByteOrder(..)
, Elf32_Addr
, Elf32_Off
, Elf32_Half
, Elf32_Word
, Elf32_Sword
, Elf32_Ehdr(..)
, Elf32_Rel(..)
, Elf32_Rela(..)
, Elf32_Shdr(..)
, Elf32_Sym(..)
, ElfEncodingError(..)
, ElfIdentification(..)
, ElfMachine(..)
, ElfVersion(..)
, ElfClass(..)
, ElfData(..)
, ElfType(..)
, ElfSectionType(..)
, ElfSymbolBinding(..)
, ElfSymbolType(..)
, byteOrder
, elf32Addr
, elf32Half
, elf32Off
, elf32Shdr
, elf32Sword
, elf32Word
, elf32Ehdr
, elf32Rel
, elf32Rela
, elf32Sym
, elfIdentification
, rInfo
, shfWrite
, shfAlloc
, shfExecinstr
, shfMascproc
, shfInfoLink
, stInfo
) where
import Control.Exception (Exception(..))
import Data.Bits (Bits(..))
import qualified Data.ByteString.Builder as ByteString.Builder
import Data.Int (Int32)
import Data.Word (Word8, Word16, Word32)
import qualified Data.ByteString as ByteString
-- * Data types.
type Elf32_Addr = Word32 -- ^ Unsigned program address.
type Elf32_Half = Word16 -- ^ Unsigned medium integer.
type Elf32_Off = Word32 -- ^ Unsigned file offset.
type Elf32_Sword = Int32 -- ^ Signed large integer.
type Elf32_Word = Word32 -- ^ Unsigned large integer.
data ElfClass
= ELFCLASSNONE -- ^ Invalid class.
| ELFCLASS32 -- ^ 32-bit objects.
| ELFCLASS64 -- ^ 64-bit objects.
deriving Eq
instance Show ElfClass
where
show ELFCLASSNONE = "ELFCLASSNONE"
show ELFCLASS32 = "ELFCLASS32"
show ELFCLASS64 = "ELFCLASS64"
instance Enum ElfClass
where
toEnum 0 = ELFCLASSNONE
toEnum 1 = ELFCLASS32
toEnum 2 = ELFCLASS64
toEnum _ = error "Unknown Elf class"
fromEnum ELFCLASSNONE = 0
fromEnum ELFCLASS32 = 1
fromEnum ELFCLASS64 = 1
-- | Data encoding.
data ElfData
= ELFDATANONE
| ELFDATA2LSB
| ELFDATA2MSB
deriving Eq
instance Show ElfData
where
show ELFDATANONE = "ELFDATANONE"
show ELFDATA2LSB = "ELFDATA2LSB"
show ELFDATA2MSB = "ELFDATA2MSB"
instance Enum ElfData
where
toEnum 0 = ELFDATANONE
toEnum 1 = ELFDATA2LSB
toEnum 2 = ELFDATA2MSB
toEnum _ = error "Unknown elf data"
fromEnum ELFDATANONE = 0
fromEnum ELFDATA2LSB = 1
fromEnum ELFDATA2MSB = 2
data ElfIdentification = ElfIdentification ElfClass ElfData
deriving Eq
-- | ELF header.
data Elf32_Ehdr = Elf32_Ehdr
{ e_ident :: ElfIdentification
, e_type :: ElfType
, e_machine :: ElfMachine
, e_version :: ElfVersion
, e_entry :: Elf32_Addr
, e_phoff :: Elf32_Off
, e_shoff :: Elf32_Off
, e_flags :: Elf32_Word
, e_ehsize :: Elf32_Half
, e_phentsize :: Elf32_Half
, e_phnum :: Elf32_Half
, e_shentsize :: Elf32_Half
, e_shnum :: Elf32_Half
, e_shstrndx :: Elf32_Half
} deriving Eq
-- | Section header.
data Elf32_Shdr = Elf32_Shdr
{ sh_name :: Elf32_Word
, sh_type :: ElfSectionType
, sh_flags :: Elf32_Word
, sh_addr :: Elf32_Addr
, sh_offset :: Elf32_Off
, sh_size :: Elf32_Word
, sh_link :: Elf32_Word
, sh_info :: Elf32_Word
, sh_addralign :: Elf32_Word
, sh_entsize :: Elf32_Word
} deriving Eq
data ElfMachine
= ElfMachine Elf32_Half
| EM_NONE -- ^ No machine.
| EM_M32 -- ^ AT&T WE 32100.
| EM_SPARC -- ^ SPARC.
| EM_386 -- ^ Intel Architecture.
| EM_68K -- ^ Motorola 68000.
| EM_88K -- ^ Motorola 88000.
| EM_860 -- ^ Intel 80860.
| EM_MIPS -- ^ MIPS RS3000 Big-Endian.
| EM_MIPS_RS4_BE -- ^ MIPS RS4000 Big-Endian.
| EM_RISCV -- ^ RISC-V.
deriving Eq
instance Enum ElfMachine
where
toEnum 0x0 = EM_NONE
toEnum 0x1 = EM_M32
toEnum 0x2 = EM_SPARC
toEnum 0x3 = EM_386
toEnum 0x4 = EM_68K
toEnum 0x5 = EM_88K
toEnum 0x7 = EM_860
toEnum 0x8 = EM_MIPS
toEnum 0xa = EM_MIPS_RS4_BE
toEnum 0xf3 = EM_RISCV
toEnum x = ElfMachine $ fromIntegral x
fromEnum EM_NONE = 0x0
fromEnum EM_M32 = 0x1
fromEnum EM_SPARC = 0x2
fromEnum EM_386 = 0x3
fromEnum EM_68K = 0x4
fromEnum EM_88K = 0x5
fromEnum EM_860 = 0x7
fromEnum EM_MIPS = 0x8
fromEnum EM_MIPS_RS4_BE = 0xa
fromEnum EM_RISCV = 0xf3
fromEnum (ElfMachine x) = fromIntegral x
data ElfVersion
= ElfVersion Elf32_Word
| EV_NONE -- ^ Invalid versionn.
| EV_CURRENT -- ^ Current version.
deriving Eq
instance Enum ElfVersion
where
toEnum 0 = EV_NONE
toEnum 1 = EV_CURRENT
toEnum x = ElfVersion $ fromIntegral x
fromEnum EV_NONE = 0
fromEnum EV_CURRENT = 1
fromEnum (ElfVersion x) = fromIntegral x
data ElfType
= ElfType Elf32_Half
| ET_NONE -- ^ No file type.
| ET_REL -- ^ Relocatable file.
| ET_EXEC -- ^ Executable file.
| ET_DYN -- ^ Shared object file.
| ET_CORE -- ^ Core file.
| ET_LOPROC -- ^ Processor-specific.
| ET_HIPROC -- ^ Processor-specific.
deriving Eq
instance Enum ElfType
where
toEnum 0 = ET_NONE
toEnum 1 = ET_REL
toEnum 2 = ET_EXEC
toEnum 3 = ET_DYN
toEnum 4 = ET_CORE
toEnum 0xff00 = ET_LOPROC
toEnum 0xffff = ET_HIPROC
toEnum x = ElfType $ fromIntegral x
fromEnum ET_NONE = 0
fromEnum ET_REL = 1
fromEnum ET_EXEC = 2
fromEnum ET_DYN = 3
fromEnum ET_CORE = 4
fromEnum ET_LOPROC = 0xff00
fromEnum ET_HIPROC = 0xffff
fromEnum (ElfType x) = fromIntegral x
data Elf32_Sym = Elf32_Sym
{ st_name :: Elf32_Word
, st_value :: Elf32_Addr
, st_size :: Elf32_Word
, st_info :: Word8
, st_other :: Word8
, st_shndx :: Elf32_Half
} deriving Eq
data ElfSymbolBinding
= ElfSymbolBinding Word8
| STB_LOCAL
| STB_GLOBAL
| STB_WEAK
| STB_LOPROC
| STB_HIPROC
deriving Eq
instance Enum ElfSymbolBinding
where
toEnum 0 = STB_LOCAL
toEnum 1 = STB_GLOBAL
toEnum 2 = STB_WEAK
toEnum 13 = STB_LOPROC
toEnum 15 = STB_HIPROC
toEnum x = ElfSymbolBinding $ fromIntegral x
fromEnum STB_LOCAL = 0
fromEnum STB_GLOBAL = 1
fromEnum STB_WEAK = 2
fromEnum STB_LOPROC = 13
fromEnum STB_HIPROC = 15
fromEnum (ElfSymbolBinding x) = fromIntegral x
data ElfSymbolType
= ElfSymbolType Word8
| STT_NOTYPE
| STT_OBJECT
| STT_FUNC
| STT_SECTION
| STT_FILE
| STT_LOPROC
| STT_HIPROC
deriving Eq
instance Enum ElfSymbolType
where
toEnum 0 = STT_NOTYPE
toEnum 1 = STT_OBJECT
toEnum 2 = STT_FUNC
toEnum 3 = STT_SECTION
toEnum 4 = STT_FILE
toEnum 13 = STT_LOPROC
toEnum 15 = STT_HIPROC
toEnum x = ElfSymbolType $ fromIntegral x
fromEnum STT_NOTYPE = 0
fromEnum STT_OBJECT = 1
fromEnum STT_FUNC = 2
fromEnum STT_SECTION = 3
fromEnum STT_FILE = 4
fromEnum STT_LOPROC = 13
fromEnum STT_HIPROC = 15
fromEnum (ElfSymbolType x) = fromIntegral x
data Elf32_Rel = Elf32_Rel
{ r_offset :: Elf32_Addr
, r_info :: Elf32_Word
} deriving Eq
data Elf32_Rela = Elf32_Rela
{ r_offset :: Elf32_Addr
, r_info :: Elf32_Word
, r_addend :: Elf32_Sword
} deriving Eq
data ElfSectionType
= ElfSectionType Elf32_Word
| SHT_NULL
| SHT_PROGBITS
| SHT_SYMTAB
| SHT_STRTAB
| SHT_RELA
| SHT_HASH
| SHT_DYNAMIC
| SHT_NOTE
| SHT_NOBITS
| SHT_REL
| SHT_SHLIB
| SHT_DYNSYM
| SHT_LOPROC
| SHT_HIPROC
| SHT_LOUSER
| SHT_HIUSER
deriving Eq
instance Enum ElfSectionType
where
toEnum 0 = SHT_NULL
toEnum 1 = SHT_PROGBITS
toEnum 2 = SHT_SYMTAB
toEnum 3 = SHT_STRTAB
toEnum 4 = SHT_RELA
toEnum 5 = SHT_HASH
toEnum 6 = SHT_DYNAMIC
toEnum 7 = SHT_NOTE
toEnum 8 = SHT_NOBITS
toEnum 9 = SHT_REL
toEnum 10 = SHT_SHLIB
toEnum 11 = SHT_DYNSYM
toEnum 0x70000000 = SHT_LOPROC
toEnum 0x7fffffff = SHT_HIPROC
toEnum 0x80000000 = SHT_LOUSER
toEnum 0xffffffff = SHT_HIUSER
toEnum x = ElfSectionType $ fromIntegral x
fromEnum SHT_NULL = 0
fromEnum SHT_PROGBITS = 1
fromEnum SHT_SYMTAB = 2
fromEnum SHT_STRTAB = 3
fromEnum SHT_RELA = 4
fromEnum SHT_HASH = 5
fromEnum SHT_DYNAMIC = 6
fromEnum SHT_NOTE = 7
fromEnum SHT_NOBITS = 8
fromEnum SHT_REL = 9
fromEnum SHT_SHLIB = 10
fromEnum SHT_DYNSYM = 11
fromEnum SHT_LOPROC = 0x70000000
fromEnum SHT_HIPROC = 0x7fffffff
fromEnum SHT_LOUSER = 0x80000000
fromEnum SHT_HIUSER = 0xffffffff
fromEnum (ElfSectionType x) = fromIntegral x
-- * Constants.
shfWrite :: Elf32_Word
shfWrite = 0x1
shfAlloc :: Elf32_Word
shfAlloc = 0x2
shfExecinstr:: Elf32_Word
shfExecinstr = 0x4
shfMascproc :: Elf32_Word
shfMascproc = 0xf0000000
shfInfoLink :: Elf32_Word
shfInfoLink = 0x40
-- * Encoding functions.
elf32Addr :: ByteOrder -> Elf32_Addr -> ByteString.Builder.Builder
elf32Addr LSB = ByteString.Builder.word32LE
elf32Addr MSB = ByteString.Builder.word32BE
elf32Half :: ByteOrder -> Elf32_Half -> ByteString.Builder.Builder
elf32Half LSB = ByteString.Builder.word16LE
elf32Half MSB = ByteString.Builder.word16BE
elf32Off :: ByteOrder -> Elf32_Off -> ByteString.Builder.Builder
elf32Off LSB = ByteString.Builder.word32LE
elf32Off MSB = ByteString.Builder.word32BE
elf32Sword :: ByteOrder -> Elf32_Sword -> ByteString.Builder.Builder
elf32Sword LSB = ByteString.Builder.int32LE
elf32Sword MSB = ByteString.Builder.int32BE
elf32Word :: ByteOrder -> Elf32_Word -> ByteString.Builder.Builder
elf32Word LSB = ByteString.Builder.word32LE
elf32Word MSB = ByteString.Builder.word32BE
elfIdentification :: ElfIdentification -> ByteString.Builder.Builder
elfIdentification (ElfIdentification elfClass elfData)
= ByteString.Builder.word8 0x7f
<> ByteString.Builder.string7 "ELF"
<> ByteString.Builder.word8 (fromIntegralEnum elfClass)
<> ByteString.Builder.word8 (fromIntegralEnum elfData)
<> ByteString.Builder.word8 (fromIntegralEnum EV_CURRENT)
<> ByteString.Builder.byteString (ByteString.replicate 9 0)
elf32Ehdr :: Elf32_Ehdr -> Either ElfEncodingError ByteString.Builder.Builder
elf32Ehdr Elf32_Ehdr{..} = encode <$> byteOrder e_ident
where
encode byteOrder'
= elfIdentification e_ident
<> elf32Half byteOrder' (fromIntegralEnum e_type)
<> elf32Half byteOrder' (fromIntegralEnum e_machine)
<> elf32Word byteOrder' (fromIntegralEnum e_version)
<> elf32Addr byteOrder' e_entry
<> elf32Off byteOrder' e_phoff
<> elf32Off byteOrder' e_shoff
<> elf32Word byteOrder' e_flags
<> elf32Half byteOrder' e_ehsize
<> elf32Half byteOrder' e_phentsize
<> elf32Half byteOrder' e_phnum
<> elf32Half byteOrder' e_shentsize
<> elf32Half byteOrder' e_shnum
<> elf32Half byteOrder' e_shstrndx
byteOrder :: ElfIdentification -> Either ElfEncodingError ByteOrder
byteOrder (ElfIdentification class' _)
| class' /= ELFCLASS32 = Left $ ElfUnsupportedClassError class'
byteOrder (ElfIdentification _ ELFDATA2MSB) = Right MSB
byteOrder (ElfIdentification _ ELFDATA2LSB) = Right LSB
byteOrder (ElfIdentification _ ELFDATANONE) = Left ElfInvalidByteOrderError
elf32Shdr :: ByteOrder -> Elf32_Shdr -> ByteString.Builder.Builder
elf32Shdr byteOrder' Elf32_Shdr{..}
= elf32Word byteOrder' sh_name
<> elf32Word byteOrder' (fromIntegralEnum sh_type)
<> elf32Word byteOrder' sh_flags
<> elf32Addr byteOrder' sh_addr
<> elf32Off byteOrder' sh_offset
<> elf32Word byteOrder' sh_size
<> elf32Word byteOrder' sh_link
<> elf32Word byteOrder' sh_info
<> elf32Word byteOrder' sh_addralign
<> elf32Word byteOrder' sh_entsize
elf32Sym :: ByteOrder -> Elf32_Sym -> ByteString.Builder.Builder
elf32Sym byteOrder' Elf32_Sym{..}
= elf32Word byteOrder' st_name
<> elf32Addr byteOrder' st_value
<> elf32Word byteOrder' st_size
<> ByteString.Builder.word8 st_info
<> ByteString.Builder.word8 st_other
<> elf32Half byteOrder' st_shndx
elf32Rel :: ByteOrder -> Elf32_Rel -> ByteString.Builder.Builder
elf32Rel byteOrder' Elf32_Rel{..}
= elf32Addr byteOrder' r_offset
<> elf32Word byteOrder' r_info
elf32Rela :: ByteOrder -> Elf32_Rela -> ByteString.Builder.Builder
elf32Rela byteOrder' Elf32_Rela{..}
= elf32Addr byteOrder' r_offset
<> elf32Word byteOrder' r_info
<> elf32Sword byteOrder' r_addend
stInfo :: ElfSymbolBinding -> ElfSymbolType -> Word8
stInfo binding type' = fromIntegralEnum binding `shiftL` 4
.|. (fromIntegralEnum type' .&. 0xf)
rInfo :: Elf32_Word -> Word8 -> Elf32_Word
rInfo symbol type' = symbol `shiftL` 8
.|. fromIntegralEnum type'
-- * Help types and functions.
data ByteOrder = LSB | MSB
deriving Eq
data ElfEncodingError
= ElfInvalidByteOrderError
| ElfUnsupportedClassError ElfClass
deriving Eq
instance Show ElfEncodingError
where
show ElfInvalidByteOrderError = "Invalid byte order."
show (ElfUnsupportedClassError class') =
concat ["Elf class \"", show class', "\" is not supported."]
instance Exception ElfEncodingError
fromIntegralEnum :: (Enum a, Num b) => a -> b
fromIntegralEnum = fromIntegral . fromEnum

View File

@ -0,0 +1,148 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
-- | Object file generation.
module Language.Elna.Object.ElfCoder
( ElfEnvironment(..)
, ElfWriter(..)
, ElfHeaderResult(..)
, UnresolvedRelocation(..)
, UnresolvedRelocations(..)
, addHeaderToResult
, addSectionHeader
, elfHeaderSize
, elfObject
, elfSectionsSize
, putSectionHeader
, partitionSymbols
, module Language.Elna.Object.Elf
) where
import Control.Exception (throwIO)
import Control.Monad.IO.Class (MonadIO(..))
import Control.Monad.Trans.State (StateT, runStateT, modify', gets)
import Data.Bits (Bits(..))
import Data.ByteString (StrictByteString)
import qualified Data.ByteString as ByteString
import qualified Data.ByteString.Builder as ByteString.Builder
import Data.Word (Word8)
import Data.Vector (Vector)
import qualified Data.Vector as Vector
import System.IO (Handle, IOMode(..), SeekMode(..), hSeek, withFile)
import Data.Foldable (traverse_)
import Language.Elna.Object.Elf
import Language.Elna.Object.StringTable (StringTable)
import qualified Language.Elna.Object.StringTable as StringTable
import GHC.Records (HasField(..))
data UnresolvedRelocation = UnresolvedRelocation StrictByteString Elf32_Addr Word8
data UnresolvedRelocations =
UnresolvedRelocations (Vector UnresolvedRelocation) (ElfHeaderResult Elf32_Sym) Elf32_Word
data ElfEnvironment = ElfEnvironment
{ objectHeaders :: ElfHeaderResult Elf32_Shdr
, objectHandle :: Handle
}
newtype ElfWriter a = ElfWriter
{ runElfWriter :: StateT ElfEnvironment IO a
}
data ElfHeaderResult a = ElfHeaderResult
{ sectionNames :: StringTable
, sectionHeaders :: Vector a
} deriving Eq
instance Functor ElfWriter
where
fmap f (ElfWriter x) = ElfWriter $ f <$> x
instance Applicative ElfWriter
where
pure = ElfWriter . pure
(ElfWriter f) <*> (ElfWriter x) = ElfWriter $ f <*> x
instance Monad ElfWriter
where
(ElfWriter x) >>= f = ElfWriter $ x >>= (runElfWriter . f)
instance MonadIO ElfWriter
where
liftIO = ElfWriter . liftIO
partitionSymbols :: ElfHeaderResult Elf32_Sym -> (Vector Elf32_Sym, Vector Elf32_Sym)
partitionSymbols = Vector.partition go . getField @"sectionHeaders"
where
go Elf32_Sym{ st_info } = (st_info .&. 0xf0) == 0
-- | ELF header size.
elfHeaderSize :: Elf32_Off
elfHeaderSize = 52
-- | Calculates the size of all sections based on the 'sh_size' in the given
-- headers and adds 'elfHeaderSize' to it.
elfSectionsSize :: Vector Elf32_Shdr -> Elf32_Off
elfSectionsSize = (elfHeaderSize +)
. Vector.foldr ((+) . sh_size) 0
addHeaderToResult :: StrictByteString -> a -> ElfHeaderResult a -> ElfHeaderResult a
addHeaderToResult name newHeader accumulator@ElfHeaderResult{..} = accumulator
{ sectionHeaders = Vector.snoc sectionHeaders newHeader
, sectionNames = StringTable.append name sectionNames
}
addSectionHeader :: StrictByteString -> Elf32_Shdr -> ElfWriter ()
addSectionHeader name newHeader = ElfWriter $ modify' modifier
where
modifier elfEnvironment@ElfEnvironment{ objectHeaders } = elfEnvironment
{ objectHeaders = addHeaderToResult name newHeader objectHeaders
}
putSectionHeader :: StrictByteString -> Elf32_Shdr -> StrictByteString -> ElfWriter ()
putSectionHeader name newHeader encoded = do
objectHandle' <- ElfWriter $ gets $ getField @"objectHandle"
liftIO $ ByteString.hPut objectHandle' encoded
addSectionHeader name newHeader
-- Writes an ELF object to the provided file path. The callback writes the
-- sections, collects headers for those sections and returns the ELF header.
elfObject :: FilePath -> ElfWriter Elf32_Ehdr -> IO ()
elfObject outFile putContents = withFile outFile WriteMode withObjectFile
where
withObjectFile objectHandle
= hSeek objectHandle AbsoluteSeek (fromIntegral elfHeaderSize)
>> putContents' objectHandle
>>= uncurry afterContents
putContents' objectHandle
= flip runStateT (initialState objectHandle)
$ runElfWriter putContents
zeroHeader = Elf32_Shdr
{ sh_type = SHT_NULL
, sh_size = 0
, sh_offset = 0
, sh_name = 0
, sh_link = 0
, sh_info = 0
, sh_flags = 0
, sh_entsize = 0
, sh_addralign = 0
, sh_addr = 0
}
initialState objectHandle = ElfEnvironment
{ objectHeaders = ElfHeaderResult
{ sectionHeaders = Vector.singleton zeroHeader
, sectionNames = mempty
}
, objectHandle = objectHandle
}
afterContents header ElfEnvironment{ objectHeaders = ElfHeaderResult{..}, ..} =
let hPutBuilder = ByteString.Builder.hPutBuilder objectHandle
writeSectionHeaders byteOrder' =
traverse_ (hPutBuilder . elf32Shdr byteOrder') sectionHeaders
in either throwIO pure (byteOrder (e_ident header))
>>= writeSectionHeaders
>> either throwIO (putHeaders objectHandle) (elf32Ehdr header)
putHeaders objectHandle encodedHeader
= hSeek objectHandle AbsoluteSeek 0
>> ByteString.Builder.hPutBuilder objectHandle encodedHeader

View File

@ -0,0 +1,48 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.Object.StringTable
( StringTable
, append
, elem
, index
, encode
, size
) where
import Data.ByteString (StrictByteString)
import qualified Data.ByteString as ByteString
import Language.Elna.Object.Elf
import Prelude hiding (elem)
newtype StringTable = StringTable StrictByteString
deriving Eq
instance Semigroup StringTable
where
(StringTable x) <> (StringTable y) = StringTable $ x <> ByteString.drop 1 y
instance Monoid StringTable
where
mempty = StringTable "\0"
size :: StringTable -> Elf32_Word
size (StringTable container) =
fromIntegral $ ByteString.length container
elem :: StrictByteString -> StringTable -> Bool
elem needle (StringTable container) =
("\0" <> needle <> "\0") `ByteString.isInfixOf` container
append :: StrictByteString -> StringTable -> StringTable
append element (StringTable container) =
StringTable $ container <> element <> "\0"
index :: Elf32_Word -> StringTable -> StrictByteString
index stringTableIndex (StringTable stringTable)
= ByteString.takeWhile (/= 0)
$ ByteString.drop (fromIntegral stringTableIndex) stringTable
encode :: StringTable -> StrictByteString
encode (StringTable container) = container

View File

@ -0,0 +1,519 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.RiscV.CodeGenerator
( Directive(..)
, Statement(..)
, generateRiscV
, riscVConfiguration
) where
import Control.Monad.Trans.State (State, get, evalState, modify')
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.Int (Int32)
import Data.Word (Word32)
import Data.Vector (Vector)
import qualified Data.Vector as Vector
import qualified Language.Elna.Architecture.RiscV as RiscV
import Language.Elna.Backend.Allocator (MachineConfiguration(..), Store(..))
import Language.Elna.Backend.Intermediate
( Label(..)
, Operand(..)
, ProcedureQuadruples(..)
, Quadruple(..)
)
import Language.Elna.Location (Identifier(..))
import Data.Bits (Bits(..))
import Data.Foldable (Foldable(..), foldlM)
import Data.Text (Text)
import qualified Data.Text.Lazy.Builder.Int as Text.Builder
import qualified Data.Text.Lazy.Builder as Text.Builder
import qualified Data.Text.Lazy as Text.Lazy
data Directive
= GlobalDirective
| FunctionDirective
deriving (Eq, Show)
data Statement
= Instruction RiscV.Instruction
| JumpLabel Text [Directive]
deriving Eq
riscVConfiguration :: MachineConfiguration RiscV.XRegister
riscVConfiguration = MachineConfiguration
{ temporaryRegisters =
[ RiscV.T0
, RiscV.T1
, RiscV.T2
, RiscV.T3
, RiscV.T4
, RiscV.T5
, RiscV.T6
]
}
-- | Reserved register used for calculations to save an immediate temporary.
immediateRegister :: RiscV.XRegister
immediateRegister = RiscV.A7
type RiscVStore = Store RiscV.XRegister
type RiscVQuadruple = Quadruple RiscVStore
type RiscVOperand = Operand RiscVStore
newtype RiscVGenerator a = RiscVGenerator
{ runRiscVGenerator :: State Word32 a }
instance Functor RiscVGenerator
where
fmap f (RiscVGenerator x) = RiscVGenerator $ f <$> x
instance Applicative RiscVGenerator
where
pure = RiscVGenerator . pure
(RiscVGenerator f) <*> (RiscVGenerator x) = RiscVGenerator $ f <*> x
instance Monad RiscVGenerator
where
(RiscVGenerator x) >>= f = RiscVGenerator $ x >>= (runRiscVGenerator . f)
createLabel :: RiscVGenerator Text
createLabel = do
currentCounter <- RiscVGenerator get
RiscVGenerator $ modify' (+ 1)
pure
$ mappend ".A"
$ Text.Lazy.toStrict
$ Text.Builder.toLazyText
$ Text.Builder.decimal currentCounter
generateRiscV :: HashMap Identifier (ProcedureQuadruples RiscVStore) -> Vector Statement
generateRiscV = flip evalState 0
. runRiscVGenerator
. foldlM go Vector.empty
. HashMap.toList
where
go accumulator (Identifier key, ProcedureQuadruples{ stackSize, quadruples = value }) =
let code = Vector.cons (JumpLabel key [GlobalDirective, FunctionDirective])
. fold <$> mapM (quadruple stackSize) value
in (accumulator <>) <$> code
quadruple :: Word32 -> RiscVQuadruple -> RiscVGenerator (Vector Statement)
quadruple stackSize StartQuadruple =
let totalStackSize = stackSize + 8
in pure $ Vector.fromList
[ Instruction (RiscV.BaseInstruction RiscV.OpImm $ RiscV.I RiscV.SP RiscV.ADDI RiscV.SP (negate totalStackSize))
, Instruction (RiscV.BaseInstruction RiscV.Store $ RiscV.S 0 RiscV.SW RiscV.SP RiscV.S0)
, Instruction (RiscV.BaseInstruction RiscV.Store $ RiscV.S 4 RiscV.SW RiscV.SP RiscV.RA)
, Instruction (RiscV.BaseInstruction RiscV.OpImm $ RiscV.I RiscV.S0 RiscV.ADDI RiscV.SP totalStackSize)
]
quadruple stackSize StopQuadruple =
let totalStackSize = stackSize + 8
in pure $ Vector.fromList
[ Instruction (RiscV.BaseInstruction RiscV.Load $ RiscV.I RiscV.S0 RiscV.LW RiscV.SP 0)
, Instruction (RiscV.BaseInstruction RiscV.Load $ RiscV.I RiscV.RA RiscV.LW RiscV.SP 4)
, Instruction (RiscV.BaseInstruction RiscV.OpImm $ RiscV.I RiscV.SP RiscV.ADDI RiscV.SP totalStackSize)
, Instruction (RiscV.BaseInstruction RiscV.Jalr $ RiscV.I RiscV.RA RiscV.JALR RiscV.Zero 0)
]
quadruple _ (ParameterQuadruple operand1) =
let (operandRegister, statements) = loadImmediateOrRegister operand1 RiscV.A0
in pure $ mappend statements $ Vector.fromList
[ Instruction (RiscV.BaseInstruction RiscV.OpImm $ RiscV.I RiscV.SP RiscV.ADDI RiscV.SP (negate 4))
, Instruction (RiscV.BaseInstruction RiscV.Store $ RiscV.S 0 RiscV.SW RiscV.SP operandRegister)
]
quadruple _ (CallQuadruple callName numberOfArguments) =
let restoreStackSize = numberOfArguments * 4
in pure $ Vector.fromList
[ Instruction (RiscV.CallInstruction callName)
, Instruction (RiscV.BaseInstruction RiscV.OpImm $ RiscV.I RiscV.SP RiscV.ADDI RiscV.SP restoreStackSize)
]
quadruple _ (AddQuadruple operand1 operand2 store) =
commutativeBinary (+) RiscV.ADD (RiscV.Funct7 0b0000000) (operand1, operand2) store
quadruple _ (ProductQuadruple operand1 operand2 store) =
commutativeBinary (*) RiscV.MUL (RiscV.Funct7 0b0000001) (operand1, operand2) store
quadruple _ (SubtractionQuadruple operand1 operand2 store)
| IntOperand immediateOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
let (storeRegister, storeStatements) = storeToStore store
in pure $ lui (immediateOperand1 - immediateOperand2) storeRegister <> storeStatements
| VariableOperand variableOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 =
let (storeRegister, storeStatements) = storeToStore store
(operandRegister1, statements1) = loadFromStore variableOperand1
(operandRegister2, statements2) = loadFromStore variableOperand2
instruction = Instruction
$ RiscV.BaseInstruction RiscV.Op
$ RiscV.R storeRegister RiscV.SUB operandRegister1 operandRegister2
$ RiscV.Funct7 0b0100000
in pure $ statements1 <> statements2 <> Vector.cons instruction storeStatements
| IntOperand immediateOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 =
let (storeRegister, storeStatements) = storeToStore store
statements1 = lui immediateOperand1 storeRegister
(operandRegister2, statements2) = loadFromStore variableOperand2
instruction = Instruction
$ RiscV.BaseInstruction RiscV.Op
$ RiscV.R storeRegister RiscV.SUB storeRegister operandRegister2
$ RiscV.Funct7 0b0100000
in pure $ statements1 <> statements2 <> Vector.cons instruction storeStatements
| VariableOperand variableOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
let (storeRegister, storeStatements) = storeToStore store
statements2 = lui (negate immediateOperand2) storeRegister
(operandRegister1, statements1) = loadFromStore variableOperand1
instruction = Instruction
$ RiscV.BaseInstruction RiscV.Op
$ RiscV.R storeRegister RiscV.ADD storeRegister operandRegister1
$ RiscV.Funct7 0b0000000
in pure $ statements1 <> statements2 <> Vector.cons instruction storeStatements
quadruple _ (NegationQuadruple operand1 store)
| IntOperand immediateOperand1 <- operand1 =
let (storeRegister, storeStatements) = storeToStore store
in pure $ lui (negate immediateOperand1) storeRegister <> storeStatements
| VariableOperand variableOperand1 <- operand1 =
let (storeRegister, storeStatements) = storeToStore store
(operandRegister1, statements1) = loadFromStore variableOperand1
instruction = Instruction
$ RiscV.BaseInstruction RiscV.Op
$ RiscV.R storeRegister RiscV.SUB RiscV.Zero operandRegister1
$ RiscV.Funct7 0b0100000
in pure $ statements1 <> Vector.cons instruction storeStatements
quadruple _ (DivisionQuadruple operand1 operand2 store)
| IntOperand immediateOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
if immediateOperand2 == 0
then pure $ Vector.singleton
$ Instruction (RiscV.CallInstruction "_divide_by_zero_error")
else
let (storeRegister, storeStatements) = storeToStore store
in pure $ lui (quot immediateOperand1 immediateOperand2) storeRegister <> storeStatements
| VariableOperand variableOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 = do
let (storeRegister, storeStatements) = storeToStore store
(operandRegister1, statements1) = loadFromStore variableOperand1
(operandRegister2, statements2) = loadFromStore variableOperand2
divisionInstruction = Instruction
$ RiscV.BaseInstruction RiscV.Op
$ RiscV.R storeRegister RiscV.DIV operandRegister1 operandRegister2 (RiscV.Funct7 0b0000001)
branchLabel <- createLabel
let branchInstruction = Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch branchLabel RiscV.BNE RiscV.Zero operandRegister2
pure $ statements1 <> statements2 <> Vector.fromList
[ branchInstruction
, Instruction (RiscV.CallInstruction "_divide_by_zero_error")
, JumpLabel branchLabel []
, divisionInstruction
] <> storeStatements
| VariableOperand variableOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
let (storeRegister, storeStatements) = storeToStore store
statements2 = lui immediateOperand2 storeRegister
(operandRegister1, statements1) = loadFromStore variableOperand1
operationInstruction
| immediateOperand2 == 0 =
RiscV.CallInstruction "_divide_by_zero_error"
| otherwise = RiscV.BaseInstruction RiscV.Op
$ RiscV.R storeRegister RiscV.DIV operandRegister1 storeRegister
$ RiscV.Funct7 0b0000001
in pure $ statements1 <> statements2
<> Vector.cons (Instruction operationInstruction) storeStatements
| IntOperand immediateOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 = do
let (storeRegister, storeStatements) = storeToStore store
statements1 = lui immediateOperand1 storeRegister
(operandRegister2, statements2) = loadFromStore variableOperand2
divisionInstruction = Instruction
$ RiscV.BaseInstruction RiscV.Op
$ RiscV.R storeRegister RiscV.DIV storeRegister operandRegister2 (RiscV.Funct7 0b0000001)
branchLabel <- createLabel
let branchInstruction = Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch branchLabel RiscV.BNE RiscV.Zero operandRegister2
pure $ statements1 <> statements2 <> Vector.fromList
[ branchInstruction
, Instruction (RiscV.CallInstruction "_divide_by_zero_error")
, JumpLabel branchLabel []
, divisionInstruction
] <> storeStatements
quadruple _ (LabelQuadruple (Label label)) = pure $ Vector.singleton $ JumpLabel label mempty
quadruple _ (GoToQuadruple label) = pure $ Vector.singleton $ unconditionalJal label
quadruple _ (EqualQuadruple operand1 operand2 goToLabel) =
commutativeComparison (==) RiscV.BEQ (operand1, operand2) goToLabel
quadruple _ (NonEqualQuadruple operand1 operand2 goToLabel) =
commutativeComparison (/=) RiscV.BNE (operand1, operand2) goToLabel
quadruple _ (LessQuadruple operand1 operand2 goToLabel) =
lessThan (operand1, operand2) goToLabel
quadruple _ (GreaterQuadruple operand1 operand2 goToLabel) =
lessThan (operand2, operand1) goToLabel
quadruple _ (LessOrEqualQuadruple operand1 operand2 goToLabel) =
lessOrEqualThan (operand1, operand2) goToLabel
quadruple _ (GreaterOrEqualQuadruple operand1 operand2 goToLabel) =
lessOrEqualThan (operand2, operand1) goToLabel
quadruple _ (AssignQuadruple operand1 store)
| IntOperand immediateOperand1 <- operand1 =
let (storeRegister, storeStatements) = storeToStore store
in pure $ lui immediateOperand1 storeRegister <> storeStatements
| VariableOperand variableOperand1 <- operand1 =
let (operandRegister1, statements1) = loadFromStore variableOperand1
(storeRegister, storeStatements) = storeToStore store
instruction = Instruction
$ RiscV.BaseInstruction RiscV.OpImm
$ RiscV.I storeRegister RiscV.ADDI operandRegister1 0
in pure $ statements1 <> Vector.cons instruction storeStatements
quadruple _ (ArrayAssignQuadruple assigneeOperand indexOperand store)
| IntOperand immediateAssigneeOperand <- assigneeOperand =
let (storeRegister, storeStatements) = storeWithOffset store indexOperand
in pure $ lui immediateAssigneeOperand storeRegister <> storeStatements
| VariableOperand variableAssigneeOperand <- assigneeOperand =
let (assigneeOperandRegister, assigneeStatements) = loadFromStore variableAssigneeOperand
(storeRegister, storeStatements) = storeWithOffset store indexOperand
instruction = Instruction
$ RiscV.BaseInstruction RiscV.OpImm
$ RiscV.I storeRegister RiscV.ADDI assigneeOperandRegister 0
in pure $ assigneeStatements <> Vector.cons instruction storeStatements
where
storeWithOffset :: RiscVStore -> Operand RiscVStore -> (RiscV.XRegister, Vector Statement)
storeWithOffset (RegisterStore register) _ = (register, mempty)
storeWithOffset (StackStore offset register) (IntOperand indexOffset) =
let storeInstruction = Instruction
$ RiscV.BaseInstruction RiscV.Store
$ RiscV.S (fromIntegral $ offset + indexOffset * 4) RiscV.SW RiscV.S0 register
in (register, Vector.singleton storeInstruction)
storeWithOffset (StackStore offset register) (VariableOperand indexOffset) =
let storeInstruction = Instruction
$ RiscV.BaseInstruction RiscV.Store
$ RiscV.S (fromIntegral offset) RiscV.SW immediateRegister register
statements = calculateIndexOffset indexOffset
in (register, Vector.snoc statements storeInstruction)
quadruple _ (ArrayQuadruple assigneeVariable indexOperand store) =
let (operandRegister1, statements1) = loadWithOffset assigneeVariable indexOperand
(storeRegister, storeStatements) = storeToStore store
instruction = Instruction
$ RiscV.BaseInstruction RiscV.OpImm
$ RiscV.I storeRegister RiscV.ADDI operandRegister1 0
in pure $ statements1 <> Vector.cons instruction storeStatements
where
loadWithOffset :: RiscVStore -> Operand RiscVStore -> (RiscV.XRegister, Vector Statement)
loadWithOffset (RegisterStore register) _ = (register, mempty)
loadWithOffset (StackStore offset register) (IntOperand indexOffset) =
let loadInstruction = Instruction
$ RiscV.BaseInstruction RiscV.Load
$ RiscV.I register RiscV.LW RiscV.S0 (fromIntegral $ offset + indexOffset * 4)
in (register, Vector.singleton loadInstruction)
loadWithOffset (StackStore offset register) (VariableOperand indexOffset) =
let loadInstruction = Instruction
$ RiscV.BaseInstruction RiscV.Load
$ RiscV.I register RiscV.SW immediateRegister (fromIntegral offset)
statements = calculateIndexOffset indexOffset
in (register, Vector.snoc statements loadInstruction)
calculateIndexOffset :: RiscVStore -> Vector Statement
calculateIndexOffset indexOffset =
let (indexRegister, indexStatements) = loadFromStore indexOffset
baseRegisterInstruction = Instruction
$ RiscV.BaseInstruction RiscV.OpImm
$ RiscV.I immediateRegister RiscV.ADDI RiscV.Zero 4
indexRelativeOffset = Instruction
$ RiscV.BaseInstruction RiscV.Op
$ RiscV.R immediateRegister RiscV.MUL immediateRegister indexRegister (RiscV.Funct7 0b0000001)
registerWithOffset = Instruction
$ RiscV.BaseInstruction RiscV.Op
$ RiscV.R immediateRegister RiscV.ADD immediateRegister RiscV.S0 (RiscV.Funct7 0b0000000)
statements = Vector.fromList
[ baseRegisterInstruction
, indexRelativeOffset
, registerWithOffset
]
in indexStatements <> statements
unconditionalJal :: Label -> Statement
unconditionalJal (Label goToLabel) = Instruction
$ RiscV.RelocatableInstruction RiscV.Jal
$ RiscV.RJal RiscV.Zero goToLabel
loadImmediateOrRegister :: RiscVOperand -> RiscV.XRegister -> (RiscV.XRegister, Vector Statement)
loadImmediateOrRegister (IntOperand intValue) targetRegister =
(targetRegister, lui intValue targetRegister)
loadImmediateOrRegister (VariableOperand store) _ = loadFromStore store
lui :: Int32 -> RiscV.XRegister -> Vector Statement
lui intValue targetRegister
| intValue >= -2048
, intValue <= 2047 = Vector.singleton
$ Instruction (RiscV.BaseInstruction RiscV.OpImm $ RiscV.I targetRegister RiscV.ADDI RiscV.Zero lo)
| intValue .&. 0x800 /= 0 = Vector.fromList
[ Instruction (RiscV.BaseInstruction RiscV.Lui $ RiscV.U targetRegister $ fromIntegral $ succ hi)
, Instruction (RiscV.BaseInstruction RiscV.OpImm $ RiscV.I targetRegister RiscV.ADDI targetRegister lo)
]
| otherwise = Vector.fromList
[ Instruction (RiscV.BaseInstruction RiscV.Lui $ RiscV.U targetRegister $ fromIntegral hi)
, Instruction (RiscV.BaseInstruction RiscV.OpImm $ RiscV.I targetRegister RiscV.ADDI targetRegister lo)
]
where
hi = intValue `shiftR` 12
lo = fromIntegral intValue
commutativeBinary
:: (Int32 -> Int32 -> Int32)
-> RiscV.Funct3
-> RiscV.Funct7
-> (Operand RiscVStore, Operand RiscVStore)
-> Store RiscV.XRegister
-> RiscVGenerator (Vector Statement)
commutativeBinary immediateOperation funct3 funct7 (operand1, operand2) store
| IntOperand immediateOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
let (storeRegister, storeStatements) = storeToStore store
immediateOperation' = immediateOperation immediateOperand1 immediateOperand2
in pure $ lui immediateOperation' storeRegister <> storeStatements
| VariableOperand variableOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 =
let (operandRegister1, statements1) = loadFromStore variableOperand1
(operandRegister2, statements2) = loadFromStore variableOperand2
(storeRegister, storeStatements) = storeToStore store
instruction = Instruction $ RiscV.BaseInstruction RiscV.Op
$ RiscV.R storeRegister funct3 operandRegister1 operandRegister2 funct7
in pure $ statements1 <> statements2
<> Vector.cons instruction storeStatements
| VariableOperand variableOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
commutativeImmediateRegister variableOperand1 immediateOperand2
| IntOperand immediateOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 =
commutativeImmediateRegister variableOperand2 immediateOperand1
where
commutativeImmediateRegister variableOperand immediateOperand =
let (storeRegister, storeStatements) = storeToStore store
immediateStatements = lui immediateOperand storeRegister
(operandRegister, registerStatements) = loadFromStore variableOperand
instruction = Instruction
$ RiscV.BaseInstruction RiscV.Op
$ RiscV.R storeRegister funct3 storeRegister operandRegister funct7
in pure $ immediateStatements <> registerStatements
<> Vector.cons instruction storeStatements
commutativeComparison
:: (Int32 -> Int32 -> Bool)
-> RiscV.Funct3
-> (Operand RiscVStore, Operand RiscVStore)
-> Label
-> RiscVGenerator (Vector Statement)
commutativeComparison immediateOperation funct3 (operand1, operand2) goToLabel
| IntOperand immediateOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
if immediateOperation immediateOperand1 immediateOperand2
then pure $ Vector.singleton $ unconditionalJal goToLabel
else pure Vector.empty
| VariableOperand variableOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 = do
let (operandRegister1, statements1) = loadFromStore variableOperand1
(operandRegister2, statements2) = loadFromStore variableOperand2
Label goToLabel' = goToLabel
pure $ Vector.snoc (statements1 <> statements2)
$ Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch goToLabel' funct3 operandRegister1 operandRegister2
| VariableOperand variableOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
compareImmediateRegister variableOperand1 immediateOperand2
| IntOperand immediateOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 =
compareImmediateRegister variableOperand2 immediateOperand1
where
compareImmediateRegister variableOperand immediateOperand =
let immediateStatements = lui immediateOperand immediateRegister
(operandRegister, registerStatements) = loadFromStore variableOperand
Label goToLabel' = goToLabel
in pure $ Vector.snoc (immediateStatements <> registerStatements)
$ Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch goToLabel' funct3 operandRegister immediateRegister
lessThan :: (Operand RiscVStore, Operand RiscVStore) -> Label -> RiscVGenerator (Vector Statement)
lessThan (operand1, operand2) goToLabel
| IntOperand immediateOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
if immediateOperand1 < immediateOperand2
then pure $ Vector.singleton $ unconditionalJal goToLabel
else pure Vector.empty
| VariableOperand variableOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 = do
let (operandRegister1, statements1) = loadFromStore variableOperand1
(operandRegister2, statements2) = loadFromStore variableOperand2
Label goToLabel' = goToLabel
pure $ Vector.snoc (statements1 <> statements2)
$ Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch goToLabel' RiscV.BLT operandRegister1 operandRegister2
| VariableOperand variableOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
let statements2 = lui immediateOperand2 immediateRegister
(operandRegister1, statements1) = loadFromStore variableOperand1
Label goToLabel' = goToLabel
in pure $ Vector.snoc (statements1 <> statements2)
$ Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch goToLabel' RiscV.BLT operandRegister1 immediateRegister
| IntOperand immediateOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 =
let statements1 = lui immediateOperand1 immediateRegister
(operandRegister2, statements2) = loadFromStore variableOperand2
Label goToLabel' = goToLabel
in pure $ Vector.snoc (statements1 <> statements2)
$ Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch goToLabel' RiscV.BLT immediateRegister operandRegister2
lessOrEqualThan :: (Operand RiscVStore, Operand RiscVStore) -> Label -> RiscVGenerator (Vector Statement)
lessOrEqualThan (operand1, operand2) goToLabel
| IntOperand immediateOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
if immediateOperand1 <= immediateOperand2
then pure $ Vector.singleton $ unconditionalJal goToLabel
else pure Vector.empty
| VariableOperand variableOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 = do
let (operandRegister1, statements1) = loadFromStore variableOperand1
(operandRegister2, statements2) = loadFromStore variableOperand2
Label goToLabel' = goToLabel
pure $ Vector.snoc (statements1 <> statements2)
$ Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch goToLabel' RiscV.BGE operandRegister2 operandRegister1
| VariableOperand variableOperand1 <- operand1
, IntOperand immediateOperand2 <- operand2 =
let statements2 = lui immediateOperand2 immediateRegister
(operandRegister1, statements1) = loadFromStore variableOperand1
Label goToLabel' = goToLabel
in pure $ Vector.snoc (statements1 <> statements2)
$ Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch goToLabel' RiscV.BGE immediateRegister operandRegister1
| IntOperand immediateOperand1 <- operand1
, VariableOperand variableOperand2 <- operand2 =
let statements1 = lui immediateOperand1 immediateRegister
(operandRegister2, statements2) = loadFromStore variableOperand2
Label goToLabel' = goToLabel
in pure $ Vector.snoc (statements1 <> statements2)
$ Instruction
$ RiscV.RelocatableInstruction RiscV.Branch
$ RiscV.RBranch goToLabel' RiscV.BGE operandRegister2 immediateRegister
loadFromStore :: RiscVStore -> (RiscV.XRegister, Vector Statement)
loadFromStore (RegisterStore register) = (register, mempty)
loadFromStore (StackStore offset register) =
let loadInstruction = Instruction
$ RiscV.BaseInstruction RiscV.Load
$ RiscV.I register RiscV.LW RiscV.S0 (fromIntegral offset)
in (register, Vector.singleton loadInstruction)
storeToStore :: RiscVStore -> (RiscV.XRegister, Vector Statement)
storeToStore (RegisterStore register) = (register, mempty)
storeToStore (StackStore offset register) =
let storeInstruction = Instruction
$ RiscV.BaseInstruction RiscV.Store
$ RiscV.S (fromIntegral offset) RiscV.SW RiscV.S0 register
in (register, Vector.singleton storeInstruction)

View File

@ -0,0 +1,338 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
-- | Writer assembler to an object file.
module Language.Elna.RiscV.ElfWriter
( riscv32Elf
) where
import Data.ByteString (StrictByteString)
import qualified Data.ByteString as ByteString
import qualified Data.ByteString.Builder as ByteString.Builder
import Data.ByteString.Lazy (LazyByteString)
import qualified Data.ByteString.Lazy as LazyByteString
import Data.Vector (Vector)
import qualified Data.Vector as Vector
import Language.Elna.Object.ElfCoder
( ByteOrder(..)
, Elf32_Ehdr(..)
, Elf32_Half
, Elf32_Word
, Elf32_Sym(..)
, ElfMachine(..)
, ElfType(..)
, ElfVersion(..)
, ElfIdentification(..)
, ElfClass(..)
, ElfData(..)
, Elf32_Shdr(..)
, ElfSectionType(..)
, ElfSymbolBinding(..)
, ElfSymbolType(..)
, Elf32_Rel(..)
, ElfWriter(..)
, ElfHeaderResult(..)
, ElfEnvironment(..)
, UnresolvedRelocation(..)
, UnresolvedRelocations(..)
, addHeaderToResult
, addSectionHeader
, elf32Sym
, elfHeaderSize
, elfSectionsSize
, stInfo
, rInfo
, elf32Rel
, shfInfoLink
, partitionSymbols
, putSectionHeader
)
import qualified Language.Elna.Architecture.RiscV as RiscV
import qualified Data.Text.Encoding as Text
import Control.Monad.IO.Class (MonadIO(..))
import Control.Monad.Trans.State (get, gets)
import Language.Elna.RiscV.CodeGenerator (Directive(..), Statement(..))
import Language.Elna.Object.StringTable (StringTable)
import qualified Language.Elna.Object.StringTable as StringTable
import Data.HashSet (HashSet)
import qualified Data.HashSet as HashSet
import GHC.Records (HasField(..))
data TextAccumulator = TextAccumulator
{ encodedAccumulator :: LazyByteString
, relocationAccumulator :: Vector UnresolvedRelocation
, symbolAccumulator :: ElfHeaderResult Elf32_Sym
, definitionAccumulator :: HashSet StrictByteString
}
riscv32Elf :: Vector Statement -> ElfWriter Elf32_Ehdr
riscv32Elf code = text code
>>= symtab
>>= uncurry symrel
>>= strtab
>> shstrtab
>>= riscv32Header
where
riscv32Header :: Elf32_Half -> ElfWriter Elf32_Ehdr
riscv32Header shstrndx = do
ElfHeaderResult{..} <- ElfWriter $ gets $ getField @"objectHeaders"
pure $ Elf32_Ehdr
{ e_version = EV_CURRENT
, e_type = ET_REL
, e_shstrndx = shstrndx
, e_shoff = elfSectionsSize sectionHeaders
, e_shnum = fromIntegral (Vector.length sectionHeaders)
, e_shentsize = 40
, e_phoff = 0
, e_phnum = 0
, e_phentsize = 32
, e_machine = EM_RISCV
, e_ident = ElfIdentification ELFCLASS32 ELFDATA2LSB
, e_flags = 0x4 -- EF_RISCV_FLOAT_ABI_DOUBLE
, e_entry = 0
, e_ehsize = fromIntegral elfHeaderSize
}
text :: Vector Statement -> ElfWriter UnresolvedRelocations
text code = do
ElfHeaderResult{..} <- ElfWriter $ gets $ getField @"objectHeaders"
let textTabIndex = fromIntegral $ Vector.length sectionHeaders
initialHeaders = ElfHeaderResult mempty
$ Vector.singleton
$ Elf32_Sym
{ st_value = 0
, st_size = 0
, st_shndx = 0
, st_other = 0
, st_name = 0
, st_info = 0
}
TextAccumulator{..} = encodeFunctions textTabIndex code
$ TextAccumulator
{ encodedAccumulator = mempty
, relocationAccumulator = Vector.empty
, symbolAccumulator = initialHeaders
, definitionAccumulator = HashSet.empty
}
size = fromIntegral $ LazyByteString.length encodedAccumulator
newHeader = Elf32_Shdr
{ sh_type = SHT_PROGBITS
, sh_size = size
, sh_offset = elfSectionsSize sectionHeaders
, sh_name = StringTable.size sectionNames
, sh_link = 0
, sh_info = 0
, sh_flags = 0b110
, sh_entsize = 0
, sh_addralign = 4
, sh_addr = 0
}
putSectionHeader ".text" newHeader $ LazyByteString.toStrict encodedAccumulator
let filterPredicate :: StrictByteString -> Bool
filterPredicate = not
. (`StringTable.elem` getField @"sectionNames" symbolAccumulator)
symbolResult = HashSet.foldl' encodeEmptyDefinitions symbolAccumulator
$ HashSet.filter filterPredicate definitionAccumulator
pure $ UnresolvedRelocations relocationAccumulator symbolResult
$ fromIntegral $ Vector.length sectionHeaders
where
encodeEmptyDefinitions (ElfHeaderResult names entries) definition =
let nextEntry = Elf32_Sym
{ st_value = 0
, st_size = 0
, st_shndx = 0
, st_other = 0
, st_name = StringTable.size names
, st_info = stInfo STB_GLOBAL STT_FUNC
}
in ElfHeaderResult (StringTable.append definition names)
$ Vector.snoc entries nextEntry
encodeFunctions shndx instructions textAccumulator
| Just (instruction, rest) <- Vector.uncons instructions =
case instruction of
Instruction _ ->
let (textAccumulator', rest') = encodeInstructions shndx (textAccumulator, instructions)
in encodeFunctions shndx rest' textAccumulator'
JumpLabel labelName directives ->
let (TextAccumulator{..}, rest') =
encodeInstructions shndx (textAccumulator, rest)
newEntry = Elf32_Sym
{ st_value = fromIntegral
$ LazyByteString.length
$ getField @"encodedAccumulator" textAccumulator
, st_size = fromIntegral $ LazyByteString.length encodedAccumulator
, st_shndx = shndx
, st_other = 0
, st_name = StringTable.size $ getField @"sectionNames" symbolAccumulator
, st_info = stInfo (directivesBinding directives) STT_FUNC
}
in encodeFunctions shndx rest'
$ TextAccumulator
{ encodedAccumulator = encodedAccumulator
, relocationAccumulator = relocationAccumulator
, symbolAccumulator =
addHeaderToResult (Text.encodeUtf8 labelName) newEntry symbolAccumulator
, definitionAccumulator = definitionAccumulator
}
| otherwise = textAccumulator
directivesBinding directives
| GlobalDirective `elem` directives = STB_GLOBAL
| otherwise = STB_LOCAL
encodeInstructions shndx (TextAccumulator encoded relocations symbolResult definitions, instructions)
| Just (Instruction instruction, rest) <- Vector.uncons instructions =
let offset = fromIntegral $ LazyByteString.length encoded
unresolvedRelocation = case instruction of
RiscV.RelocatableInstruction _ instructionType
| RiscV.RHigher20 _ symbolName <- instructionType
-> Just -- R_RISCV_HI20
$ UnresolvedRelocation (Text.encodeUtf8 symbolName) offset 26
| RiscV.RLower12I _ _ _ symbolName <- instructionType
-> Just -- R_RISCV_LO12_I
$ UnresolvedRelocation (Text.encodeUtf8 symbolName) offset 27
| RiscV.RLower12S symbolName _ _ _ <- instructionType
-> Just -- R_RISCV_LO12_S
$ UnresolvedRelocation (Text.encodeUtf8 symbolName) offset 28
| RiscV.RBranch symbolName _ _ _ <- instructionType
-> Just -- R_RISCV_BRANCH
$ UnresolvedRelocation (Text.encodeUtf8 symbolName) offset 16
| RiscV.RJal _ symbolName <- instructionType
-> Just -- R_RISCV_JAL
$ UnresolvedRelocation (Text.encodeUtf8 symbolName) offset 17
RiscV.CallInstruction symbolName
-> Just -- R_RISCV_CALL_PLT
$ UnresolvedRelocation (Text.encodeUtf8 symbolName) offset 19
RiscV.BaseInstruction _ _ -> Nothing
chunk = ByteString.Builder.toLazyByteString
$ RiscV.instruction instruction
result = TextAccumulator
(encoded <> chunk)
(maybe relocations (Vector.snoc relocations) unresolvedRelocation)
symbolResult
(addDefinition unresolvedRelocation definitions)
in encodeInstructions shndx (result, rest)
| Just (JumpLabel labelName directives , rest) <- Vector.uncons instructions
, FunctionDirective `notElem` directives =
let newEntry = Elf32_Sym
{ st_value = fromIntegral $ LazyByteString.length encoded
, st_size = 0
, st_shndx = shndx
, st_other = 0
, st_name = StringTable.size $ getField @"sectionNames" symbolResult
, st_info = stInfo (directivesBinding directives) STT_NOTYPE
}
result = TextAccumulator
encoded
relocations
(addHeaderToResult (Text.encodeUtf8 labelName) newEntry symbolResult)
definitions
in encodeInstructions shndx (result, rest)
| otherwise = (TextAccumulator encoded relocations symbolResult definitions, instructions)
addDefinition (Just (UnresolvedRelocation symbolName _ _)) =
HashSet.insert symbolName
addDefinition Nothing = id
shstrtab :: ElfWriter Elf32_Half
shstrtab = do
ElfHeaderResult{..} <- ElfWriter $ gets $ getField @"objectHeaders"
let stringTable = ".shstrtab"
currentNamesSize = StringTable.size sectionNames
nextHeader = Elf32_Shdr
{ sh_type = SHT_STRTAB
, sh_size = currentNamesSize -- Adding trailing null character.
+ fromIntegral (succ $ ByteString.length stringTable)
, sh_offset = elfSectionsSize sectionHeaders
, sh_name = currentNamesSize
, sh_link = 0
, sh_info = 0
, sh_flags = 0
, sh_entsize = 0
, sh_addralign = 1
, sh_addr = 0
}
addSectionHeader stringTable nextHeader
ElfEnvironment{..} <- ElfWriter get
liftIO $ ByteString.hPut objectHandle
$ StringTable.encode
$ getField @"sectionNames" objectHeaders
pure $ fromIntegral $ Vector.length sectionHeaders
symtab :: UnresolvedRelocations -> ElfWriter (Elf32_Word, UnresolvedRelocations)
symtab (UnresolvedRelocations relocationList symbolResult index) = do
ElfHeaderResult{..} <- ElfWriter $ gets $ getField @"objectHeaders"
let (localSymbols, globalSymbols) = partitionSymbols symbolResult
sortedSymbols = localSymbols <> globalSymbols
sortedResult = symbolResult{ sectionHeaders = sortedSymbols }
encodedSymbols = LazyByteString.toStrict
$ ByteString.Builder.toLazyByteString
$ foldMap (elf32Sym LSB) sortedSymbols
symHeader = Elf32_Shdr
{ sh_type = SHT_SYMTAB
, sh_size = fromIntegral $ ByteString.length encodedSymbols
, sh_offset = elfSectionsSize sectionHeaders
, sh_name = StringTable.size sectionNames
, sh_link = fromIntegral $ Vector.length sectionHeaders + 2
, sh_info = fromIntegral $ Vector.length localSymbols
, sh_flags = 0
, sh_entsize = 16
, sh_addralign = 4
, sh_addr = 0
}
putSectionHeader ".symtab" symHeader encodedSymbols
pure
( fromIntegral $ Vector.length sectionHeaders
, UnresolvedRelocations relocationList sortedResult index
)
symrel :: Elf32_Word -> UnresolvedRelocations -> ElfWriter StringTable
symrel sectionHeadersLength relocations = do
ElfHeaderResult{..} <- ElfWriter $ gets $ getField @"objectHeaders"
let UnresolvedRelocations relocationList symbols index = relocations
encodedRelocations = LazyByteString.toStrict
$ ByteString.Builder.toLazyByteString
$ Vector.foldMap (either (const mempty) (elf32Rel LSB))
$ resolveRelocation symbols <$> relocationList
relHeader = Elf32_Shdr
{ sh_type = SHT_REL
, sh_size = fromIntegral $ ByteString.length encodedRelocations
, sh_offset = elfSectionsSize sectionHeaders
, sh_name = StringTable.size sectionNames
, sh_link = sectionHeadersLength
, sh_info = index
, sh_flags = shfInfoLink
, sh_entsize = 8
, sh_addralign = 4
, sh_addr = 0
}
putSectionHeader ".rel.text" relHeader encodedRelocations
pure $ getField @"sectionNames" symbols
where
takeStringZ stringTable Elf32_Sym{ st_name }
= StringTable.index st_name stringTable
resolveRelocation (ElfHeaderResult stringTable entries) unresolvedRelocation
| UnresolvedRelocation symbolName offset type' <- unresolvedRelocation
, Just entry <- Vector.findIndex ((== symbolName) . takeStringZ stringTable) entries =
Right $ Elf32_Rel
{ r_offset = offset
, r_info = rInfo (fromIntegral entry) type'
}
| otherwise = Left unresolvedRelocation
strtab :: StringTable -> ElfWriter ()
strtab stringTable = do
ElfHeaderResult{..} <- ElfWriter $ gets $ getField @"objectHeaders"
let strHeader = Elf32_Shdr
{ sh_type = SHT_STRTAB
, sh_size = StringTable.size stringTable
, sh_offset = elfSectionsSize sectionHeaders
, sh_name = StringTable.size sectionNames
, sh_link = 0
, sh_info = 0
, sh_flags = 0
, sh_entsize = 0
, sh_addralign = 1
, sh_addr = 0
}
putSectionHeader ".strtab" strHeader $ StringTable.encode stringTable

File diff suppressed because it is too large Load Diff

View File

@ -1,44 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "elna/source/driver.h"
namespace elna
{
namespace source
{
position make_position(const yy::location& location)
{
return position{
static_cast<std::size_t>(location.begin.line),
static_cast<std::size_t>(location.begin.column)
};
}
syntax_error::syntax_error(const std::string& message,
const char *input_file, const yy::location& location)
: error(input_file, make_position(location)), message(message)
{
}
std::string syntax_error::what() const
{
return message;
}
driver::driver(const char *input_file)
: input_file(input_file)
{
}
void driver::error(const yy::location& loc, const std::string& message)
{
m_errors.emplace_back(std::make_unique<elna::source::syntax_error>(message, input_file, loc));
}
const std::list<std::unique_ptr<struct error>>& driver::errors() const noexcept
{
return m_errors;
}
}
}

View File

@ -1,192 +0,0 @@
/*
* This Source Code Form is subject to the terms of the Mozilla Public License
* v. 2.0. If a copy of the MPL was not distributed with this file, You can
* obtain one at http://mozilla.org/MPL/2.0/.
*/
%{
#define YY_NO_UNISTD_H
#define YY_USER_ACTION this->location.columns(yyleng);
#include <sstream>
#include "parser.hh"
#undef YY_DECL
#define YY_DECL yy::parser::symbol_type elna::source::lexer::lex(elna::source::driver& driver)
#define yyterminate() return yy::parser::make_YYEOF(this->location)
%}
%option c++ noyywrap never-interactive
%option yyclass="elna::source::lexer"
%%
%{
this->location.step();
%}
\-\-.* {
/* Skip the comment */
}
[\ \t\r] ; /* Skip the whitespaces */
\n+ {
this->location.lines(yyleng);
this->location.step();
}
if {
return yy::parser::make_IF(this->location);
}
then {
return yy::parser::make_THEN(this->location);
}
else {
return yy::parser::make_ELSE(this->location);
}
while {
return yy::parser::make_WHILE(this->location);
}
do {
return yy::parser::make_DO(this->location);
}
proc {
return yy::parser::make_PROCEDURE(this->location);
}
begin {
return yy::parser::make_BEGIN_BLOCK(this->location);
}
end {
return yy::parser::make_END_BLOCK(this->location);
}
extern {
return yy::parser::make_EXTERN(this->location);
}
const {
return yy::parser::make_CONST(this->location);
}
var {
return yy::parser::make_VAR(this->location);
}
array {
return yy::parser::make_ARRAY(this->location);
}
of {
return yy::parser::make_OF(this->location);
}
type {
return yy::parser::make_TYPE(this->location);
}
record {
return yy::parser::make_RECORD(this->location);
}
union {
return yy::parser::make_UNION(this->location);
}
pointer {
return yy::parser::make_POINTER(this->location);
}
to {
return yy::parser::make_TO(this->location);
}
true {
return yy::parser::make_BOOLEAN(true, this->location);
}
false {
return yy::parser::make_BOOLEAN(false, this->location);
}
and {
return yy::parser::make_AND(this->location);
}
or {
return yy::parser::make_OR(this->location);
}
not {
return yy::parser::make_NOT(this->location);
}
return {
return yy::parser::make_RETURN(this->location);
}
[A-Za-z_][A-Za-z0-9_]* {
return yy::parser::make_IDENTIFIER(yytext, this->location);
}
[0-9]+ {
return yy::parser::make_INTEGER(strtol(yytext, NULL, 10), this->location);
}
[0-9]+\.[0-9] {
return yy::parser::make_FLOAT(strtof(yytext, NULL), this->location);
}
'[^']' {
return yy::parser::make_CHARACTER(
std::string(yytext, 1, strlen(yytext) - 2), this->location);
}
\"[^\"]*\" {
return yy::parser::make_STRING(
std::string(yytext, 1, strlen(yytext) - 2), this->location);
}
\( {
return yy::parser::make_LEFT_PAREN(this->location);
}
\) {
return yy::parser::make_RIGHT_PAREN(this->location);
}
\[ {
return yy::parser::make_LEFT_SQUARE(this->location);
}
\] {
return yy::parser::make_RIGHT_SQUARE(this->location);
}
\>= {
return yy::parser::make_GREATER_EQUAL(this->location);
}
\<= {
return yy::parser::make_LESS_EQUAL(this->location);
}
\> {
return yy::parser::make_GREATER_THAN(this->location);
}
\< {
return yy::parser::make_LESS_THAN(this->location);
}
\/= {
return yy::parser::make_NOT_EQUAL(this->location);
}
= {
return yy::parser::make_EQUALS(this->location);
}
; {
return yy::parser::make_SEMICOLON(this->location);
}
\. {
return yy::parser::make_DOT(this->location);
}
, {
return yy::parser::make_COMMA(this->location);
}
\+ {
return yy::parser::make_PLUS(this->location);
}
\- {
return yy::parser::make_MINUS(this->location);
}
\* {
return yy::parser::make_MULTIPLICATION(this->location);
}
\/ {
return yy::parser::make_DIVISION(this->location);
}
:= {
return yy::parser::make_ASSIGNMENT(this->location);
}
: {
return yy::parser::make_COLON(this->location);
}
\^ {
return yy::parser::make_HAT(this->location);
}
@ {
return yy::parser::make_AT(this->location);
}
. {
std::stringstream ss;
ss << "Illegal character 0x" << std::hex << static_cast<unsigned int>(yytext[0]);
driver.error(this->location, ss.str());
}
%%

View File

@ -1,423 +0,0 @@
/*
* This Source Code Form is subject to the terms of the Mozilla Public License
* v. 2.0. If a copy of the MPL was not distributed with this file, You can
* obtain one at http://mozilla.org/MPL/2.0/.
*/
%require "3.2"
%language "c++"
%code requires {
#include <cstdint>
#include <iostream>
#include "elna/source/driver.h"
#if !defined(yyFlexLexerOnce)
#include <FlexLexer.h>
#endif
namespace elna::source
{
class lexer;
}
}
%code provides {
namespace elna::source
{
class lexer: public yyFlexLexer
{
public:
yy::location location;
lexer(std::istream& arg_yyin)
: yyFlexLexer(&arg_yyin)
{
}
yy::parser::symbol_type lex(elna::source::driver& driver);
};
}
}
%define api.token.raw
%define api.token.constructor
%define api.value.type variant
%parse-param {elna::source::lexer& lexer}
%param {elna::source::driver& driver}
%locations
%header
%code {
#define yylex lexer.lex
}
%start program;
%token <std::string> IDENTIFIER "identifier"
%token <std::int32_t> INTEGER "integer"
%token <float> FLOAT "float"
%token <std::string> CHARACTER "character"
%token <std::string> STRING "string"
%token <bool> BOOLEAN
%token IF WHILE DO THEN ELSE RETURN
%token CONST VAR PROCEDURE ARRAY OF TYPE RECORD POINTER TO UNION
%token BEGIN_BLOCK END_BLOCK EXTERN
%token LEFT_PAREN RIGHT_PAREN LEFT_SQUARE RIGHT_SQUARE SEMICOLON DOT COMMA
%token AND OR NOT
%token GREATER_EQUAL LESS_EQUAL LESS_THAN GREATER_THAN NOT_EQUAL EQUALS
%token PLUS MINUS MULTIPLICATION DIVISION
%token ASSIGNMENT COLON HAT AT
%type <elna::source::literal *> literal;
%type <elna::source::constant_definition *> constant_definition;
%type <std::vector<elna::source::constant_definition *>> constant_part constant_definitions;
%type <elna::source::variable_declaration *> variable_declaration;
%type <std::vector<elna::source::variable_declaration *>> variable_declarations variable_part
formal_parameter_list;
%type <elna::source::type_expression *> type_expression;
%type <elna::source::expression *> expression pointer summand factor comparand logical_operand;
%type <std::vector<elna::source::expression *>> expressions actual_parameter_list;
%type <elna::source::designator_expression *> designator_expression;
%type <elna::source::assign_statement *> assign_statement;
%type <elna::source::call_expression *> call_expression;
%type <elna::source::while_statement *> while_statement;
%type <elna::source::if_statement *> if_statement;
%type <elna::source::return_statement *> return_statement;
%type <elna::source::statement *> statement;
%type <std::vector<elna::source::statement *>> statements optional_statements;
%type <elna::source::procedure_definition *> procedure_definition;
%type <std::vector<elna::source::procedure_definition *>> procedure_definitions procedure_part;
%type <elna::source::type_definition *> type_definition;
%type <std::vector<elna::source::type_definition *>> type_definitions type_part;
%type <elna::source::block *> block;
%type <std::pair<std::string, elna::source::type_expression *>> field_declaration;
%type <std::vector<std::pair<std::string, elna::source::type_expression *>>> field_list;
%%
program:
type_part constant_part procedure_part variable_part BEGIN_BLOCK optional_statements END_BLOCK DOT
{
std::vector<elna::source::definition *> definitions($1.size() + $3.size());
std::vector<elna::source::definition *>::iterator definition = definitions.begin();
std::vector<elna::source::definition *> value_definitions($2.size() + $4.size());
std::vector<elna::source::definition *>::iterator value_definition = value_definitions.begin();
for (auto type : $1)
{
*definition++ = type;
}
for (auto constant : $2)
{
*value_definition++ = constant;
}
for (auto procedure : $3)
{
*definition++ = procedure;
}
for (auto variable : $4)
{
*value_definition++ = variable;
}
auto tree = new elna::source::program(elna::source::position{},
std::move(definitions), std::move(value_definitions), std::move($6));
driver.tree.reset(tree);
}
block: constant_part variable_part BEGIN_BLOCK optional_statements END_BLOCK
{
std::vector<elna::source::definition *> definitions($1.size() + $2.size());
std::vector<elna::source::definition *>::iterator definition = definitions.begin();
for (auto constant : $1)
{
*definition++ = constant;
}
for (auto variable : $2)
{
*definition++ = variable;
}
$$ = new elna::source::block(elna::source::position{},
std::move(definitions), std::move($4));
}
procedure_definition:
PROCEDURE IDENTIFIER formal_parameter_list SEMICOLON block SEMICOLON
{
$$ = new elna::source::procedure_definition(elna::source::position{},
$2, std::move($3), nullptr, $5);
}
| PROCEDURE IDENTIFIER formal_parameter_list SEMICOLON EXTERN SEMICOLON
{
$$ = new elna::source::procedure_definition(elna::source::position{},
$2, std::move($3), nullptr, nullptr);
}
| PROCEDURE IDENTIFIER formal_parameter_list COLON type_expression SEMICOLON block SEMICOLON
{
$$ = new elna::source::procedure_definition(elna::source::position{},
$2, std::move($3), $5, $7);
}
| PROCEDURE IDENTIFIER formal_parameter_list COLON type_expression SEMICOLON EXTERN SEMICOLON
{
$$ = new elna::source::procedure_definition(elna::source::position{},
$2, std::move($3), $5, nullptr);
}
procedure_definitions:
procedure_definition procedure_definitions
{
std::swap($$, $2);
$$.emplace($$.cbegin(), std::move($1));
}
| procedure_definition { $$.emplace_back(std::move($1)); }
procedure_part:
/* no procedure definitions */ {}
| procedure_definitions { std::swap($$, $1); }
assign_statement: designator_expression ASSIGNMENT expression
{
$$ = new elna::source::assign_statement(elna::source::make_position(@1), $1, $3);
}
call_expression: IDENTIFIER actual_parameter_list
{
$$ = new elna::source::call_expression(elna::source::make_position(@1), $1);
std::swap($$->arguments(), $2);
}
while_statement: WHILE expression DO optional_statements END_BLOCK
{
auto body = new elna::source::compound_statement(elna::source::make_position(@3), std::move($4));
$$ = new elna::source::while_statement(elna::source::make_position(@1), $2, body);
}
if_statement:
IF expression THEN optional_statements END_BLOCK
{
auto then = new elna::source::compound_statement(elna::source::make_position(@3), std::move($4));
$$ = new elna::source::if_statement(elna::source::make_position(@1), $2, then);
}
| IF expression THEN optional_statements ELSE optional_statements END_BLOCK
{
auto then = new elna::source::compound_statement(elna::source::make_position(@3), std::move($4));
auto _else = new elna::source::compound_statement(elna::source::make_position(@5), std::move($6));
$$ = new elna::source::if_statement(elna::source::make_position(@1), $2, then, _else);
}
return_statement:
RETURN expression
{
$$ = new elna::source::return_statement(elna::source::make_position(@1), $2);
}
literal:
INTEGER
{
$$ = new elna::source::number_literal<std::int32_t>(elna::source::make_position(@1), $1);
}
| FLOAT
{
$$ = new elna::source::number_literal<double>(elna::source::make_position(@1), $1);
}
| BOOLEAN
{
$$ = new elna::source::number_literal<bool>(elna::source::make_position(@1), $1);
}
| CHARACTER
{
$$ = new elna::source::number_literal<unsigned char>(elna::source::make_position(@1), $1.at(0));
}
| STRING
{
$$ = new elna::source::string_literal(elna::source::make_position(@1), $1);
}
pointer:
literal { $$ = $1; }
| designator_expression { $$ = $1; }
| LEFT_PAREN expression RIGHT_PAREN { $$ = std::move($2); }
summand:
factor { $$ = std::move($1); }
| factor MULTIPLICATION factor
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1),
$1, $3, '*');
}
| factor DIVISION factor
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1),
$1, $3, '/');
}
factor:
AT pointer
{
$$ = new elna::source::unary_expression(elna::source::make_position(@1), $2, '@');
}
| NOT pointer
{
$$ = new elna::source::unary_expression(elna::source::make_position(@1), $2, '!');
}
| pointer { $$ = $1; }
comparand:
summand PLUS summand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, '+');
}
| summand MINUS summand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, '-');
}
| summand { $$ = std::move($1); }
logical_operand:
comparand EQUALS comparand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, '=');
}
| comparand NOT_EQUAL comparand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, 'n');
}
| comparand LESS_THAN comparand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, '<');
}
| comparand GREATER_THAN comparand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, '>');
}
| comparand LESS_EQUAL comparand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, '<');
}
| comparand GREATER_EQUAL comparand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, '>');
}
| comparand { $$ = $1; }
expression:
logical_operand AND logical_operand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, 'a');
}
| logical_operand OR logical_operand
{
$$ = new elna::source::binary_expression(elna::source::make_position(@1), $1, $3, 'o');
}
| logical_operand { $$ = $1; }
| call_expression { $$ = $1; }
expressions:
expression COMMA expressions
{
std::swap($$, $3);
$$.emplace($$.cbegin(), $1);
}
| expression { $$.emplace_back(std::move($1)); }
designator_expression:
designator_expression LEFT_SQUARE expression RIGHT_SQUARE
{
$$ = new elna::source::array_access_expression(elna::source::make_position(@1), $1, $3);
}
| designator_expression DOT IDENTIFIER
{
$$ = new elna::source::field_access_expression(elna::source::make_position(@1), $1, $3);
}
| designator_expression HAT
{
$$ = new elna::source::dereference_expression(elna::source::make_position(@1), $1);
}
| IDENTIFIER
{
$$ = new elna::source::variable_expression(elna::source::make_position(@1), $1);
}
statement:
assign_statement { $$ = $1; }
| while_statement { $$ = $1; }
| if_statement { $$ = $1; }
| return_statement { $$ = $1; }
| expression { $$ = new elna::source::expression_statement(elna::source::make_position(@1), $1); }
statements:
statement SEMICOLON statements
{
std::swap($$, $3);
$$.emplace($$.cbegin(), $1);
}
| statement { $$.push_back($1); }
optional_statements:
statements { std::swap($$, $1); }
| /* no statements */ {}
field_declaration:
IDENTIFIER COLON type_expression { $$ = std::make_pair($1, $3); }
field_list:
field_declaration SEMICOLON field_list
{
std::swap($$, $3);
$$.emplace($$.cbegin(), $1);
}
| field_declaration { $$.emplace_back($1); }
type_expression:
ARRAY INTEGER OF type_expression
{
$$ = new elna::source::array_type_expression(elna::source::make_position(@1), $4, $2);
}
| POINTER TO type_expression
{
$$ = new elna::source::pointer_type_expression(elna::source::make_position(@1), $3);
}
| RECORD field_list END_BLOCK
{
$$ = new elna::source::record_type_expression(elna::source::make_position(@1), std::move($2));
}
| UNION field_list END_BLOCK
{
$$ = new elna::source::union_type_expression(elna::source::make_position(@1), std::move($2));
}
| IDENTIFIER
{
$$ = new elna::source::basic_type_expression(elna::source::make_position(@1), $1);
}
variable_declaration: IDENTIFIER COLON type_expression
{
$$ = new elna::source::variable_declaration(elna::source::make_position(@1), $1, $3);
}
variable_declarations:
variable_declaration COMMA variable_declarations
{
std::swap($$, $3);
$$.emplace($$.cbegin(), $1);
}
| variable_declaration { $$.emplace_back(std::move($1)); }
variable_part:
/* no variable declarations */ {}
| VAR variable_declarations SEMICOLON { std::swap($$, $2); }
constant_definition: IDENTIFIER EQUALS literal
{
$$ = new elna::source::constant_definition(elna::source::make_position(@1), $1, $3);
}
constant_definitions:
constant_definition COMMA constant_definitions
{
std::swap($$, $3);
$$.emplace($$.cbegin(), std::move($1));
}
| constant_definition { $$.emplace_back(std::move($1)); }
constant_part:
/* no constant definitions */ {}
| CONST constant_definitions SEMICOLON { std::swap($$, $2); }
type_definition: IDENTIFIER EQUALS type_expression
{
$$ = new elna::source::type_definition(elna::source::make_position(@1), $1, $3);
}
type_definitions:
type_definition COMMA type_definitions
{
std::swap($$, $3);
$$.emplace($$.cbegin(), std::move($1));
}
| type_definition { $$.emplace_back(std::move($1)); }
type_part:
/* no type definitions */ {}
| TYPE type_definitions SEMICOLON { std::swap($$, $2); }
formal_parameter_list:
LEFT_PAREN RIGHT_PAREN {}
| LEFT_PAREN variable_declarations RIGHT_PAREN { std::swap($$, $2); }
actual_parameter_list:
LEFT_PAREN RIGHT_PAREN {}
| LEFT_PAREN expressions RIGHT_PAREN { std::swap($$, $2); }
%%
void yy::parser::error(const location_type& loc, const std::string& message)
{
driver.error(loc, message);
}

View File

@ -1,25 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "elna/source/result.h"
namespace elna
{
namespace source
{
error::error(const char *path, const struct position position)
: position(position), path(path)
{
}
std::size_t error::line() const noexcept
{
return this->position.line;
}
std::size_t error::column() const noexcept
{
return this->position.column;
}
}
}

View File

@ -1,83 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include <elna/source/types.h>
namespace elna
{
namespace source
{
type::type(const std::size_t byte_size)
: byte_size(byte_size)
{
}
std::size_t type::size() const noexcept
{
return this->byte_size;
}
const pointer_type *type::is_pointer_type() const
{
return nullptr;
}
primitive_type::primitive_type(const std::string& type_name, const std::size_t byte_size)
: type(byte_size), m_type_name(type_name)
{
}
std::string primitive_type::type_name() const
{
return m_type_name;
}
pointer_type::pointer_type(std::shared_ptr<const type> base_type, const std::size_t byte_size)
: type(byte_size), base_type(base_type)
{
}
const pointer_type *pointer_type::is_pointer_type() const
{
return this;
}
std::string pointer_type::type_name() const
{
return '^' + base_type->type_name();
}
procedure_type::procedure_type(std::vector<std::shared_ptr<const type>> arguments, const std::size_t byte_size)
:type(byte_size), arguments(std::move(arguments))
{
}
std::string procedure_type::type_name() const
{
std::string result{ "proc(" };
for (const auto& argument : arguments)
{
result += argument->type_name() + ',';
}
result.at(result.size() - 1) = ')';
return result;
}
bool operator==(const type& lhs, const type& rhs) noexcept
{
auto lhs_type = lhs.type_name();
auto rhs_type = rhs.type_name();
return lhs_type == rhs_type;
}
bool operator!=(const type& lhs, const type& rhs) noexcept
{
return !(lhs == rhs);
}
const primitive_type boolean_type{ "Boolean", 1 };
const primitive_type int_type{ "Int", 4 };
}
}

62
src/Main.hs Normal file
View File

@ -0,0 +1,62 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Main
( main
) where
import Language.Elna.Driver
( Driver(..)
, IntermediateStage(..)
, drive
)
import Language.Elna.Object.ElfCoder (elfObject)
import Language.Elna.Backend.Allocator (allocate)
import Language.Elna.Glue (glue)
import Language.Elna.Frontend.NameAnalysis (nameAnalysis)
import Language.Elna.Frontend.Parser (programP)
import Language.Elna.Frontend.TypeAnalysis (typeAnalysis)
import Language.Elna.RiscV.CodeGenerator (generateRiscV, riscVConfiguration)
import Language.Elna.RiscV.ElfWriter (riscv32Elf)
import Text.Megaparsec (runParser, errorBundlePretty)
import qualified Data.Text.IO as Text
import System.Exit (ExitCode(..), exitWith)
import Control.Exception (IOException, catch)
-- * Error codes
--
-- 1 - Command line parsing failed and other errors.
-- 2 - The input could not be read.
-- 3 - Parse error.
-- 4 - Name analysis error.
-- 5 - Type error.
-- 6 - Register allocation error.
main :: IO ()
main = drive >>= withCommandLine
where
withCommandLine driver@Driver{ input }
= catch (Text.readFile input) (printAndExit 2 :: IOException -> IO a)
>>= withParsedInput driver
. runParser programP input
withParsedInput driver@Driver{ intermediateStage } (Right program)
| Just ParseStage <- intermediateStage = pure ()
| otherwise
= either (printAndExit 4) (withSymbolTable driver program)
$ nameAnalysis program
withParsedInput _ (Left errorBundle)
= putStrLn (errorBundlePretty errorBundle)
>> exitWith (ExitFailure 3)
withSymbolTable driver@Driver{ intermediateStage } program symbolTable
| Just typeError <- typeAnalysis symbolTable program =
printAndExit 5 typeError
| Just ValidateStage <- intermediateStage = pure ()
| otherwise = either (printAndExit 6) (withTac driver)
$ allocate riscVConfiguration symbolTable
$ glue symbolTable program
withTac Driver{ intermediateStage, output } tac
| Just CodeGenStage <- intermediateStage = pure ()
| otherwise = elfObject output $ riscv32Elf $ generateRiscV tac
printAndExit :: Show b => forall a. Int -> b -> IO a
printAndExit failureCode e = print e >> exitWith (ExitFailure failureCode)

View File

@ -0,0 +1,82 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.NameAnalysisSpec
( spec
) where
import Data.Text (Text)
import Text.Megaparsec (runParser)
import Test.Hspec
( Spec
, describe
, expectationFailure
, it
, shouldBe
, shouldSatisfy
)
import Language.Elna.NameAnalysis (Error(..), nameAnalysis)
import Language.Elna.SymbolTable (Info(..), SymbolTable)
import qualified Language.Elna.SymbolTable as SymbolTable
import qualified Language.Elna.Parser as AST
import Language.Elna.Types (intType)
import Control.Exception (throwIO)
nameAnalysisOnText :: Text -> IO (Either Error SymbolTable)
nameAnalysisOnText sourceText = nameAnalysis
<$> either throwIO pure (runParser AST.programP "" sourceText)
spec :: Spec
spec = describe "nameAnalysis" $ do
it "adds type to the symbol table" $ do
let given = "type A = int;"
expected = Right $ Just $ TypeInfo intType
actual <- nameAnalysisOnText given
actual `shouldSatisfy` (expected ==) . fmap (SymbolTable.lookup "A")
it "errors when the aliased type is not defined" $ do
let given = "type A = B;"
expected = Left $ UndefinedTypeError "B"
actual <- nameAnalysisOnText given
actual `shouldBe` expected
it "errors if the aliased identifier is not a type" $ do
let given = "proc main() {} type A = main;"
expected = Left
$ UnexpectedTypeInfoError
$ ProcedureInfo mempty mempty
actual <- nameAnalysisOnText given
actual `shouldBe` expected
it "replaces the alias with an equivalent base type" $ do
let given = "type A = int; type B = A; type C = B;"
expected = Right $ Just $ TypeInfo intType
actual <- nameAnalysisOnText given
actual `shouldSatisfy` (expected ==) . fmap (SymbolTable.lookup "C")
it "puts parameters into the local symbol table" $ do
let given = "proc main(ref param: int) {}"
expected = SymbolTable.enter "param" (VariableInfo True intType) SymbolTable.empty
actual <- nameAnalysisOnText given
case SymbolTable.lookup "main" <$> actual of
Right lookupResult
| Just (ProcedureInfo localTable _) <- lookupResult ->
Just localTable `shouldBe` expected
_ -> expectationFailure "Procedure symbol not found"
it "puts variables into the local symbol table" $ do
let given = "proc main() { var var1: int; }"
expected = SymbolTable.enter "var1" (VariableInfo False intType) SymbolTable.empty
actual <- nameAnalysisOnText given
case SymbolTable.lookup "main" <$> actual of
Right lookupResult
| Just (ProcedureInfo localTable _) <- lookupResult ->
Just localTable `shouldBe` expected
_ -> expectationFailure "Procedure symbol not found"

View File

@ -0,0 +1,146 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
module Language.Elna.ParserSpec
( spec
) where
import Test.Hspec (Spec, describe, it)
import Test.Hspec.Megaparsec (shouldParse, shouldSucceedOn, parseSatisfies)
import Language.Elna.Parser (programP)
import Text.Megaparsec (parse)
import Language.Elna.AST
( Declaration(..)
, Expression(..)
, Literal(..)
, Statement(..)
, Parameter(..)
, Program(..)
, VariableDeclaration(..)
, TypeExpression(..)
)
spec :: Spec
spec =
describe "programP" $ do
it "parses an empty main function" $
parse programP "" `shouldSucceedOn` "proc main() {}"
it "parses type definition for a type starting like array" $
let expected = Program [TypeDefinition "t" $ NamedType "arr"]
actual = parse programP "" "type t = arr;"
in actual `shouldParse` expected
it "parses array type definition" $
let expected = Program [TypeDefinition "t" $ ArrayType 10 (NamedType "int")]
actual = parse programP "" "type t = array[10] of int;"
in actual `shouldParse` expected
it "parses parameters" $
let given = "proc main(x: int) {}"
parameters = [Parameter "x" (NamedType "int") False]
expected = Program [ProcedureDefinition "main" parameters [] []]
actual = parse programP "" given
in actual `shouldParse` expected
it "parses ref parameters" $
let given = "proc main(x: int, ref y: boolean) {}"
parameters =
[ Parameter "x" (NamedType "int") False
, Parameter "y" (NamedType "boolean") True
]
expected = Program [ProcedureDefinition "main" parameters [] []]
actual = parse programP "" given
in actual `shouldParse` expected
it "parses variable declaration" $
let given = "proc main() { var x: int; }"
expected (Program [ProcedureDefinition _ _ variables _]) =
not $ null variables
expected _ = False
actual = parse programP "" given
in actual `parseSatisfies` expected
it "parses negation" $
let given = "proc main(x: int) { var y: int; y := -x; }"
parameters = pure $ Parameter "x" (NamedType "int") False
variables = pure
$ VariableDeclaration "y"
$ NamedType "int"
body = pure
$ AssignmentStatement (VariableExpression "y")
$ NegationExpression
$ VariableExpression "x"
expected = Program
[ProcedureDefinition "main" parameters variables body]
actual = parse programP "" given
in actual `shouldParse` expected
it "parses comparison with lower precedence than other binary operators" $
let given = "proc main() { var x: boolean; x := 1 + 2 = 3 * 4; }"
variables = pure
$ VariableDeclaration "x"
$ NamedType "boolean"
lhs = SumExpression (LiteralExpression (IntegerLiteral 1))
$ LiteralExpression (IntegerLiteral 2)
rhs = ProductExpression (LiteralExpression (IntegerLiteral 3))
$ LiteralExpression (IntegerLiteral 4)
body = pure
$ AssignmentStatement (VariableExpression "x")
$ EqualExpression lhs rhs
expected = Program
[ProcedureDefinition "main" [] variables body]
actual = parse programP "" given
in actual `shouldParse` expected
it "parses hexadecimals" $
let given = "proc main() { var x: int; x := 0x10; }"
variables = pure
$ VariableDeclaration "x"
$ NamedType "int"
body = pure
$ AssignmentStatement (VariableExpression "x")
$ LiteralExpression (HexadecimalLiteral 16)
expected = Program
[ProcedureDefinition "main" [] variables body]
actual = parse programP "" given
in actual `shouldParse` expected
it "parses procedure calls" $
let given = "proc main() { f('c'); }"
body = pure
$ CallStatement "f" [LiteralExpression (CharacterLiteral 99)]
expected = Program
[ProcedureDefinition "main" [] [] body]
actual = parse programP "" given
in actual `shouldParse` expected
it "parses an if statement" $
let given = "proc main() { if (true) ; }"
body = pure
$ IfStatement (LiteralExpression $ BooleanLiteral True) EmptyStatement Nothing
expected = Program
[ProcedureDefinition "main" [] [] body]
actual = parse programP "" given
in actual `shouldParse` expected
it "associates else with the nearst if statement" $
let given = "proc main() { if (true) if (false) ; else ; }"
if' = IfStatement (LiteralExpression $ BooleanLiteral False) EmptyStatement
$ Just EmptyStatement
body = pure
$ IfStatement (LiteralExpression $ BooleanLiteral True) if' Nothing
expected = Program
[ProcedureDefinition "main" [] [] body]
actual = parse programP "" given
in actual `shouldParse` expected
it "parses a while statement" $
let given = "proc main() { while (true) ; }"
body = pure
$ WhileStatement (LiteralExpression $ BooleanLiteral True) EmptyStatement
expected = Program
[ProcedureDefinition "main" [] [] body]
actual = parse programP "" given
in actual `shouldParse` expected

5
tests/Spec.hs Normal file
View File

@ -0,0 +1,5 @@
{- This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/. -}
{-# OPTIONS_GHC -F -pgmF hspec-discover #-}

View File

@ -0,0 +1 @@
38

View File

@ -0,0 +1 @@
58

View File

@ -0,0 +1 @@
5

View File

@ -0,0 +1,2 @@
5
7

View File

@ -0,0 +1 @@
58

View File

@ -0,0 +1 @@
c

View File

@ -0,0 +1 @@
-8

View File

@ -0,0 +1 @@
0

View File

@ -0,0 +1 @@
13

View File

@ -0,0 +1,2 @@
13
2097150

View File

@ -0,0 +1 @@
2

View File

@ -0,0 +1,2 @@
5
7

View File

@ -0,0 +1 @@
x

View File

@ -0,0 +1,2 @@
14
8

View File

@ -0,0 +1 @@
2097150

View File

@ -0,0 +1 @@
-8

View File

@ -0,0 +1 @@
1000

View File

@ -0,0 +1 @@
-8

View File

@ -0,0 +1 @@
18

View File

@ -0,0 +1 @@
129

View File

@ -0,0 +1 @@
3

View File

@ -0,0 +1 @@
5

View File

@ -0,0 +1 @@
5

View File

@ -0,0 +1 @@
3

View File

@ -0,0 +1 @@
3

View File

@ -0,0 +1 @@
3

View File

@ -0,0 +1,2 @@
3
7

View File

@ -0,0 +1 @@
-129

View File

@ -0,0 +1 @@
2

View File

@ -0,0 +1 @@
129

View File

@ -0,0 +1,2 @@
58
28

View File

@ -0,0 +1,3 @@
proc main() {
printi(2 * 3 + 4 * 8);
}

View File

@ -0,0 +1,6 @@
proc main() {
var i: int;
i := 28;
printi(i + 30);
}

View File

@ -0,0 +1,6 @@
proc main() {
var a: array[1] of int;
a[0] := 5;
printi(a[0]);
}

View File

@ -0,0 +1,11 @@
proc main() {
var a: array[2] of int;
var i: int;
i := 1;
a[0] := 5;
a[i] := 7;
printi(a[0]);
printi(a[i]);
}

View File

@ -0,0 +1,6 @@
proc main() {
var i: int;
i := 58;
printi(i);
}

View File

@ -0,0 +1,5 @@
proc main() {
printc('c');
exit();
printi(1234);
}

View File

@ -0,0 +1,3 @@
proc main() {
printi(-8);
}

3
tests/vm/print0.elna Normal file
View File

@ -0,0 +1,3 @@
proc main() {
printi(0);
}

View File

@ -0,0 +1,3 @@
proc main() {
printi(13);
}

View File

@ -0,0 +1,4 @@
proc main() {
printi(13);
printi(2097150);
}

View File

@ -0,0 +1,9 @@
proc main() {
var x: int;
x := 0;
while (x < 2) {
x := x + 1;
}
printi(x);
}

View File

@ -0,0 +1,8 @@
proc main() {
var a: array[2] of int;
a[0] := 5;
a[1] := 7;
printi(a[0]);
printi(a[1]);
}

3
tests/vm/print_char.elna Normal file
View File

@ -0,0 +1,3 @@
proc main() {
printc('x');
}

Some files were not shown because too many files have changed in this diff Show More