38 Commits

Author SHA1 Message Date
d7dfa3f6f1 net.ip.Address6.toString() recommended notation
Fix #65.
2019-03-01 08:28:36 +01:00
8fd0452cd0 algorithm.iteration: Add singleton()
... iterating over a single value.
2019-02-25 09:27:03 +01:00
df99ea45f2 range.adapter: new arrayInserter 2019-02-24 13:14:30 +01:00
87ba58098e format.sformat: Support range-based toString() 2019-02-19 06:39:39 +01:00
5a134ce768 net.ip: Implement .toString() with output ranges 2019-02-16 08:37:45 +01:00
0835edce1d range.adapter: Add container-range adapters. Fix #67 2019-02-16 08:36:50 +01:00
a786bdbec5 Use word-wise hash instead of FNV-1a for arrays of word-aligned scalars
Also special case int-aligned scalars on 64-bit machines.
On a 64-bit machine hashing an array of pointers is now ~5.95x faster
with LDC2 and ~8.54x faster with DMD, and hashing an array of ints is
~3.34x faster with LDC2 and ~8.12x faster with DMD.
2019-02-12 10:34:18 -05:00
0bef2ef76d Add sformat() writing to an output range 2019-02-12 07:37:24 +01:00
1d3d750adb Update dmd to 2.084.1 2019-02-11 22:14:59 +01:00
0c8f1eb4ce Deprecate InputRange source for OutputRanges
An output range for E won't be automatically an output range for [E]
anymore. The same, an output range for [E] won't be automatically an
output range for E. Automatic E <-> [E] conversion seems to be a nice
feature at first glance, but it causes much ambiguity.

1) If I want that my output range accepts only UTF-8 strings but not
single characters (because it could be only part of a code point and
look like broken UTF-8 without the remaining code units), I can't do it
because an OutputRange(R, E) can't distinguish between char and string.

2) Here is an example from 2013:

import std.range;
import std.stdio;
Appender!(const(char)[][]) app;
put(app, "aasdf");
put(app, 'b');
writeln(app.data);

This outputs: ["aasdf", "\0"].
Whether it is a common case or not, such code just shouldn't compile.
2019-02-06 07:26:28 +01:00
bf197a6554 Deprecate put() as an OutputRange primitive 2019-02-04 10:49:12 +01:00
7af5c30820 move(): Give compiler an opportunity to optimize
Fix #75.
2019-02-01 06:33:41 +01:00
c1535e8752 typecons.Variant: Make public. Fix #73 2019-01-31 06:33:19 +01:00
5453f6417f typecons.Option: Deprecate alias this 2019-01-30 06:58:02 +01:00
410b865df9 typecons.Option: Fix assigning nothing 2019-01-29 08:24:58 +01:00
4566cf7857 meta.metafunction: Add Enumerate and EnumerateFrom 2019-01-28 08:30:54 +01:00
0a2798cc96 Call postblit when emplacing a struct. Fix #81 2019-01-27 07:18:53 +01:00
a505a033ab net.ip.Address: Address4/Address6 compatibility 2019-01-25 13:07:32 +01:00
1f02ba5042 net.ip: Add Address4 and Address6 wrapper 2019-01-24 07:14:15 +01:00
50aaa170fb Merge remote-tracking branch 'n8sh/retro-slicing' 2019-01-09 18:17:41 +01:00
ff7d20f167 retro supports slicing if source range supports slicing 2019-01-08 20:19:53 -05:00
03e21d4368 Remove deprecated memory.op.cmp and Entropy class 2018-12-21 20:05:23 +01:00
c293c6c809 container.array: Fix assigning non-copyable values
Fix #59.
2018-12-18 05:37:52 +01:00
e93898d837 Update dmd to 2.083.1 2018-12-17 18:04:36 +01:00
49d7452b33 Make containers work with non-copyable elements
It is the first step. The containers can be at least created with
non-copyable structs without compilation errors now.
Fix #69.
2018-11-24 06:25:55 +01:00
884dc30953 Fix emplacing POD structs 2018-11-23 13:36:31 +01:00
e67a05138e range.primitive: Support non copyable elements
... in all ranges.
2018-11-19 21:37:58 +01:00
7585bf59e7 Add test.stub. Fix #51 2018-11-18 06:32:10 +01:00
0a121d9d19 Disable length when taking from a lengthless range
Fix #79.
2018-11-13 08:29:51 +01:00
9e6f5c3105 Add algorithm.mutation.rotate 2018-11-12 07:54:52 +01:00
3f66782368 Add support for DMD 2.083.0 2018-11-11 07:27:25 +01:00
3c8f6e3435 Merge remote-tracking branch 'n8sh/take-slice' 2018-11-07 07:08:52 +01:00
ee8b7ef719 Merge remote-tracking branch 'retro-retro' 2018-11-06 16:59:57 +01:00
6b22cd60df take(take(range,...),n) is take(range, n) and use slicing in take like in takeExactly
Also take!R is the same as takeExactly!R when isInfinite!R.
2018-11-05 22:49:10 -05:00
c290c85088 retro(retro(range)) is range 2018-11-05 18:43:58 -05:00
65e2e344df Use inout in tanya.range.array functions
This is to reduce distinct generated functions in final executable.
Also add `scope` and `return` to function parameters.
2018-11-05 16:40:48 -05:00
184d307e40 Add range primitive sameHead 2018-11-04 06:31:38 +01:00
8aec781e2a memory.op.equal: Fix parameter documentation 2018-10-30 12:57:09 +01:00
26 changed files with 2898 additions and 1039 deletions

View File

@ -7,18 +7,32 @@ os:
language: d language: d
d: d:
- dmd-2.084.1
- dmd-2.083.1
- dmd-2.082.1 - dmd-2.082.1
env: env:
global:
- LATEST=2.084.1
matrix: matrix:
- ARCH=x86_64 - ARCH=x86_64
- ARCH=x86 - ARCH=x86
matrix: matrix:
include: include:
- name: "D-Scanner" - name: D-Scanner
d: dmd-2.082.1 d: dmd-$LATEST
env: DSCANNER=0.5.11 env: DSCANNER=0.6.0
os: linux
- name: DDoc
d: dmd-$LATEST
env: DDOC=true
os: linux
allow_failures:
- name: D-Scanner
d: dmd-$LATEST
env: DSCANNER=0.6.0
os: linux os: linux
addons: addons:
@ -27,13 +41,15 @@ addons:
- gcc-multilib - gcc-multilib
before_script: before_script:
- if [ "`$DC --version | head -n 1 | grep 'v2.082.1'`" ] && - if [ "`$DC --version | head -n 1 | grep v$LATEST`" ] &&
[ -z "$DSCANNER" ]; then [ -z "$DSCANNER$DDOC" ]; then
export UNITTEST="unittest-cov"; export UNITTEST="unittest-cov";
fi fi
script: script:
- if [ -z "$DSCANNER" ]; then - if [ -n "$DDOC" ]; then
dub build -b ddox --compiler=$DC;
elif [ -z "$DSCANNER" ]; then
dub test -b ${UNITTEST:-unittest} --arch=$ARCH --compiler=$DC; dub test -b ${UNITTEST:-unittest} --arch=$ARCH --compiler=$DC;
else else
dub fetch dscanner --version=$DSCANNER; dub fetch dscanner --version=$DSCANNER;

View File

@ -175,8 +175,9 @@ parameter is used)
| DMD | GCC | | DMD | GCC |
|:-------:|:---------------:| |:-------:|:---------------:|
| 2.082.1 | gdc-8 (2.081.2) | | 2.084.1 | gdc-8 (2.081.2) |
| | gdc-7 (2.081.2) | | 2.083.1 | gdc-7 (2.081.2) |
| 2.082.1 | |
### Release management ### Release management

View File

@ -3,6 +3,18 @@ os: Visual Studio 2015
environment: environment:
matrix: matrix:
- DC: dmd
DVersion: 2.084.1
arch: x64
- DC: dmd
DVersion: 2.084.1
arch: x86
- DC: dmd
DVersion: 2.083.1
arch: x64
- DC: dmd
DVersion: 2.083.1
arch: x86
- DC: dmd - DC: dmd
DVersion: 2.082.1 DVersion: 2.082.1
arch: x64 arch: x64

View File

@ -3,13 +3,13 @@
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/** /**
* Range adapters. * Iteration algorithms.
* *
* A range adapter wraps another range and modifies the way, how the original * These algorithms wrap other ranges and modify the way, how the original
* range is iterated, or the order in which its elements are accessed. * range is iterated, or the order in which its elements are accessed.
* *
* All adapters are lazy algorithms, they request the next element of the * All algorithms in this module are lazy, they request the next element of the
* adapted range on demand. * original range on demand.
* *
* Copyright: Eugene Wissner 2018. * Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/, * License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
@ -22,9 +22,13 @@ module tanya.algorithm.iteration;
import tanya.algorithm.comparison; import tanya.algorithm.comparison;
import tanya.algorithm.mutation; import tanya.algorithm.mutation;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range; import tanya.range;
import tanya.typecons;
version (unittest) import tanya.test.stub;
private mixin template Take(R, bool exactly) private struct Take(R, bool exactly)
{ {
private R source; private R source;
size_t length_; size_t length_;
@ -73,13 +77,16 @@ private mixin template Take(R, bool exactly)
} }
else else
{ {
return length == 0 || this.source.empty; return this.length_ == 0 || this.source.empty;
} }
} }
@property size_t length() static if (exactly || hasLength!R)
{ {
return this.length_; @property size_t length()
{
return this.length_;
}
} }
static if (hasAssignableElements!R) static if (hasAssignableElements!R)
@ -187,6 +194,22 @@ private mixin template Take(R, bool exactly)
} }
} }
} }
static if (!exactly && hasSlicing!R)
{
auto opSlice(size_t i, size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
do
{
return typeof(this)(this.source[i .. j], length);
}
}
version (unittest) static assert(isInputRange!Take);
} }
/** /**
@ -212,25 +235,34 @@ private mixin template Take(R, bool exactly)
auto take(R)(R range, size_t n) auto take(R)(R range, size_t n)
if (isInputRange!R) if (isInputRange!R)
{ {
static struct Take static if (hasSlicing!R && hasLength!R)
{ {
mixin .Take!(R, false); if (range.length <= n)
return range;
static if (hasSlicing!R) else
{ return range[0 .. n];
auto opSlice(size_t i, size_t j) }
in // Special case: take(take(...), n)
{ else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
assert(i <= j); {
assert(j <= length); if (n > range.length_)
} n = range.length_;
do static if (exact)
{ // `take(takeExactly(r, n0), n)` is rewritten `takeExactly(r, min(n0, n))`.
return typeof(this)(this.source[i .. j], length); return Take!(RRange, true)(range.source, n);
} else
} // `take(take(r, n0), n)` is rewritten `take(r, min(n0, n))`.
return Take!(RRange, false)(range.source, n);
}
else static if (isInfinite!R)
{
// If the range is infinite then `take` is the same as `takeExactly`.
return Take!(R, true)(range, n);
}
else
{
return Take!(R, false)(range, n);
} }
return Take(range, n);
} }
/// ///
@ -290,6 +322,18 @@ if (isInputRange!R)
assert(t.empty); assert(t.empty);
} }
// length is unknown when taking from a range without length
@nogc nothrow pure @safe unittest
{
static struct R
{
mixin InputRangeStub;
}
auto actual = take(R(), 100);
static assert(!hasLength!(typeof(actual)));
}
/** /**
* Takes exactly $(D_PARAM n) elements from $(D_PARAM range). * Takes exactly $(D_PARAM n) elements from $(D_PARAM range).
* *
@ -315,13 +359,15 @@ if (isInputRange!R)
{ {
return range[0 .. n]; return range[0 .. n];
} }
// Special case: takeExactly(take(range, ...), n) is takeExactly(range, n)
else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
{
assert(n <= range.length_);
return Take!(RRange, true)(range.source, n);
}
else else
{ {
static struct TakeExactly return Take!(R, true)(range, n);
{
mixin Take!(R, true);
}
return TakeExactly(range, n);
} }
} }
@ -408,6 +454,130 @@ if (isInputRange!R)
} }
} }
// Reverse-access-order range returned by `retro`.
private struct Retro(Range)
{
Range source;
@disable this();
private this(Range source)
{
this.source = source;
}
Retro save()
{
return this;
}
@property auto ref front()
in (!empty)
{
return this.source.back;
}
void popFront()
in (!empty)
{
this.source.popBack();
}
@property auto ref back()
in (!empty)
{
return this.source.front;
}
void popBack()
in (!empty)
{
this.source.popFront();
}
@property bool empty()
{
return this.source.empty;
}
static if (hasLength!Range)
{
@property size_t length()
{
return this.source.length;
}
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
auto ref opIndex(size_t i)
in (i < length)
{
return this.source[$ - ++i];
}
}
static if (hasLength!Range && hasSlicing!Range)
{
alias opDollar = length;
auto opSlice(size_t i, size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
do
{
return typeof(this)(this.source[$-j .. $-i]);
}
}
static if (hasAssignableElements!Range)
{
@property void front(ref ElementType!Range value)
in (!empty)
{
this.source.back = value;
}
@property void front(ElementType!Range value)
in (!empty)
{
this.source.back = move(value);
}
@property void back(ref ElementType!Range value)
in (!empty)
{
this.source.front = value;
}
@property void back(ElementType!Range value)
in (!empty)
{
this.source.front = move(value);
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
void opIndexAssign(ref ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = value;
}
void opIndexAssign(ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = move(value);
}
}
}
version (unittest) static assert(isBidirectionalRange!Retro);
}
/** /**
* Iterates a bidirectional range backwards. * Iterates a bidirectional range backwards.
* *
@ -420,115 +590,14 @@ if (isInputRange!R)
* *
* Returns: Bidirectional range with the elements order reversed. * Returns: Bidirectional range with the elements order reversed.
*/ */
auto retro(Range)(Range range) auto retro(Range)(return Range range)
if (isBidirectionalRange!Range) if (isBidirectionalRange!Range)
{ {
static struct Retro // Special case: retro(retro(range)) is range
{ static if (is(Range == Retro!RRange, RRange))
Range source; return range.source;
else
@disable this(); return Retro!Range(range);
private this(Range source)
{
this.source = source;
}
Retro save()
{
return this;
}
@property auto ref front()
in (!empty)
{
return this.source.back;
}
void popFront()
in (!empty)
{
this.source.popBack();
}
@property auto ref back()
in (!empty)
{
return this.source.front;
}
void popBack()
in (!empty)
{
this.source.popFront();
}
@property bool empty()
{
return this.source.empty;
}
static if (hasLength!Range)
{
@property size_t length()
{
return this.source.length;
}
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
auto ref opIndex(size_t i)
in (i < length)
{
return this.source[$ - ++i];
}
}
static if (hasAssignableElements!Range)
{
@property void front(ref ElementType!Range value)
in (!empty)
{
this.source.back = value;
}
@property void front(ElementType!Range value)
in (!empty)
{
this.source.back = move(value);
}
@property void back(ref ElementType!Range value)
in (!empty)
{
this.source.front = value;
}
@property void back(ElementType!Range value)
in (!empty)
{
this.source.front = move(value);
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
void opIndexAssign(ref ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = value;
}
void opIndexAssign(ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = move(value);
}
}
}
}
return Retro(range);
} }
/// ///
@ -559,6 +628,10 @@ if (isBidirectionalRange!Range)
actual.popBack(); actual.popBack();
assert(actual.back == 2); assert(actual.back == 2);
assert(actual[1] == 2); assert(actual[1] == 2);
// Check slicing.
auto slice = retro(given[])[1 .. $];
assert(slice.length == 2 && slice.front == 2 && slice.back == 1);
} }
// Elements can be assigned // Elements can be assigned
@ -576,3 +649,207 @@ if (isBidirectionalRange!Range)
actual[2] = 10; actual[2] = 10;
assert(given[1] == 10); assert(given[1] == 10);
} }
private struct SingletonByValue(E)
{
private Option!E element;
@disable this();
private this(U)(ref U element)
if (is(U == E))
{
this.element = move(element);
}
private this(U)(ref U element)
if (is(Unqual!U == Option!(Unqual!E)) || is(Unqual!U == Option!(const E)))
{
if (!element.isNothing)
{
this.element = element.get;
}
}
@property ref inout(E) front() inout
in (!empty)
{
return this.element.get;
}
alias back = front;
void popFront()
in (!empty)
{
this.element.reset();
}
alias popBack = popFront;
@property bool empty() const
{
return this.element.isNothing;
}
@property size_t length() const
{
return !this.element.isNothing;
}
auto save()
{
return SingletonByValue!E(this.element);
}
auto save() const
{
return SingletonByValue!(const E)(this.element);
}
ref inout(E) opIndex(size_t i) inout
in (!empty)
in (i == 0)
{
return this.element.get;
}
}
private struct SingletonByRef(E)
{
private E* element;
@disable this();
private this(return ref E element) @trusted
{
this.element = &element;
}
@property ref inout(E) front() inout return
in (!empty)
{
return *this.element;
}
alias back = front;
void popFront()
in (!empty)
{
this.element = null;
}
alias popBack = popFront;
@property bool empty() const
{
return this.element is null;
}
@property size_t length() const
{
return this.element !is null;
}
auto save() return
{
return typeof(this)(*this.element);
}
auto save() const return
{
return SingletonByRef!(const E)(*this.element);
}
ref inout(E) opIndex(size_t i) inout return
in (!empty)
in (i == 0)
{
return *this.element;
}
}
/**
* Creates a bidirectional and random-access range with the single element
* $(D_PARAM element).
*
* If $(D_PARAM element) is passed by value the resulting range stores it
* internally. If $(D_PARAM element) is passed by reference, the resulting
* range keeps only a pointer to the element.
*
* Params:
* E = Element type.
* element = Element.
*
* Returns: A range with one element.
*/
auto singleton(E)(return E element)
if (isMutable!E)
{
return SingletonByValue!E(element);
}
/// ditto
auto singleton(E)(return ref E element)
{
return SingletonByRef!E(element);
}
///
@nogc nothrow pure @safe unittest
{
auto singleChar = singleton('a');
assert(singleChar.length == 1);
assert(singleChar.front == 'a');
singleChar.popFront();
assert(singleChar.empty);
}
// Singleton range is bidirectional and random-access
@nogc nothrow pure @safe unittest
{
static assert(isBidirectionalRange!(typeof(singleton('a'))));
static assert(isRandomAccessRange!(typeof(singleton('a'))));
assert({ char a; return isBidirectionalRange!(typeof(singleton(a))); });
assert({ char a; return isRandomAccessRange!(typeof(singleton(a))); });
}
@nogc nothrow pure @safe unittest
{
char a = 'a';
auto single = singleton(a);
assert(single.front == 'a');
assert(single.back == 'a');
assert(single[0] == 'a');
assert(single.length == 1);
assert(!single.empty);
}
// popFront makes SingletonByRef empty
@nogc nothrow pure @safe unittest
{
char a = 'a';
auto single = singleton(a);
single.popFront();
assert(single.empty);
assert(single.length == 0);
assert(single.empty);
}
// popBack makes SingletonByRef empty
@nogc nothrow pure @safe unittest
{
char a = 'b';
auto single = singleton(a);
single.popBack();
assert(single.empty);
assert(single.length == 0);
assert(single.empty);
}

View File

@ -5,7 +5,7 @@
/** /**
* Algorithms that modify its arguments. * Algorithms that modify its arguments.
* *
* Copyright: Eugene Wissner 2017-2018. * Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/, * License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0). * Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner) * Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -19,6 +19,7 @@ static import tanya.memory.op;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range; import tanya.range;
version (unittest) import tanya.test.stub;
private void deinitialize(bool zero, T)(ref T value) private void deinitialize(bool zero, T)(ref T value)
{ {
@ -222,9 +223,16 @@ void move(T)(ref T source, ref T target)
/// ditto /// ditto
T move(T)(ref T source) @trusted T move(T)(ref T source) @trusted
{ {
T target = void; static if (hasElaborateCopyConstructor!T || hasElaborateDestructor!T)
moveEmplace(source, target); {
return target; T target = void;
moveEmplace(source, target);
return target;
}
else
{
return source;
}
} }
/// ///
@ -301,7 +309,7 @@ void swap(T)(ref T a, ref T b) @trusted
* $(D_PARAM source) elements. * $(D_PARAM source) elements.
*/ */
Target copy(Source, Target)(Source source, Target target) Target copy(Source, Target)(Source source, Target target)
if (isInputRange!Source && isOutputRange!(Target, Source)) if (isInputRange!Source && isOutputRange!(Target, ElementType!Source))
in in
{ {
static if (hasLength!Source && hasLength!Target) static if (hasLength!Source && hasLength!Target)
@ -381,12 +389,9 @@ do
static struct OutPutRange static struct OutPutRange
{ {
int value; int value;
void put(int value) @nogc nothrow pure @safe
in void opCall(int value) @nogc nothrow pure @safe
{ in (this.value == 0)
assert(this.value == 0);
}
do
{ {
this.value = value; this.value = value;
} }
@ -554,10 +559,6 @@ if (isInputRange!Range && hasLvalueElements!Range)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct NonCopyable
{
@disable this(this);
}
NonCopyable[] nonCopyable; NonCopyable[] nonCopyable;
initializeAll(nonCopyable); initializeAll(nonCopyable);
} }
@ -607,3 +608,89 @@ if (isInputRange!Range && hasLvalueElements!Range)
assert(counter == 2); assert(counter == 2);
} }
/**
* Rotates the elements of a union of two ranges.
*
* Performs a left rotation on the given ranges, as if it would be a signle
* range, so that [`front.front`, `back.front`$(RPAREN) is a valid range, that
* is $(D_PARAM back) would continue $(D_PARAM front).
*
* The elements are moved so, that the first element of $(D_PARAM back) becomes
* the first element of $(D_PARAM front) without changing the relative order of
* their elements.
*
* Params:
* Range = Range type.
* front = Left half.
* back = Right half.
*/
void rotate(Range)(Range front, Range back)
if (isForwardRange!Range && hasSwappableElements!Range)
{
auto next = back.save();
while (!front.empty && !next.empty && !sameHead(front, next))
{
swap(front.front, next.front);
front.popFront();
next.popFront();
if (next.empty)
{
next = back.save();
}
else if (front.empty)
{
front = back.save();
back = next.save();
}
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[7] expected = [1, 2, 3, 4, 5, 6, 7];
int[7] actual = [5, 6, 3, 4, 1, 2, 7];
rotate(actual[0 .. 2], actual[4 .. 6]);
assert(equal(actual[], expected[]));
}
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[5] expected = [1, 2, 3, 4, 5];
int[5] actual = [4, 5, 1, 2, 3];
rotate(actual[0 .. 2], actual[2 .. $]);
assert(equal(actual[], expected[]));
}
// Doesn't cause an infinite loop if back is shorter than the front
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[5] expected = [1, 2, 3, 4, 5];
int[5] actual = [3, 4, 5, 1, 2];
rotate(actual[0 .. 3], actual[3 .. $]);
assert(equal(actual[], expected[]));
}
// Doesn't call .front on an empty front
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[2] expected = [2, 8];
int[2] actual = expected;
rotate(actual[0 .. 0], actual[]);
assert(equal(actual[], expected[]));
}

View File

@ -15,14 +15,15 @@
module tanya.container.array; module tanya.container.array;
import core.checkedint; import core.checkedint;
import std.algorithm.mutation : bringToFront;
import tanya.algorithm.comparison; import tanya.algorithm.comparison;
import tanya.algorithm.mutation; import tanya.algorithm.mutation;
import tanya.exception; import tanya.exception;
import tanya.functional;
import tanya.memory; import tanya.memory;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range; import tanya.range;
version (unittest) import tanya.test.stub;
/** /**
* Random-access range for the $(D_PSYMBOL Array). * Random-access range for the $(D_PSYMBOL Array).
@ -294,7 +295,9 @@ struct Array(T)
* init = Initial value to fill the array with. * init = Initial value to fill the array with.
* allocator = Allocator. * allocator = Allocator.
*/ */
this(size_t len, T init, shared Allocator allocator = defaultAllocator) this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{ {
this(allocator); this(allocator);
reserve(len); reserve(len);
@ -349,15 +352,19 @@ struct Array(T)
(() @trusted => allocator.deallocate(slice(capacity)))(); (() @trusted => allocator.deallocate(slice(capacity)))();
} }
/** static if (isCopyable!T)
* Copies the array.
*/
this(this)
{ {
auto buf = slice(this.length); this(this)
this.length_ = capacity_ = 0; {
this.data = null; auto buf = slice(this.length);
insertBack(buf); this.length_ = capacity_ = 0;
this.data = null;
insertBack(buf);
}
}
else
{
@disable this(this);
} }
/** /**
@ -804,10 +811,11 @@ struct Array(T)
} }
do do
{ {
const oldLen = length; const oldLength = length;
const offset = r.end - this.data; const after = r.end - this.data;
const inserted = insertBack(el); const inserted = insertBack(el);
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]);
rotate(this.data[after .. oldLength], this.data[oldLength .. length]);
return inserted; return inserted;
} }
@ -846,7 +854,7 @@ struct Array(T)
{ {
moveBack(el); moveBack(el);
} }
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]); rotate(this.data[offset .. oldLen], this.data[oldLen .. length]);
return 1; return 1;
} }
@ -902,7 +910,7 @@ struct Array(T)
{ {
moveBack(el); moveBack(el);
} }
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]); rotate(this.data[offset .. oldLen], this.data[oldLen .. length]);
return 1; return 1;
} }
@ -993,7 +1001,7 @@ struct Array(T)
*/ */
ref T opIndexAssign(E : T)(auto ref E value, size_t pos) ref T opIndexAssign(E : T)(auto ref E value, size_t pos)
{ {
return opIndex(pos) = value; return opIndex(pos) = forward!value;
} }
/// ditto /// ditto
@ -1027,7 +1035,7 @@ struct Array(T)
} }
/// ditto /// ditto
Range opIndexAssign(Range value) Range opIndexAssign()(Range value)
{ {
return opSliceAssign(value, 0, length); return opSliceAssign(value, 0, length);
} }
@ -1321,7 +1329,7 @@ struct Array(T)
} }
/// ditto /// ditto
Range opSliceAssign(Range value, size_t i, size_t j) @trusted Range opSliceAssign()(Range value, size_t i, size_t j) @trusted
in in
{ {
assert(i <= j); assert(i <= j);
@ -1575,15 +1583,10 @@ struct Array(T)
assert(v7[].equal(v8[])); assert(v7[].equal(v8[]));
} }
// Destructor can destroy empty arrays
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct SWithDtor auto v = Array!WithDtor();
{
~this() @nogc nothrow pure @safe
{
}
}
auto v = Array!SWithDtor(); // Destructor can destroy empty arrays.
} }
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
@ -1594,7 +1597,6 @@ struct Array(T)
A a1, a2; A a1, a2;
auto v1 = Array!A([a1, a2]); auto v1 = Array!A([a1, a2]);
// Issue 232: https://issues.caraus.io/issues/232.
static assert(is(Array!(A*))); static assert(is(Array!(A*)));
} }
@ -1679,3 +1681,10 @@ struct Array(T)
} }
func(array); func(array);
} }
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(is(Array!NonCopyable));
static assert(is(typeof({ Array!NonCopyable.init[0] = NonCopyable(); })));
}

View File

@ -20,6 +20,7 @@ import tanya.memory.allocator;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.typecons; import tanya.typecons;
version (unittest) import tanya.test.stub;
package struct SEntry(T) package struct SEntry(T)
{ {
@ -59,12 +60,12 @@ package struct Bucket(K, V = void)
} }
BucketStatus status = BucketStatus.empty; BucketStatus status = BucketStatus.empty;
this(ref K key) this()(ref K key)
{ {
this.key = key; this.key = key;
} }
@property void key(ref K key) @property void key()(ref K key)
{ {
this.key() = key; this.key() = key;
this.status = BucketStatus.used; this.status = BucketStatus.used;
@ -170,7 +171,7 @@ package struct HashArray(alias hasher, K, V = void)
.swap(this.length, data.length); .swap(this.length, data.length);
} }
void opAssign(ref typeof(this) that) void opAssign()(ref typeof(this) that)
{ {
this.array = that.array; this.array = that.array;
this.lengthIndex = that.lengthIndex; this.lengthIndex = that.lengthIndex;
@ -326,3 +327,13 @@ package struct HashArray(alias hasher, K, V = void)
return false; return false;
} }
} }
// Can be constructed with non-copyable key/values
@nogc nothrow pure @safe unittest
{
static assert(is(Bucket!NonCopyable));
static assert(is(Bucket!(NonCopyable, NonCopyable)));
static assert(is(HashArray!((ref NonCopyable) => 0U, NonCopyable)));
static assert(is(HashArray!((ref NonCopyable) => 0U, NonCopyable, NonCopyable)));
}

View File

@ -22,6 +22,7 @@ import tanya.memory;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/** /**
* Bidirectional range whose element type is a tuple of a key and the * Bidirectional range whose element type is a tuple of a key and the
@ -68,7 +69,7 @@ struct Range(T)
return this.dataRange.empty(); return this.dataRange.empty();
} }
@property void popFront() void popFront()
in in
{ {
assert(!empty); assert(!empty);
@ -87,7 +88,7 @@ struct Range(T)
while (!empty && dataRange.front.status != BucketStatus.used); while (!empty && dataRange.front.status != BucketStatus.used);
} }
@property void popBack() void popBack()
in in
{ {
assert(!empty); assert(!empty);
@ -759,7 +760,7 @@ if (isHashFunction!(hasher, Key))
* *
* Returns: The number of the inserted elements with a unique key. * Returns: The number of the inserted elements with a unique key.
*/ */
size_t insert(ref KeyValue keyValue) size_t insert()(ref KeyValue keyValue)
{ {
auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key); auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key);
size_t inserted; size_t inserted;
@ -773,7 +774,7 @@ if (isHashFunction!(hasher, Key))
} }
/// ditto /// ditto
size_t insert(KeyValue keyValue) size_t insert()(KeyValue keyValue)
{ {
auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key); auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key);
size_t inserted; size_t inserted;
@ -1197,3 +1198,16 @@ if (isHashFunction!(hasher, Key))
static assert(is(typeof("asdf" in HashTable!(String, int)()))); static assert(is(typeof("asdf" in HashTable!(String, int)())));
static assert(is(typeof(HashTable!(String, int)()["asdf"]))); static assert(is(typeof(HashTable!(String, int)()["asdf"])));
} }
// Can have non-copyable keys and elements
@nogc nothrow pure @safe unittest
{
@NonCopyable @Hashable
static struct S
{
mixin StructStub;
}
static assert(is(HashTable!(S, int)));
static assert(is(HashTable!(int, S)));
static assert(is(HashTable!(S, S)));
}

View File

@ -23,6 +23,7 @@ import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range.array; import tanya.range.array;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/** /**
* Forward range for the $(D_PSYMBOL SList). * Forward range for the $(D_PSYMBOL SList).
@ -155,8 +156,9 @@ struct SList(T)
* init = Initial value to fill the list with. * init = Initial value to fill the list with.
* allocator = Allocator. * allocator = Allocator.
*/ */
this(size_t len, T init, shared Allocator allocator = defaultAllocator) this()(size_t len,
@trusted auto ref T init,
shared Allocator allocator = defaultAllocator)
{ {
this(allocator); this(allocator);
if (len == 0) if (len == 0)
@ -182,7 +184,18 @@ struct SList(T)
/// ditto /// ditto
this(size_t len, shared Allocator allocator = defaultAllocator) this(size_t len, shared Allocator allocator = defaultAllocator)
{ {
this(len, T.init, allocator); this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next = next.next;
}
} }
/// ///
@ -271,14 +284,18 @@ struct SList(T)
clear(); clear();
} }
/** static if (isCopyable!T)
* Copies the list.
*/
this(this)
{ {
auto list = typeof(this)(this[], this.allocator); this(this)
this.head = list.head; {
list.head = null; auto list = typeof(this)(this[], this.allocator);
this.head = list.head;
list.head = null;
}
}
else
{
@disable this(this);
} }
/// ///
@ -512,7 +529,7 @@ struct SList(T)
} }
/// ditto /// ditto
size_t insertBefore(Range r, ref T el) @trusted size_t insertBefore()(Range r, ref T el) @trusted
in in
{ {
assert(checkRangeBelonging(r)); assert(checkRangeBelonging(r));
@ -1120,8 +1137,9 @@ struct DList(T)
* init = Initial value to fill the list with. * init = Initial value to fill the list with.
* allocator = Allocator. * allocator = Allocator.
*/ */
this(size_t len, T init, shared Allocator allocator = defaultAllocator) this()(size_t len,
@trusted auto ref T init,
shared Allocator allocator = defaultAllocator)
{ {
this(allocator); this(allocator);
if (len == 0) if (len == 0)
@ -1150,7 +1168,20 @@ struct DList(T)
/// ditto /// ditto
this(size_t len, shared Allocator allocator = defaultAllocator) this(size_t len, shared Allocator allocator = defaultAllocator)
{ {
this(len, T.init, allocator); this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next.next.prev = next;
next = next.next;
}
this.tail = next;
} }
/// ///
@ -1242,15 +1273,19 @@ struct DList(T)
clear(); clear();
} }
/** static if (isCopyable!T)
* Copies the list.
*/
this(this)
{ {
auto list = typeof(this)(this[], this.allocator); this(this)
this.head = list.head; {
this.tail = list.tail; auto list = typeof(this)(this[], this.allocator);
list.head = list .tail = null; this.head = list.head;
this.tail = list.tail;
list.head = list .tail = null;
}
}
else
{
@disable this(this);
} }
/// ///
@ -1641,7 +1676,7 @@ struct DList(T)
} }
/// ditto /// ditto
size_t insertBefore(Range r, ref T el) @trusted size_t insertBefore()(Range r, ref T el) @trusted
in in
{ {
assert(checkRangeBelonging(r)); assert(checkRangeBelonging(r));
@ -1758,7 +1793,7 @@ struct DList(T)
} }
/// ditto /// ditto
size_t insertAfter(Range r, ref T el) @trusted size_t insertAfter()(Range r, ref T el) @trusted
in in
{ {
assert(checkRangeBelonging(r)); assert(checkRangeBelonging(r));
@ -2355,3 +2390,10 @@ struct DList(T)
assert(!l1.remove(r).empty); assert(!l1.remove(r).empty);
assert(l1 == l2); assert(l1 == l2);
} }
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(is(SList!NonCopyable));
static assert(is(DList!NonCopyable));
}

View File

@ -22,6 +22,7 @@ import tanya.memory;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/** /**
* Bidirectional range that iterates over the $(D_PSYMBOL Set)'s values. * Bidirectional range that iterates over the $(D_PSYMBOL Set)'s values.
@ -67,7 +68,7 @@ struct Range(T)
return this.dataRange.empty(); return this.dataRange.empty();
} }
@property void popFront() void popFront()
in in
{ {
assert(!empty); assert(!empty);
@ -86,7 +87,7 @@ struct Range(T)
while (!empty && dataRange.front.status != BucketStatus.used); while (!empty && dataRange.front.status != BucketStatus.used);
} }
@property void popBack() void popBack()
in in
{ {
assert(!empty); assert(!empty);
@ -459,7 +460,7 @@ if (isHashFunction!(hasher, T))
* *
* Returns: Amount of new elements inserted. * Returns: Amount of new elements inserted.
*/ */
size_t insert(ref T value) size_t insert()(ref T value)
{ {
auto e = ((ref v) @trusted => &this.data.insert(v))(value); auto e = ((ref v) @trusted => &this.data.insert(v))(value);
if (e.status != BucketStatus.used) if (e.status != BucketStatus.used)
@ -470,7 +471,7 @@ if (isHashFunction!(hasher, T))
return 0; return 0;
} }
size_t insert(T value) size_t insert()(T value)
{ {
auto e = ((ref v) @trusted => &this.data.insert(v))(value); auto e = ((ref v) @trusted => &this.data.insert(v))(value);
if (e.status != BucketStatus.used) if (e.status != BucketStatus.used)
@ -773,3 +774,14 @@ if (isHashFunction!(hasher, T))
{ {
static assert(is(Set!(int, (const ref x) => cast(size_t) x))); static assert(is(Set!(int, (const ref x) => cast(size_t) x)));
} }
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
@NonCopyable @Hashable
static struct S
{
mixin StructStub;
}
static assert(is(Set!S));
}

View File

@ -26,7 +26,6 @@
*/ */
module tanya.container.string; module tanya.container.string;
import std.algorithm.mutation : bringToFront;
import tanya.algorithm.comparison; import tanya.algorithm.comparison;
import tanya.algorithm.mutation; import tanya.algorithm.mutation;
import tanya.hash.lookup; import tanya.hash.lookup;
@ -1531,11 +1530,10 @@ struct String
do do
{ {
const oldLength = length; const oldLength = length;
const rangeEnd = r.end - this.data; const after = r.end - this.data;
const inserted = insertBack(el); const inserted = insertBack(el);
auto containerEnd = this.data + oldLength;
bringToFront(ByCodeUnit!char(this, this.data + rangeEnd, containerEnd), rotate(this.data[after .. oldLength], this.data[oldLength .. length]);
ByCodeUnit!char(this, containerEnd, this.data + length));
return inserted; return inserted;
} }

View File

@ -5,7 +5,7 @@
/** /**
* This module provides functions for converting between different types. * This module provides functions for converting between different types.
* *
* Copyright: Eugene Wissner 2017-2018. * Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/, * License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0). * Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner) * Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -27,6 +27,7 @@ import tanya.range.primitive;
version (unittest) version (unittest)
{ {
import tanya.test.assertion; import tanya.test.assertion;
import tanya.test.stub;
} }
/** /**
@ -61,15 +62,8 @@ version (unittest)
*/ */
T emplace(T, U, Args...)(void[] memory, U outer, auto ref Args args) T emplace(T, U, Args...)(void[] memory, U outer, auto ref Args args)
if (!isAbstractClass!T && isInnerClass!T && is(typeof(T.outer) == U)) if (!isAbstractClass!T && isInnerClass!T && is(typeof(T.outer) == U))
in in (memory.length >= stateSize!T)
{ out (result; memory.ptr is (() @trusted => cast(void*) result)())
assert(memory.length >= stateSize!T);
}
out (result)
{
assert(memory.ptr is (() @trusted => cast(void*) result)());
}
do
{ {
copy(typeid(T).initializer, memory); copy(typeid(T).initializer, memory);
@ -87,15 +81,8 @@ do
/// ditto /// ditto
T emplace(T, Args...)(void[] memory, auto ref Args args) T emplace(T, Args...)(void[] memory, auto ref Args args)
if (is(T == class) && !isAbstractClass!T && !isInnerClass!T) if (is(T == class) && !isAbstractClass!T && !isInnerClass!T)
in in (memory.length == stateSize!T)
{ out (result; memory.ptr is (() @trusted => cast(void*) result)())
assert(memory.length == stateSize!T);
}
out (result)
{
assert(memory.ptr is (() @trusted => cast(void*) result)());
}
do
{ {
copy(typeid(T).initializer, memory); copy(typeid(T).initializer, memory);
@ -140,15 +127,8 @@ do
/// ditto /// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args) T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isAggregateType!T && (Args.length <= 1)) if (!isAggregateType!T && (Args.length <= 1))
in in (memory.length >= T.sizeof)
{ out (result; memory.ptr is result)
assert(memory.length >= T.sizeof);
}
out (result)
{
assert(memory.ptr is result);
}
do
{ {
auto result = (() @trusted => cast(T*) memory.ptr)(); auto result = (() @trusted => cast(T*) memory.ptr)();
static if (Args.length == 1) static if (Args.length == 1)
@ -162,45 +142,51 @@ do
return result; return result;
} }
private void initializeOne(T)(ref void[] memory, ref T* result) @trusted
{
static if (!hasElaborateAssign!T && isAssignable!T)
{
*result = T.init;
}
else static if (__VERSION__ >= 2083 // __traits(isZeroInit) available.
&& __traits(isZeroInit, T))
{
memory.ptr[0 .. T.sizeof].fill!0;
}
else
{
static immutable T init = T.init;
copy((&init)[0 .. 1], memory);
}
}
/// ditto /// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args) T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isPolymorphicType!T && isAggregateType!T) if (!isPolymorphicType!T && isAggregateType!T)
in(memory.length >= T.sizeof) in (memory.length >= T.sizeof)
out(result; memory.ptr is result) out (result; memory.ptr is result)
{ {
auto result = (() @trusted => cast(T*) memory.ptr)(); auto result = (() @trusted => cast(T*) memory.ptr)();
alias trustedCopy = (ref arg) @trusted =>
copy((cast(void*) &arg)[0 .. T.sizeof], memory);
static if (Args.length == 0) static if (Args.length == 0)
{ {
static assert(is(typeof({ static T t; })), static assert(is(typeof({ static T t; })),
"Default constructor is disabled"); "Default constructor is disabled");
initializeOne(memory, result);
} }
else static if (is(typeof(result.__ctor(args)))) else static if (is(typeof(result.__ctor(args))))
{ {
static if (!hasElaborateAssign!T && isAssignable!T) initializeOne(memory, result);
{
*result = T.init;
}
else
{
static if (__VERSION__ >= 2083 // __traits(isZeroInit) available.
&& __traits(isZeroInit, T))
{
(() @trusted => memory.ptr[0 .. T.sizeof])().fill!0;
}
else
{
static immutable T init = T.init;
trustedCopy(init);
}
}
result.__ctor(args); result.__ctor(args);
} }
else static if (Args.length == 1 && is(typeof({ T t = args[0]; }))) else static if (Args.length == 1 && is(typeof({ T t = args[0]; })))
{ {
trustedCopy(args[0]); ((ref arg) @trusted =>
copy((cast(void*) &arg)[0 .. T.sizeof], memory))(args[0]);
static if (hasElaborateCopyConstructor!T)
{
result.__postblit();
}
} }
else static if (is(typeof({ T t = T(args); }))) else static if (is(typeof({ T t = T(args); })))
{ {
@ -257,35 +243,56 @@ out(result; memory.ptr is result)
// Can emplace structs without a constructor // Can emplace structs without a constructor
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct SWithDtor static assert(is(typeof(emplace!WithDtor(null, WithDtor()))));
{ static assert(is(typeof(emplace!WithDtor(null))));
~this() @nogc nothrow pure @safe
{
}
}
static assert(is(typeof(emplace!SWithDtor(null, SWithDtor()))));
static assert(is(typeof(emplace!SWithDtor(null))));
} }
// Doesn't call a destructor on uninitialized elements // Doesn't call a destructor on uninitialized elements
@nogc nothrow pure @system unittest @nogc nothrow pure @system unittest
{ {
static struct WithDtor static struct SWithDtor
{ {
private bool canBeInvoked = false; private bool canBeInvoked = false;
~this() @nogc nothrow pure @safe ~this() @nogc nothrow pure @safe
{ {
if (!this.canBeInvoked) assert(this.canBeInvoked);
{
assert(false);
}
} }
} }
void[WithDtor.sizeof] memory = void; void[SWithDtor.sizeof] memory = void;
auto actual = emplace!WithDtor(memory[], WithDtor(true)); auto actual = emplace!SWithDtor(memory[], SWithDtor(true));
assert(actual.canBeInvoked); assert(actual.canBeInvoked);
} }
// Initializes structs if no arguments are given
@nogc nothrow pure @safe unittest
{
static struct SEntry
{
byte content;
}
ubyte[1] mem = [3];
assert(emplace!SEntry(cast(void[]) mem[0 .. 1]).content == 0);
}
// Postblit is called when emplacing a struct
@nogc nothrow pure @system unittest
{
static struct S
{
bool called = false;
this(this) @nogc nothrow pure @safe
{
this.called = true;
}
}
S target;
S* sp = &target;
emplace!S(sp[0 .. 1], S());
assert(target.called);
}
/** /**
* Thrown if a type conversion fails. * Thrown if a type conversion fails.
*/ */

View File

@ -17,11 +17,19 @@
* To escape `{` or `}`, use `{{` and `}}` respectively. `{{` will be outputted * To escape `{` or `}`, use `{{` and `}}` respectively. `{{` will be outputted
* as a single `{`, `}}` - as a single `}`. * as a single `{`, `}}` - as a single `}`.
* *
* If a custom data type (like $(D_KEYWORD struct) or $(D_KEYWORD class)) * To define the string representation for a custom data type (like
* defines a `stringify()` function that is callable without arguments and * $(D_KEYWORD class) or $(D_KEYWORD struct)), `toString()`-function can be
* returns a $(D_PSYMBOL String), this function is used to produce a string * implemented for that type. `toString()` should be $(D_KEYWORD const) and
* representation for the value. String conversions for the most built-in * accept exactly one argument: an output range for `const(char)[]`. It should
* data types a also available. * return the same output range, advanced after putting the corresponding value
* into it. That is `toString()` signature should look like:
*
* ---
* OR toString(OR)(OR range) const
* if (isOutputRange!(OR, const(char)[]));
* ---
*
* String conversions for the most built-in data types a also available.
* *
* $(D_KEYWORD char), $(D_KEYWORD wchar) and $(D_KEYWORD dchar) ranges are * $(D_KEYWORD char), $(D_KEYWORD wchar) and $(D_KEYWORD dchar) ranges are
* outputted as plain strings (without any delimiters between their elements). * outputted as plain strings (without any delimiters between their elements).
@ -30,7 +38,7 @@
* *
* More advanced formatting is currently not implemented. * More advanced formatting is currently not implemented.
* *
* Copyright: Eugene Wissner 2017-2018. * Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/, * License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0). * Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner) * Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -47,8 +55,7 @@ static import tanya.memory.op;
import tanya.meta.metafunction; import tanya.meta.metafunction;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range.array; import tanya.range;
import tanya.range.primitive;
import tanya.typecons : Tuple; import tanya.typecons : Tuple;
// Returns the last part of buffer with converted number. // Returns the last part of buffer with converted number.
@ -1989,7 +1996,7 @@ private const(char)[] real2String(double value,
} }
} }
private void formatReal(T)(ref T arg, ref String result) private void formatReal(T, OR)(ref T arg, OR result)
if (isFloatingPoint!T) if (isFloatingPoint!T)
{ {
char[512] buffer; // Big enough for e+308 or e-307. char[512] buffer; // Big enough for e+308 or e-307.
@ -2017,11 +2024,11 @@ if (isFloatingPoint!T)
if (negative) if (negative)
{ {
result.insertBack('-'); put(result, "-");
} }
if (decimalPoint == special) if (decimalPoint == special)
{ {
result.insertBack(realString); put(result, realString);
return; return;
} }
@ -2181,11 +2188,11 @@ if (isFloatingPoint!T)
// Get the length that we've copied. // Get the length that we've copied.
length = cast(uint) (buffer.length - bufferSlice.length); length = cast(uint) (buffer.length - bufferSlice.length);
result.insertBack(buffer[64 .. length]); // Number. put(result, buffer[64 .. length]); // Number.
result.insertBack(tail[1 .. tail[0] + 1]); // Tail. put(result, tail[1 .. tail[0] + 1]); // Tail.
} }
private void formatStruct(T)(ref T arg, ref String result) private void formatStruct(T, OR)(ref T arg, OR result)
if (is(T == struct)) if (is(T == struct))
{ {
template pred(alias f) template pred(alias f)
@ -2202,24 +2209,24 @@ if (is(T == struct))
} }
alias fields = Filter!(pred, __traits(allMembers, T)); alias fields = Filter!(pred, __traits(allMembers, T));
result.insertBack(T.stringof); put(result, T.stringof);
result.insertBack('('); put(result, "(");
static if (fields.length > 0) static if (fields.length > 0)
{ {
printToString!"{}"(result, __traits(getMember, arg, fields[0])); printToString!"{}"(result, __traits(getMember, arg, fields[0]));
foreach (field; fields[1 .. $]) foreach (field; fields[1 .. $])
{ {
result.insertBack(", "); put(result, ", ");
printToString!"{}"(result, __traits(getMember, arg, field)); printToString!"{}"(result, __traits(getMember, arg, field));
} }
} }
result.insertBack(')'); put(result, ")");
} }
private void formatRange(T)(ref T arg, ref String result) private void formatRange(T, OR)(ref T arg, OR result)
if (isInputRange!T && !isInfinite!T) if (isInputRange!T && !isInfinite!T)
{ {
result.insertBack('['); put(result, "[");
if (!arg.empty) if (!arg.empty)
{ {
printToString!"{}"(result, arg.front); printToString!"{}"(result, arg.front);
@ -2227,24 +2234,24 @@ if (isInputRange!T && !isInfinite!T)
} }
foreach (e; arg) foreach (e; arg)
{ {
result.insertBack(", "); put(result, ", ");
printToString!"{}"(result, e); printToString!"{}"(result, e);
} }
result.insertBack(']'); put(result, "]");
} }
private ref String printToString(string fmt, Args...)(return ref String result, private void printToString(string fmt, OR, Args...)(ref OR result,
auto ref Args args) auto ref Args args)
{ {
alias Arg = Args[0]; alias Arg = Args[0];
static if (is(Unqual!Arg == typeof(null))) // null static if (is(Unqual!Arg == typeof(null))) // null
{ {
result.insertBack("null"); put(result, "null");
} }
else static if (is(Unqual!Arg == bool)) // Boolean else static if (is(Unqual!Arg == bool)) // Boolean
{ {
result.insertBack(args[0] ? "true" : "false"); put(result, args[0] ? "true" : "false");
} }
else static if (is(Arg == enum)) // Enum else static if (is(Arg == enum)) // Enum
{ {
@ -2252,19 +2259,19 @@ private ref String printToString(string fmt, Args...)(return ref String result,
{ {
if (args[0] == __traits(getMember, Arg, m)) if (args[0] == __traits(getMember, Arg, m))
{ {
result.insertBack(m); put(result, m);
} }
} }
} }
else static if (isSomeChar!Arg || isSomeString!Arg) // String or char else static if (isSomeChar!Arg || isSomeString!Arg) // String or char
{ {
result.insertBack(args[0]); put(result, args[0]);
} }
else static if (isInputRange!Arg else static if (isInputRange!Arg
&& !isInfinite!Arg && !isInfinite!Arg
&& isSomeChar!(ElementType!Arg)) // Stringish range && isSomeChar!(ElementType!Arg)) // Stringish range
{ {
result.insertBack(args[0]); put(result, args[0]);
} }
else static if (isInputRange!Arg && !isInfinite!Arg) else static if (isInputRange!Arg && !isInfinite!Arg)
{ {
@ -2272,29 +2279,49 @@ private ref String printToString(string fmt, Args...)(return ref String result,
} }
else static if (is(Unqual!(typeof(args[0].stringify())) == String)) else static if (is(Unqual!(typeof(args[0].stringify())) == String))
{ {
pragma(msg, ".stringify() is deprecated. Use toString() with an output"
~ " range instead");
static if (is(Arg == class) || is(Arg == interface)) static if (is(Arg == class) || is(Arg == interface))
{ {
if (args[0] is null) if (args[0] is null)
{ {
result.insertBack("null"); put(result, "null");
} }
else else
{ {
result.insertBack(args[0].stringify()[]); put(result, args[0].stringify()[]);
} }
} }
else else
{ {
result.insertBack(args[0].stringify()[]); put(result, args[0].stringify()[]);
}
}
else static if (is(typeof(args[0].toString(result)) == OR))
{
static if (is(Arg == class) || is(Arg == interface))
{
if (args[0] is null)
{
put(result, "null");
}
else
{
result = args[0].toString(result);
}
}
else
{
result = args[0].toString(result);
} }
} }
else static if (is(Arg == class)) else static if (is(Arg == class))
{ {
result.insertBack(args[0] is null ? "null" : args[0].toString()); put(result, args[0] is null ? "null" : args[0].toString());
} }
else static if (is(Arg == interface)) else static if (is(Arg == interface))
{ {
result.insertBack(Arg.classinfo.name); put(result, Arg.classinfo.name);
} }
else static if (is(Arg == struct)) else static if (is(Arg == struct))
{ {
@ -2302,7 +2329,7 @@ private ref String printToString(string fmt, Args...)(return ref String result,
} }
else static if (is(Arg == union)) else static if (is(Arg == union))
{ {
result.insertBack(Arg.stringof); put(result, Arg.stringof);
} }
else static if (isFloatingPoint!Arg) // Float else static if (isFloatingPoint!Arg) // Float
{ {
@ -2321,21 +2348,19 @@ private ref String printToString(string fmt, Args...)(return ref String result,
} }
while (address != 0); while (address != 0);
result.insertBack("0x"); put(result, "0x");
result.insertBack(buffer[position .. $]); put(result, buffer[position .. $]);
} }
else static if (isIntegral!Arg) // Integer else static if (isIntegral!Arg) // Integer
{ {
char[21] buffer; char[21] buffer;
result.insertBack(integral2String(args[0], buffer)); put(result, integral2String(args[0], buffer));
} }
else else
{ {
static assert(false, static assert(false,
"Formatting type " ~ Arg.stringof ~ " is not supported"); "Formatting type " ~ Arg.stringof ~ " is not supported");
} }
return result;
} }
/** /**
@ -2351,28 +2376,47 @@ private ref String printToString(string fmt, Args...)(return ref String result,
String format(string fmt, Args...)(auto ref Args args) String format(string fmt, Args...)(auto ref Args args)
{ {
String formatted; String formatted;
sformat!fmt(backInserter(formatted), args);
return formatted;
}
/**
* Produces a string according to the specified format and writes it into an
* output range. $(D_PSYMBOL sformat) writes the final string in chunks, so the
* output range should be in output range for `const(char)[]`.
*
* Params:
* fmt = Format.
* R = Output range type.
* output = Output range.
* args = Arguments.
*
* Returns: $(D_PARAM output).
*/
R sformat(string fmt, R, Args...)(R output, auto ref Args args)
if (isOutputRange!(R, const(char)[]))
{
alias Specs = ParseFmt!fmt; alias Specs = ParseFmt!fmt;
enum bool FormatSpecFilter(alias spec) = is(typeof(spec) == FormatSpec); enum bool FormatSpecFilter(alias spec) = is(typeof(spec) == FormatSpec);
static assert((Filter!(FormatSpecFilter, ParseFmt!fmt)).length == Args.length, static assert((Filter!(FormatSpecFilter, ParseFmt!fmt)).length == Args.length,
"Number of the arguments doesn't match the format strign"); "Number of the arguments doesn't match the format string");
foreach (spec; Specs) foreach (spec; Specs)
{ {
static if (FormatSpecFilter!spec) static if (FormatSpecFilter!spec)
{ {
printToString!"{}"(formatted, args[spec.position]); printToString!"{}"(output, args[spec.position]);
} }
else static if (isSomeString!(typeof(spec))) else static if (isSomeString!(typeof(spec)))
{ {
formatted.insertBack(spec); put(output, spec);
} }
else else
{ {
static assert(false, "Format string parsed incorrectly"); static assert(false, "Format string parsed incorrectly");
} }
} }
return formatted; return output;
} }
// doesn't print the first argument repeatedly // doesn't print the first argument repeatedly
@ -2507,14 +2551,15 @@ String format(string fmt, Args...)(auto ref Args args)
} }
assert(format!"{}"(Nested()) == "Nested(0)"); assert(format!"{}"(Nested()) == "Nested(0)");
static struct WithStringify static struct WithToString
{ {
String stringify() const @nogc nothrow pure @safe OR toString(OR)(OR range) const
{ {
return String("stringify method"); put(range, "toString method");
return range;
} }
} }
assert(format!"{}"(WithStringify()) == "stringify method"); assert(format!"{}"(WithToString()) == "toString method");
} }
// Aggregate types. // Aggregate types.
@ -2536,9 +2581,10 @@ String format(string fmt, Args...)(auto ref Args args)
class B class B
{ {
String stringify() @nogc nothrow pure @safe OR toString(OR)(OR range) const
{ {
return String("Class B"); put(range, "Class B");
return range;
} }
} }
assert(format!"{}"(cast(B) null) == "null"); assert(format!"{}"(cast(B) null) == "null");

View File

@ -16,8 +16,9 @@ module tanya.hash.lookup;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
private struct FNV private struct Hasher
{ {
static if (size_t.sizeof == 4) static if (size_t.sizeof == 4)
{ {
@ -49,11 +50,33 @@ private struct FNV
} }
else static if (isScalarType!T || isPointer!T) else static if (isScalarType!T || isPointer!T)
{ {
(() @trusted => add((cast(const ubyte*) &key)[0 .. T.sizeof]))(); // Treat as an array of words
static if (T.sizeof % size_t.sizeof == 0
&& T.alignof >= size_t.alignof)
alias CastT = size_t;
// (64-bit or 128-bit) Treat as an array of ints
else static if (T.sizeof % uint.sizeof == 0
&& T.alignof >= uint.alignof)
alias CastT = uint;
// Treat as an array of bytes
else
alias CastT = ubyte;
add((() @trusted => (cast(const CastT*) &key)[0 .. T.sizeof / CastT.sizeof])());
} }
else static if (isArray!T && isScalarType!(ElementType!T)) else static if (isArray!T && isScalarType!(ElementType!T))
{ {
add(cast(const ubyte[]) key); // Treat as an array of words
static if (ElementType!T.sizeof % size_t.sizeof == 0
&& ElementType!T.alignof >= size_t.alignof)
alias CastT = size_t;
// (64-bit or 128-bit) Treat as an array of ints
else static if (ElementType!T.sizeof % uint.sizeof == 0
&& ElementType!T.alignof >= uint.alignof)
alias CastT = uint;
// Treat as an array of bytes
else
alias CastT = ubyte;
add(cast(const CastT[]) key);
} }
else static if (is(T == typeof(null))) else static if (is(T == typeof(null)))
{ {
@ -72,13 +95,166 @@ private struct FNV
} }
} }
void add(const ubyte[] key) @nogc nothrow pure @safe void add(scope const ubyte[] key) @nogc nothrow pure @safe
{ {
// FNV-1a
foreach (c; key) foreach (c; key)
{ {
this.hash = (this.hash ^ c) * prime; this.hash = (this.hash ^ c) * prime;
} }
} }
void add(scope const size_t[] key) @nogc nothrow pure @safe
{
static if (size_t.sizeof == 4)
{
// Partial MurmurHash3_x86_32 (no finalization)
enum uint c1 = 0xcc9e2d51;
enum uint c2 = 0x1b873593;
alias h1 = hash;
foreach (x; key)
{
auto k1 = x * c1;
k1 = (k1 << 15) | (k1 >> (32 - 15));
k1 *= c2;
h1 ^= k1;
h1 = (h1 << 13) | (h1 >> (32 - 13));
h1 = h1 * 5 + 0xe6546b64;
}
}
else static if (size_t.sizeof == 8)
{
// Partial 64-bit MurmurHash64A (no finalization)
alias h = hash;
enum ulong m = 0xc6a4a7935bd1e995UL;
foreach (x; key)
{
auto k = x * m;
k ^= k >>> 47;
k *= m;
h ^= k;
h *= m;
}
}
else static if (size_t.sizeof == 16)
{
// Partial MurmurHash3_x64_128 (no finalization)
// treating each size_t as a pair of ulong.
ulong h1 = cast(ulong) hash;
ulong h2 = cast(ulong) (hash >> 64);
enum ulong c1 = 0x87c37b91114253d5UL;
enum ulong c2 = 0x4cf5ad432745937fUL;
foreach (x; key)
{
auto k1 = cast(ulong) x;
auto k2 = cast(ulong) (x >> 64);
k1 *= c1; k1 = (k1 << 32) | (k1 >> (64 - 31)); k1 *= c2; h1 ^= k1;
h1 = (h1 << 27) | (h1 >> (64 - 27)); h1 += h2; h1 = h1*5+0x52dce729;
k2 *= c2; k2 = (k2 << 33) | (k2 >> (64 - 33)); k2 *= c1; h2 ^= k2;
h2 = (h2 << 31) | (h2 >> (64 - 31)); h2 += h1; h2 = h2*5+0x38495ab5;
}
hash = cast(size_t) h1 + ((cast(size_t) h2) << 64);
}
else
{
static assert(0, "Hash length must be either 32, 64, or 128 bits.");
}
}
static if (size_t.sizeof != uint.sizeof)
void add(scope const uint[] key) @nogc nothrow pure @trusted
{
static if (size_t.sizeof == 8)
{
// Partial 32-bit MurmurHash64B (no finalization)
enum uint m = 0x5bd1e995;
enum r = 24;
uint h1 = cast(uint) hash;
uint h2 = cast(uint) (hash >> 32);
const(uint)* data = key.ptr;
auto len = key.length;
for (; len >= 2; data += 2, len -= 2)
{
uint k1 = data[0];
k1 *= m; k1 ^= k1 >> r; k1 *= m;
h1 *= m; h1 ^= k1;
uint k2 = data[1];
k2 *= m; k2 ^= k2 >> r; k2 *= m;
h2 *= m; h2 ^= k2;
}
if (len)
{
uint k1 = data[0];
k1 *= m; k1 ^= k1 >> r; k1 *= m;
h1 *= m; h1 ^= k1;
}
hash = cast(ulong) h1 + ((cast(ulong) h2) << 32);
}
else static if (size_t.sizeof == 16)
{
// Partial MurmurHash3_x86_128 (no finalization)
enum uint c1 = 0x239b961b;
enum uint c2 = 0xab0e9789;
enum uint c3 = 0x38b34ae5;
enum uint c4 = 0xa1e38b93;
uint h1 = cast(uint) hash;
uint h2 = cast(uint) (hash >> 32);
uint h3 = cast(uint) (hash >> 64);
uint h4 = cast(uint) (hash >> 96);
const(uint)* data = key.ptr;
auto len = key.length;
for (; len >= 4; data += 4, len -= 4)
{
uint k1 = data[0];
uint k2 = data[1];
uint k3 = data[2];
uint k4 = data[3];
h1 = (h1 << 19) | (h1 >> (32 - 19)); h1 += h2; h1 = h1*5+0x561ccd1b;
k2 *= c2; k2 = (k2 << 16) | (k2 >> (32 - 16)); k2 *= c3; h2 ^= k2;
h2 = (h2 << 17) | (h2 >> (32 - 17)); h2 += h3; h2 = h2*5+0x0bcaa747;
k3 *= c3; k3 = (k3 << 17) | (k3 >> (32 - 17)); k3 *= c4; h3 ^= k3;
h3 = (h3 << 15) | (h3 >> (32 - 15)); h3 += h4; h3 = h3*5+0x96cd1c35;
k4 *= c4; k4 = (k4 << 18) | (k4 >> (32 - 18)); k4 *= c1; h4 ^= k4;
h4 = (h4 << 13) | (h4 >> (32 - 13)); h4 += h1; h4 = h4*5+0x32ac3b17;
}
uint k1, k2, k3;
switch (len) // 0, 1, 2, 3
{
case 3:
k3 = data[2];
k3 *= c3; k3 = (k3 << 17) | (k3 >> (32 - 17)); k3 *= c4; h3 ^= k3;
goto case;
case 2:
k2 = data[1];
k2 *= c2; k2 = (k2 << 16) | (k2 >> (32 - 16)); k2 *= c3; h2 ^= k2;
goto case;
case 1:
k1 = data[0];
k1 *= c1; k1 = (k1 << 15) | (k1 >> (32 - 15)); k1 *= c2; h1 ^= k1;
break;
}
hash = cast(size_t) h1 +
((cast(size_t) h2) << 32) +
((cast(size_t) h3) << 64) +
((cast(size_t) h4) << 96);
}
else
{
static assert(0, "Hash length must be either 32, 64, or 128 bits.");
}
}
} }
/** /**
@ -97,7 +273,8 @@ private struct FNV
* For pointers and for scalar types implicitly convertible to `size_t` this * For pointers and for scalar types implicitly convertible to `size_t` this
* is an identity operation (i.e. the value is cast to `size_t` and returned * is an identity operation (i.e. the value is cast to `size_t` and returned
* unaltered). Integer types wider than `size_t` are XOR folded down to * unaltered). Integer types wider than `size_t` are XOR folded down to
* `size_t`. Other scalar types use the FNV-1a (Fowler-Noll-Vo) hash function. * `size_t`. Other scalar types use an architecture-dependent hash function
* based on their width and alignment.
* If the type provides a `toHash`-function, only `toHash()` is called and its * If the type provides a `toHash`-function, only `toHash()` is called and its
* result is returned. * result is returned.
* *
@ -133,9 +310,9 @@ size_t hash(T)(auto ref T key)
} }
else else
{ {
FNV fnv; Hasher hasher;
fnv(key); hasher(key);
return fnv.hash; return hasher.hash;
} }
} }
@ -146,14 +323,6 @@ version (unittest)
~ r10!x ~ r10!x ~ r10!x ~ r10!x ~ r10!x; ~ r10!x ~ r10!x ~ r10!x ~ r10!x ~ r10!x;
enum string r500(string x) = r100!x ~ r100!x ~ r100!x ~ r100!x ~ r100!x; enum string r500(string x) = r100!x ~ r100!x ~ r100!x ~ r100!x ~ r100!x;
private static struct ToHash
{
size_t toHash() const @nogc nothrow pure @safe
{
return 0;
}
}
private static struct HashRange private static struct HashRange
{ {
string fo = "fo"; string fo = "fo";
@ -178,9 +347,9 @@ version (unittest)
{ {
bool empty_; bool empty_;
@property ToHash front() const @nogc nothrow pure @safe @property Hashable front() const @nogc nothrow pure @safe
{ {
return ToHash(); return Hashable();
} }
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
@ -199,19 +368,19 @@ version (unittest)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
assert(hash(null) == 0); assert(hash(null) == 0);
assert(hash(ToHash()) == 0U); assert(hash(Hashable()) == 0U);
assert(hash('a') == 'a'); assert(hash('a') == 'a');
} }
static if (size_t.sizeof == 4) @nogc nothrow pure @safe unittest static if (size_t.sizeof == 4) @nogc nothrow pure @safe unittest
{ {
assert(hash(HashRange()) == 0x6222e842U); assert(hash(HashRange()) == 0x6222e842U);
assert(hash(ToHashRange()) == 1268118805U); assert(hash(ToHashRange()) == 3371162643U);
} }
static if (size_t.sizeof == 8) @nogc nothrow pure @safe unittest static if (size_t.sizeof == 8) @nogc nothrow pure @safe unittest
{ {
assert(hash(HashRange()) == 0x08985907b541d342UL); assert(hash(HashRange()) == 0x08985907b541d342UL);
assert(hash(ToHashRange()) == 12161962213042174405UL); assert(hash(ToHashRange()) == 2072958611659694473);
} }
static if (size_t.sizeof == 4) @nogc nothrow pure @system unittest static if (size_t.sizeof == 4) @nogc nothrow pure @system unittest

View File

@ -18,10 +18,6 @@ import std.digest.sha;
import tanya.memory; import tanya.memory;
import tanya.typecons; import tanya.typecons;
/// Block size of entropy accumulator (SHA-512).
deprecated
enum blockSize = 64;
/// Maximum amount gathered from the entropy sources. /// Maximum amount gathered from the entropy sources.
enum maxGather = 128; enum maxGather = 128;
@ -339,176 +335,3 @@ static if (is(PlatformEntropySource)) @nogc @system unittest
assert(source.threshold == 32); assert(source.threshold == 32);
assert(source.strong); assert(source.strong);
} }
/**
* Pseudorandom number generator.
* ---
* auto entropy = defaultAllocator.make!Entropy();
*
* ubyte[blockSize] output;
*
* output = entropy.random;
*
* defaultAllocator.dispose(entropy);
* ---
*/
deprecated
class Entropy
{
/// Entropy sources.
protected EntropySource[] sources;
private ubyte sourceCount_;
/// Entropy accumulator.
protected SHA!(maxGather * 8, 512) accumulator;
/**
* Params:
* maxSources = Maximum amount of entropy sources can be set.
* allocator = Allocator to allocate entropy sources available on the
* system.
*/
this(const size_t maxSources = 20,
shared Allocator allocator = defaultAllocator) @nogc
in
{
assert(maxSources > 0 && maxSources <= ubyte.max);
assert(allocator !is null);
}
do
{
allocator.resize(sources, maxSources);
static if (is(PlatformEntropySource))
{
this ~= allocator.make!PlatformEntropySource;
}
}
/**
* Returns: Amount of the registered entropy sources.
*/
@property ubyte sourceCount() const @nogc nothrow pure @safe
{
return sourceCount_;
}
/**
* Add an entropy source.
*
* Params:
* source = Entropy source.
*
* Returns: $(D_PSYMBOL this).
*
* See_Also:
* $(D_PSYMBOL EntropySource)
*/
Entropy opOpAssign(string op)(EntropySource source)
@nogc nothrow pure @safe
if (op == "~")
in
{
assert(sourceCount_ <= sources.length);
}
do
{
sources[sourceCount_++] = source;
return this;
}
/**
* Returns: Generated random sequence.
*
* Throws: $(D_PSYMBOL EntropyException) if no strong entropy source was
* registered or it failed.
*/
@property ubyte[blockSize] random() @nogc
in
{
assert(sourceCount_ > 0, "No entropy sources defined.");
}
do
{
bool haveStrong;
ushort done;
ubyte[blockSize] output;
do
{
ubyte[maxGather] buffer;
// Run through our entropy sources
for (ubyte i; i < sourceCount; ++i)
{
auto outputLength = sources[i].poll(buffer);
if (!outputLength.isNothing)
{
if (outputLength > 0)
{
update(i, buffer, outputLength);
sources[i].size = cast(ushort) (sources[i].size + outputLength);
}
if (sources[i].size < sources[i].threshold)
{
continue;
}
else if (sources[i].strong)
{
haveStrong = true;
}
}
done = 257;
}
}
while (++done < 256);
if (!haveStrong)
{
throw defaultAllocator.make!EntropyException("No strong entropy source defined.");
}
output = accumulator.finish();
// Reset accumulator and counters and recycle existing entropy
accumulator.start();
// Perform second SHA-512 on entropy
output = sha512Of(output);
for (ubyte i; i < sourceCount; ++i)
{
sources[i].size = 0;
}
return output;
}
/**
* Update entropy accumulator.
*
* Params:
* sourceId = Entropy source index in $(D_PSYMBOL sources).
* data = Data got from the entropy source.
* length = Length of the received data.
*/
protected void update(in ubyte sourceId,
ref ubyte[maxGather] data,
ubyte length) @nogc nothrow pure @safe
{
ubyte[2] header;
if (length > blockSize)
{
data[0 .. 64] = sha512Of(data);
length = blockSize;
}
header[0] = sourceId;
header[1] = length;
accumulator.put(header);
accumulator.put(data[0 .. length]);
}
}

View File

@ -224,41 +224,6 @@ do
assert(equal(r1, r2)); assert(equal(r1, r2));
} }
/**
* Compares two memory areas $(D_PARAM r1) and $(D_PARAM r2).
*
* $(D_PSYMBOL cmp) returns a positive integer if
* $(D_INLINECODE r1.length > r2.length) or the first `n` compared bytes of
* $(D_PARAM r1) found to be greater than the first `n` bytes of $(D_PARAM r2),
*
* $(D_PSYMBOL cmp) returns a negative integer if
* $(D_INLINECODE r2.length > r1.length) or the first `n` compared bytes of
* $(D_PARAM r1) found to be less than the first `n` bytes of $(D_PARAM r2),
*
* `0` is returned otherwise.
*
* Returns: Positive integer if $(D_INLINECODE r1 > r2),
* negative integer if $(D_INLINECODE r2 > r1),
* `0` if $(D_INLINECODE r1 == r2).
*/
deprecated("Use tanya.memory.op.equal() or tanya.algorithm.comparison.compare() instead")
int cmp(const void[] r1, const void[] r2) @nogc nothrow pure @trusted
in
{
assert(r1.length == 0 || r1.ptr !is null);
assert(r2.length == 0 || r2.ptr !is null);
}
do
{
import core.stdc.string : memcmp;
if (r1.length > r2.length)
{
return 1;
}
return r1.length < r2.length ? -1 : memcmp(r1.ptr, r2.ptr, r1.length);
}
/** /**
* Finds the first occurrence of $(D_PARAM needle) in $(D_PARAM haystack) if * Finds the first occurrence of $(D_PARAM needle) in $(D_PARAM haystack) if
* any. * any.
@ -419,8 +384,8 @@ do
* Compares two memory areas $(D_PARAM r1) and $(D_PARAM r2) for equality. * Compares two memory areas $(D_PARAM r1) and $(D_PARAM r2) for equality.
* *
* Params: * Params:
* haystack = First memory block. * r1 = First memory block.
* needle = First memory block. * r2 = Second memory block.
* *
* Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) are equal, * Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) are equal,
* $(D_KEYWORD false) otherwise. * $(D_KEYWORD false) otherwise.

View File

@ -30,6 +30,7 @@ import tanya.exception;
import tanya.memory; import tanya.memory;
import tanya.meta.trait; import tanya.meta.trait;
import tanya.range.primitive; import tanya.range.primitive;
version (unittest) import tanya.test.stub;
private template Payload(T) private template Payload(T)
{ {
@ -611,19 +612,11 @@ do
@nogc @system unittest @nogc @system unittest
{ {
static bool destroyed; size_t destroyed;
static struct F
{ {
~this() @nogc nothrow @safe auto rc = defaultAllocator.refCounted!WithDtor(destroyed);
{
destroyed = true;
}
} }
{ assert(destroyed == 1);
auto rc = defaultAllocator.refCounted!F();
}
assert(destroyed);
} }
/** /**

View File

@ -1801,3 +1801,62 @@ if (T.length == 2)
static assert(is(Select!(true, int, float) == int)); static assert(is(Select!(true, int, float) == int));
static assert(is(Select!(false, int, float) == float)); static assert(is(Select!(false, int, float) == float));
} }
/**
* Attaces a numeric index to each element from $(D_PARAM Args).
*
* $(D_PSYMBOL EnumerateFrom) returns a sequence of tuples ($(D_PSYMBOL Pack)s)
* consisting of the index of each element and the element itself.
*
* Params:
* start = Enumeration initial value.
* Args = Enumerated sequence.
*
* See_Also: $(D_PSYMBOL Enumerate).
*/
template EnumerateFrom(size_t start, Args...)
{
static if (Args.length == 0)
{
alias EnumerateFrom = AliasSeq!();
}
else
{
alias EnumerateFrom = AliasSeq!(Pack!(start, Args[0]), EnumerateFrom!(start + 1, Args[1 .. $]));
}
}
///
@nogc nothrow pure @safe unittest
{
static assert(EnumerateFrom!(0, int, uint, bool).length == 3);
}
///
@nogc nothrow pure @safe unittest
{
alias Expected = AliasSeq!(Pack!(cast(size_t) 0, int),
Pack!(cast(size_t) 1, uint));
static assert(is(EnumerateFrom!(0, int, uint) == Expected));
}
/**
* Attaces a numeric index to each element from $(D_PARAM Args).
*
* $(D_PSYMBOL EnumerateFrom) returns a sequence of tuples ($(D_PSYMBOL Pack)s)
* consisting of the index of each element and the element itself.
*
* Params:
* Args = Enumerated sequence.
*
* See_Also: $(D_PSYMBOL EnumerateFrom).
*/
alias Enumerate(Args...) = EnumerateFrom!(0, Args);
///
@nogc nothrow pure @safe unittest
{
alias Expected = AliasSeq!(Pack!(cast(size_t) 0, int),
Pack!(cast(size_t) 1, uint));
static assert(is(Enumerate!(int, uint) == Expected));
}

View File

@ -1493,6 +1493,8 @@ if (F.length == 1)
} }
/** /**
* Determines whether $(D_PARAM T) defines a symbol $(D_PARAM member).
*
* Params: * Params:
* T = Aggregate type. * T = Aggregate type.
* member = Symbol name. * member = Symbol name.
@ -2854,6 +2856,46 @@ template hasUDA(alias symbol, alias attr)
static assert(!hasUDA!(a, Attr2)); static assert(!hasUDA!(a, Attr2));
} }
/**
* If $(D_PARAM T) is a type, constructs its default value, otherwise
* $(D_PSYMBOL evalUDA) aliases itself to $(D_PARAM T).
*
* This template is useful when working with UDAs with default parameters,
* i.e. if an attribute can be given as `@Attr` or `@Attr("param")`,
* $(D_PSYMBOL evalUDA) makes `@Attr()` from `@Attr`, but returns
* `@Attr("param")` as is.
*
* $(D_PARAM T) (or its type if it isn't a type already) should have a default
* constructor.
*
* Params:
* T = User Defined Attribute.
*/
alias evalUDA(alias T) = T;
/// ditto
alias evalUDA(T) = Alias!(T());
///
@nogc nothrow pure @safe unittest
{
static struct Length
{
size_t length = 8;
}
@Length @Length(0) int i;
alias uda = AliasSeq!(__traits(getAttributes, i));
alias attr1 = evalUDA!(uda[0]);
alias attr2 = evalUDA!(uda[1]);
static assert(is(typeof(attr1) == Length));
static assert(is(typeof(attr2) == Length));
static assert(attr1.length == 8);
static assert(attr2.length == 0);
}
/** /**
* Tests whether $(D_PARAM T) is an inner class, i.e. a class nested inside * Tests whether $(D_PARAM T) is an inner class, i.e. a class nested inside
* another class. * another class.

View File

@ -5,7 +5,7 @@
/** /**
* Internet Protocol implementation. * Internet Protocol implementation.
* *
* Copyright: Eugene Wissner 2018. * Copyright: Eugene Wissner 2018-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/, * License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0). * Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner) * Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -15,6 +15,7 @@
module tanya.net.ip; module tanya.net.ip;
import tanya.algorithm.comparison; import tanya.algorithm.comparison;
import tanya.algorithm.iteration;
import tanya.algorithm.mutation; import tanya.algorithm.mutation;
import tanya.container.string; import tanya.container.string;
import tanya.conv; import tanya.conv;
@ -103,7 +104,7 @@ struct Address4
* *
* Returns: Object that represents the Loopback address. * Returns: Object that represents the Loopback address.
*/ */
static Address4 loopback() @nogc nothrow pure @safe static @property Address4 loopback() @nogc nothrow pure @safe
{ {
typeof(return) address; typeof(return) address;
address.address = Address4.loopback_; address.address = Address4.loopback_;
@ -121,7 +122,7 @@ struct Address4
* *
* Returns: Object that represents any address. * Returns: Object that represents any address.
*/ */
static Address4 any() @nogc nothrow pure @safe static @property Address4 any() @nogc nothrow pure @safe
{ {
typeof(return) address; typeof(return) address;
address.address = Address4.any_; address.address = Address4.any_;
@ -148,7 +149,7 @@ struct Address4
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
assert(address4("127.0.0.1").isLoopback()); assert(address4("127.0.0.1").get.isLoopback());
} }
/** /**
@ -166,7 +167,7 @@ struct Address4
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
assert(address4("0.0.0.0").isAny()); assert(address4("0.0.0.0").get.isAny());
} }
/** /**
@ -183,7 +184,7 @@ struct Address4
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
assert(address4("255.255.255.255").isBroadcast()); assert(address4("255.255.255.255").get.isBroadcast());
} }
/** /**
@ -210,7 +211,7 @@ struct Address4
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
assert(address4("224.0.0.3").isMulticast()); assert(address4("224.0.0.3").get.isMulticast());
} }
/** /**
@ -229,7 +230,7 @@ struct Address4
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
assert(address4("192.168.0.1").isUnicast()); assert(address4("192.168.0.1").get.isUnicast());
} }
/** /**
@ -237,6 +238,7 @@ struct Address4
* *
* Returns: This address in dotted-decimal notation. * Returns: This address in dotted-decimal notation.
*/ */
deprecated("Use Address4.toString() instead")
String stringify() const @nogc nothrow pure @safe String stringify() const @nogc nothrow pure @safe
{ {
const octets = (() @trusted => (cast(ubyte*) &this.address)[0 .. 4])(); const octets = (() @trusted => (cast(ubyte*) &this.address)[0 .. 4])();
@ -251,12 +253,50 @@ struct Address4
} }
} }
/**
* Writes this IPv4 address in dotted-decimal notation.
*
* Params:
* OR = Type of the output range.
* output = Output range.
*
* Returns: $(D_PARAM output).
*/
OR toString(OR)(OR output) const @nogc nothrow pure @safe
if (isOutputRange!(OR, const(char)[]))
{
const octets = (() @trusted => (cast(ubyte*) &this.address)[0 .. 4])();
enum string fmt = "{}.{}.{}.{}";
version (LittleEndian)
{
return sformat!fmt(output,
octets[0],
octets[1],
octets[2],
octets[3]);
}
else
{
return sformat!fmt(output,
octets[3],
octets[2],
octets[1],
octets[0]);
}
}
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
import tanya.container.string : String;
import tanya.range : backInserter;
const dottedDecimal = "192.168.0.1"; const dottedDecimal = "192.168.0.1";
String actual;
const address = address4(dottedDecimal); const address = address4(dottedDecimal);
assert(address.get.stringify() == dottedDecimal);
address.get.toString(backInserter(actual));
assert(actual == dottedDecimal);
} }
/** /**
@ -276,7 +316,7 @@ struct Address4
{ {
const actual = address4("192.168.0.1"); const actual = address4("192.168.0.1");
const ubyte[4] expected = [192, 168, 0, 1]; const ubyte[4] expected = [192, 168, 0, 1];
assert(actual.toBytes() == expected); assert(actual.get.toBytes() == expected);
} }
/** /**
@ -293,7 +333,7 @@ struct Address4
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
assert(address4("127.0.0.1").toUInt() == 0x7f000001U); assert(address4("127.0.0.1").get.toUInt() == 0x7f000001U);
} }
} }
@ -394,7 +434,7 @@ if (isInputRange!R && is(Unqual!(ElementType!R) == ubyte))
{ {
{ {
ubyte[4] actual = [127, 0, 0, 1]; ubyte[4] actual = [127, 0, 0, 1];
assert(address4(actual[]).isLoopback()); assert(address4(actual[]).get.isLoopback());
} }
{ {
ubyte[3] actual = [127, 0, 0]; ubyte[3] actual = [127, 0, 0];
@ -499,7 +539,7 @@ struct Address6
* *
* Returns: Object that represents any address. * Returns: Object that represents any address.
*/ */
static Address6 any() @nogc nothrow pure @safe static @property Address6 any() @nogc nothrow pure @safe
{ {
return Address6(); return Address6();
} }
@ -515,7 +555,7 @@ struct Address6
* *
* Returns: Object that represents the Loopback address. * Returns: Object that represents the Loopback address.
*/ */
static Address6 loopback() @nogc nothrow pure @safe static @property Address6 loopback() @nogc nothrow pure @safe
{ {
typeof(return) address; typeof(return) address;
address.address[$ - 1] = 1; address.address[$ - 1] = 1;
@ -543,7 +583,7 @@ struct Address6
/// ///
@nogc nothrow @safe unittest @nogc nothrow @safe unittest
{ {
assert(address6("::").isAny()); assert(address6("::").get.isAny());
} }
/** /**
@ -560,7 +600,7 @@ struct Address6
/// ///
@nogc nothrow @safe unittest @nogc nothrow @safe unittest
{ {
assert(address6("::1").isLoopback()); assert(address6("::1").get.isLoopback());
} }
/** /**
@ -579,7 +619,7 @@ struct Address6
/// ///
@nogc nothrow @safe unittest @nogc nothrow @safe unittest
{ {
assert(address6("ff00::").isMulticast()); assert(address6("ff00::").get.isMulticast());
} }
/** /**
@ -598,7 +638,7 @@ struct Address6
/// ///
@nogc nothrow @safe unittest @nogc nothrow @safe unittest
{ {
assert(address6("::1").isUnicast()); assert(address6("::1").get.isUnicast());
} }
/** /**
@ -615,7 +655,7 @@ struct Address6
/// ///
@nogc nothrow @safe unittest @nogc nothrow @safe unittest
{ {
assert(address6("fe80::1").isLinkLocal()); assert(address6("fe80::1").get.isLinkLocal());
} }
/** /**
@ -632,7 +672,7 @@ struct Address6
/// ///
@nogc nothrow @safe unittest @nogc nothrow @safe unittest
{ {
assert(address6("fd80:124e:34f3::1").isUniqueLocal()); assert(address6("fd80:124e:34f3::1").get.isUniqueLocal());
} }
/** /**
@ -640,46 +680,154 @@ struct Address6
* *
* Returns: text representation of this address. * Returns: text representation of this address.
*/ */
deprecated("Use Address6.toString() instead")
String stringify() const @nogc nothrow pure @safe String stringify() const @nogc nothrow pure @safe
{ {
String output; String output;
foreach (i, b; this.address)
{
ubyte low = b & 0xf;
ubyte high = b >> 4;
if (high < 10) toString(backInserter(output));
return output;
}
/**
* Writes text representation of this address to an output range.
*
* Params:
* OR = Type of the output range.
* output = Output range.
*
* Returns: $(D_PARAM output).
*/
OR toString(OR)(OR output) const
if (isOutputRange!(OR, const(char)[]))
{
ptrdiff_t largestGroupIndex = -1;
size_t largestGroupSize;
size_t zeroesInGroup;
size_t groupIndex;
// Look for the longest group of zeroes
for (size_t i; i < this.address.length; i += 2)
{
if (this.address[i] == 0 && this.address[i + 1] == 0)
{ {
output.insertBack(cast(char) (high + '0')); if (zeroesInGroup++ == 0)
{
groupIndex = i;
}
} }
else else
{ {
output.insertBack(cast(char) (high - 10 + 'a')); zeroesInGroup = 0;
} }
if (low < 10) if (zeroesInGroup > largestGroupSize && zeroesInGroup > 1)
{ {
output.insertBack(cast(char) (low + '0')); largestGroupSize = zeroesInGroup;
largestGroupIndex = groupIndex;
} }
else }
// Write the address
size_t i;
if (largestGroupIndex != 0)
{
writeGroup(output, i);
}
if (largestGroupIndex != -1)
{
while (i < largestGroupIndex)
{ {
output.insertBack(cast(char) (low - 10 + 'a')); put(output, ":");
writeGroup(output, i);
} }
if (i % 2 != 0 && i != (this.address.length - 1)) put(output, "::");
i += largestGroupSize + 2;
if (i < (this.address.length - 1))
{ {
output.insertBack(':'); writeGroup(output, i);
} }
} }
while (i < this.address.length - 1)
{
put(output, ":");
writeGroup(output, i);
}
return output; return output;
} }
/// ///
@nogc nothrow @safe unittest @nogc nothrow @safe unittest
{ {
import tanya.algorithm.comparison : equal; import tanya.container.string : String;
import tanya.range : backInserter;
assert(equal(address6("1:2:3:4:5:6:7:8").stringify()[], String actual;
"0001:0002:0003:0004:0005:0006:0007:0008"));
address6("1:2:3:4:5:6:7:8").get.toString(backInserter(actual));
assert(actual == "1:2:3:4:5:6:7:8");
}
@nogc nothrow @safe unittest
{
char[18] actual;
address6("ff00:2:3:4:5:6:7:8").get.toString(arrayInserter(actual));
assert(actual[] == "ff00:2:3:4:5:6:7:8");
}
// Skips zero group in the middle
@nogc nothrow @safe unittest
{
char[12] actual;
address6("1::4:5:6:7:8").get.toString(arrayInserter(actual));
assert(actual[] == "1::4:5:6:7:8");
}
// Doesn't replace lonely zeroes
@nogc nothrow @safe unittest
{
char[15] actual;
address6("0:1:0:2:3:0:4:0").get.toString(arrayInserter(actual));
assert(actual[] == "0:1:0:2:3:0:4:0");
}
// Skips zero group at the beginning
@nogc nothrow @safe unittest
{
char[13] actual;
address6("::3:4:5:6:7:8").get.toString(arrayInserter(actual));
assert(actual[] == "::3:4:5:6:7:8");
}
// Skips zero group at the end
@nogc nothrow @safe unittest
{
char[13] actual;
address6("1:2:3:4:5:6::").get.toString(arrayInserter(actual));
assert(actual[] == "1:2:3:4:5:6::");
}
private void writeGroup(OR)(ref OR output, ref size_t i) const
{
ubyte low = this.address[i] & 0xf;
ubyte high = this.address[i] >> 4;
bool groupStarted = writeHexDigit!OR(output, high);
groupStarted = writeHexDigit!OR(output, low, groupStarted);
++i;
low = this.address[i] & 0xf;
high = this.address[i] >> 4;
writeHexDigit!OR(output, high, groupStarted);
put(output, low.toHexDigit.singleton);
++i;
} }
/** /**
@ -697,17 +845,36 @@ struct Address6
{ {
auto actual = address6("1:2:3:4:5:6:7:8"); auto actual = address6("1:2:3:4:5:6:7:8");
ubyte[16] expected = [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8]; ubyte[16] expected = [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8];
assert(actual.toBytes() == expected); assert(actual.get.toBytes() == expected);
} }
} }
private void write2Bytes(R)(ref R range, ubyte[] address) private void read2Bytes(R)(ref R range, ubyte[] address)
{ {
ushort group = readIntegral!ushort(range, 16); ushort group = readIntegral!ushort(range, 16);
address[0] = cast(ubyte) (group >> 8); address[0] = cast(ubyte) (group >> 8);
address[1] = group & 0xff; address[1] = group & 0xff;
} }
private char toHexDigit(ubyte digit) @nogc nothrow pure @safe
in (digit < 16)
{
return cast(char) (digit >= 10 ? (digit - 10 + 'a') : (digit + '0'));
}
private bool writeHexDigit(OR)(ref OR output,
ubyte digit,
bool groupStarted = false)
in (digit < 16)
{
if (digit != 0 || groupStarted)
{
put(output, digit.toHexDigit.singleton);
return true;
}
return groupStarted;
}
/** /**
* Parses a string containing an IPv6 address. * Parses a string containing an IPv6 address.
* *
@ -767,7 +934,7 @@ if (isForwardRange!R && is(Unqual!(ElementType!R) == char) && hasLength!R)
{ {
auto state = range.save(); auto state = range.save();
} }
write2Bytes(range, result.address[i * 2 .. $]); read2Bytes(range, result.address[i * 2 .. $]);
if (range.empty) if (range.empty)
{ {
return typeof(return)(); return typeof(return)();
@ -796,7 +963,7 @@ if (isForwardRange!R && is(Unqual!(ElementType!R) == char) && hasLength!R)
} }
} }
} }
write2Bytes(range, result.address[14 .. $]); read2Bytes(range, result.address[14 .. $]);
if (range.empty) if (range.empty)
{ {
@ -827,7 +994,7 @@ ParseTail: // after ::
{ // To make "state" definition local { // To make "state" definition local
auto state = range.save(); auto state = range.save();
write2Bytes(range, tail[j .. $]); read2Bytes(range, tail[j .. $]);
if (range.empty) if (range.empty)
{ {
goto CopyTail; goto CopyTail;
@ -856,7 +1023,7 @@ ParseTail: // after ::
return typeof(return)(); return typeof(return)();
} }
auto state = range.save(); auto state = range.save();
write2Bytes(range, tail[j .. $]); read2Bytes(range, tail[j .. $]);
if (range.empty) if (range.empty)
{ {
@ -935,26 +1102,30 @@ CopyTail:
@nogc nothrow @safe unittest @nogc nothrow @safe unittest
{ {
{ ubyte[16] expected = [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8];
ubyte[16] expected = [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8]; auto actual = address6("1:2:3:4:5:6:7:8");
auto actual = address6("1:2:3:4:5:6:7:8"); assert(actual.get.address == expected);
assert(actual.address == expected); }
}
{ @nogc nothrow @safe unittest
ubyte[16] expected; {
auto actual = address6("::"); ubyte[16] expected;
assert(actual.address == expected); auto actual = address6("::");
} assert(actual.get.address == expected);
{ }
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
auto actual = address6("::1"); @nogc nothrow @safe unittest
assert(actual.address == expected); {
} ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
{ auto actual = address6("::1");
ubyte[16] expected = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; assert(actual.get.address == expected);
auto actual = address6("1::"); }
assert(actual.address == expected);
} @nogc nothrow @safe unittest
{
ubyte[16] expected = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
auto actual = address6("1::");
assert(actual.get.address == expected);
} }
// Rejects malformed addresses // Rejects malformed addresses
@ -971,25 +1142,31 @@ CopyTail:
// Parses embedded IPv4 address // Parses embedded IPv4 address
@nogc nothrow @safe unittest @nogc nothrow @safe unittest
{ {
{ ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4];
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4]; auto actual = address6("0:0:0:0:0:0:1.2.3.4");
auto actual = address6("0:0:0:0:0:0:1.2.3.4"); assert(actual.get.address == expected);
assert(actual.address == expected); }
}
{ @nogc nothrow @safe unittest
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4]; {
auto actual = address6("::1.2.3.4"); ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4];
assert(actual.address == expected); auto actual = address6("::1.2.3.4");
} assert(actual.get.address == expected);
{ }
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 6, 1, 2, 3, 4];
auto actual = address6("::5:6:1.2.3.4"); @nogc nothrow @safe unittest
assert(actual.address == expected); {
} ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 6, 1, 2, 3, 4];
auto actual = address6("::5:6:1.2.3.4");
assert(actual.get.address == expected);
}
@nogc nothrow @safe unittest
{
assert(address6("0:0:0:0:0:0:1.2.3.").isNothing); assert(address6("0:0:0:0:0:0:1.2.3.").isNothing);
assert(address6("0:0:0:0:0:0:1.2:3.4").isNothing); assert(address6("0:0:0:0:0:0:1.2:3.4").isNothing);
assert(address6("0:0:0:0:0:0:1.2.3.4.").isNothing); assert(address6("0:0:0:0:0:0:1.2.3.4.").isNothing);
assert(address6("fe80:0:0:0:0:0:1.2.3.4%1").scopeID == 1); assert(address6("fe80:0:0:0:0:0:1.2.3.4%1").get.scopeID == 1);
} }
/** /**
@ -1041,3 +1218,261 @@ if (isInputRange!R && is(Unqual!(ElementType!R) == ubyte))
assert(address6(cast(ubyte[]) []).isNothing); assert(address6(cast(ubyte[]) []).isNothing);
} }
} }
/**
* Address storage, that can hold either an IPv4 or IPv6 address.
*/
struct Address
{
private Variant!(Address4, Address6) address;
@disable this();
/**
* Initializes the addres with an IPv4 address.
*
* Params:
* address = IPv6 address.
*/
this(Address4 address) @nogc nothrow pure @safe
{
this.address = address;
}
/**
* Initializes the addres with an IPv4 address.
*
* Params:
* address = IPv6 address.
*/
this(Address6 address) @nogc nothrow pure @safe
{
this.address = address;
}
/**
* Determines whether this is an IPv4 address.
*
* Returns: $(D_KEYWORD true) if this is an IPv4 address,
* $(D_KEYWORD false) otherwise.
*/
bool isV4() const @nogc nothrow pure @safe
{
return this.address.peek!Address4;
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address4.any()).isV4());
}
/**
* Determines whether this is an IPv6 address.
*
* Returns: $(D_KEYWORD true) if this is an IPv6 address,
* $(D_KEYWORD false) otherwise.
*/
bool isV6() const @nogc nothrow pure @safe
{
return this.address.peek!Address6;
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address6.any()).isV6());
}
/**
* Get the address as an IPv4 address.
*
* This method doesn't convert the address, so the address should be
* already an IPv4 one.
*
* Returns: IPv4 address.
*
* Precondition: This is an IPv4 address.
*/
ref inout(Address4) toV4() inout @nogc nothrow pure @safe
in (this.address.peek!Address4)
{
return this.address.get!Address4;
}
///
@nogc nothrow pure @safe unittest
{
auto expected = Address4.loopback;
assert(Address(expected).toV4() == expected);
}
/**
* Get the address as an IPv6 address.
*
* This method doesn't convert the address, so the address should be
* already an IPv6 one.
*
* Returns: IPv6 address.
*
* Precondition: This is an IPv6 address.
*/
ref inout(Address6) toV6() inout @nogc nothrow pure @safe
in (this.address.peek!Address6)
{
return this.address.get!Address6;
}
///
@nogc nothrow pure @safe unittest
{
auto expected = Address6.loopback;
assert(Address(expected).toV6() == expected);
}
/**
* Determines whether this is a loopback address.
*
* Returns: $(D_KEYWORD true) if this is a loopback address,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL Address4.loopback),
* $(D_PSYMBOL Address6.loopback).
*/
bool isLoopback() const @nogc nothrow pure @safe
in (this.address.hasValue)
{
if (this.address.peek!Address4)
{
return this.address.get!Address4.isLoopback();
}
return this.address.get!Address6.isLoopback();
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address4.loopback()).isLoopback());
assert(Address(Address6.loopback()).isLoopback());
}
/**
* Determines whether this address' destination is a group of endpoints.
*
* Returns: $(D_KEYWORD true) if this is a multicast address,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL Address4.isMulticast),
* $(D_PSYMBOL Address6.isMulticast).
*/
bool isMulticast() const @nogc nothrow pure @safe
in (this.address.hasValue)
{
if (this.address.peek!Address4)
{
return this.address.get!Address4.isMulticast();
}
return this.address.get!Address6.isMulticast();
}
///
@nogc nothrow @safe unittest
{
assert(Address(address4("224.0.0.3").get).isMulticast());
assert(Address(address6("ff00::").get).isMulticast());
}
/**
* Determines whether this is an unspecified address.
*
* Returns: $(D_KEYWORD true) if this is an unspecified address,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL Address4.isAny), $(D_PSYMBOL Address6.isAny).
*/
bool isAny() const @nogc nothrow pure @safe
in (this.address.hasValue)
{
if (this.address.peek!Address4)
{
return this.address.get!Address4.isAny();
}
return this.address.get!Address6.isAny();
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address4.any).isAny());
assert(Address(Address6.any).isAny());
}
/**
* Compares two addresses for equality.
*
* Params:
* T = The type of the other address. It can be $(D_PSYMBOL Address),
* $(D_PSYMBOL Address4) or $(D_PSYMBOL Address6).
* that = The address to compare with.
*
* Returns: $(D_KEYWORD true) if this and $(D_PARAM that) addresses are
* representations of the same IP address, $(D_KEYWORD false)
* otherwise.
*/
bool opEquals(T)(T that) const
if (is(Unqual!T == Address4) || is(Unqual!T == Address6))
{
alias AddressType = Unqual!T;
if (this.address.peek!AddressType)
{
return this.address.get!AddressType == that;
}
return false;
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address4.loopback) == Address4.loopback);
assert(Address(Address6.loopback) == Address6.loopback);
assert(Address(Address4.loopback) != Address6.loopback);
}
/// ditto
bool opEquals(T)(T that) const
if (is(Unqual!T == Address))
{
return this.address == that.address;
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address6.loopback) == Address(Address6.loopback));
assert(Address(Address4.loopback) != Address(Address6.loopback));
}
ref Address opAssign(T)(T that)
if (is(Unqual!T == Address4) || is(Unqual!T == Address6))
{
this.address = that;
return this;
}
///
@nogc nothrow pure @safe unittest
{
Address address = Address4.any;
address = Address4.loopback;
assert(address == Address4.loopback);
}
}
// Can assign another address
@nogc nothrow pure @safe unittest
{
Address actual = Address4.loopback;
Address expected = Address6.loopback;
actual = expected;
assert(actual == expected);
}

View File

@ -3,9 +3,9 @@
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/** /**
* Range adapters. * Range adapters transform some data structures into ranges.
* *
* Copyright: Eugene Wissner 2018. * Copyright: Eugene Wissner 2018-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/, * License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0). * Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner) * Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -13,3 +13,218 @@
* tanya/range/adapter.d) * tanya/range/adapter.d)
*/ */
module tanya.range.adapter; module tanya.range.adapter;
import tanya.algorithm.mutation;
import tanya.functional;
import tanya.meta.trait;
import tanya.range;
version (unittest)
{
static struct Container
{
void insertBack(const(char)[])
{
}
}
}
private mixin template InserterCtor()
{
private Container* container;
private this(ref Container container) @trusted
{
this.container = &container;
}
}
/**
* If $(D_PARAM container) is a container with `insertBack`-support,
* $(D_PSYMBOL backInserter) returns an output range that puts the elements
* into the container with `insertBack`.
*
* The resulting output range supports all types `insertBack` supports.
*
* The range keeps a reference to the container passed to it, it doesn't use
* any other storage. So there is no method to get the written data out of the
* range - the container passed to $(D_PSYMBOL backInserter) contains that data
* and can be used directly after all operations on the output range are
* completed. It also means that the result range is not allowed to outlive its
* container.
*
* Params:
* Container = Container type.
* container = Container used as an output range.
*
* Returns: `insertBack`-based output range.
*/
auto backInserter(Container)(return scope ref Container container)
if (hasMember!(Container, "insertBack"))
{
static struct Inserter
{
void opCall(T)(auto ref T data)
{
this.container.insertBack(forward!data);
}
mixin InserterCtor;
}
return Inserter(container);
}
///
@nogc nothrow pure @safe unittest
{
static struct Container
{
int element;
void insertBack(int element)
{
this.element = element;
}
}
Container container;
backInserter(container)(5);
assert(container.element == 5);
}
@nogc nothrow pure @safe unittest
{
auto func()()
{
Container container;
return backInserter(container);
}
static assert(!is(typeof(func!())));
}
@nogc nothrow pure @safe unittest
{
Container container;
static assert(isOutputRange!(typeof(backInserter(container)), string));
}
/**
* If $(D_PARAM container) is a container with `insertFront`-support,
* $(D_PSYMBOL frontInserter) returns an output range that puts the elements
* into the container with `insertFront`.
*
* The resulting output range supports all types `insertFront` supports.
*
* The range keeps a reference to the container passed to it, it doesn't use
* any other storage. So there is no method to get the written data out of the
* range - the container passed to $(D_PSYMBOL frontInserter) contains that data
* and can be used directly after all operations on the output range are
* completed. It also means that the result range is not allowed to outlive its
* container.
*
* Params:
* Container = Container type.
* container = Container used as an output range.
*
* Returns: `insertFront`-based output range.
*/
auto frontInserter(Container)(return scope ref Container container)
if (hasMember!(Container, "insertFront"))
{
static struct Inserter
{
void opCall(T)(auto ref T data)
{
this.container.insertFront(forward!data);
}
mixin InserterCtor;
}
return Inserter(container);
}
///
@nogc nothrow pure @safe unittest
{
static struct Container
{
int element;
void insertFront(int element)
{
this.element = element;
}
}
Container container;
frontInserter(container)(5);
assert(container.element == 5);
}
/**
* $(D_PSYMBOL arrayInserter) makes an output range out of an array.
*
* The returned output range accepts single values as well as input ranges that
* can be copied into the target array.
*
* Params:
* Array = Array type.
* array = Array.
*
* Returns: An output range writing into $(D_PARAM array).
*/
auto arrayInserter(Array)(return scope ref Array array)
if (isArray!Array)
{
static if (is(Array ArrayT : ArrayT[size], size_t size))
{
alias E = ArrayT;
}
else
{
alias E = ElementType!Array;
}
static struct ArrayInserter
{
private E[] data;
private this(ref Array data) @trusted
{
this.data = data[];
}
void opCall(T)(auto ref T data)
if (is(T : E))
in (!this.data.empty)
{
put(this.data, data);
}
void opCall(R)(auto ref R data)
if (isInputRange!R && isOutputRange!(E[], ElementType!R))
{
this.data = copy(data, this.data);
}
}
return ArrayInserter(array);
}
///
@nogc nothrow pure @safe unittest
{
int[1] array;
arrayInserter(array)(5);
assert(array[0] == 5);
}
///
@nogc nothrow pure @safe unittest
{
char[1] array;
alias Actual = typeof(arrayInserter(array));
static assert(isOutputRange!(Actual, char));
static assert(isOutputRange!(Actual, char[]));
}

View File

@ -54,7 +54,7 @@ module tanya.range.array;
* *
* Precondition: $(D_INLINECODE array.length > 0). * Precondition: $(D_INLINECODE array.length > 0).
*/ */
@property ref T front(T)(T[] array) @property ref inout(T) front(T)(return scope inout(T)[] array)
in in
{ {
assert(array.length > 0); assert(array.length > 0);
@ -94,7 +94,7 @@ do
* *
* Precondition: $(D_INLINECODE array.length > 0). * Precondition: $(D_INLINECODE array.length > 0).
*/ */
@property ref T back(T)(T[] array) @property ref inout(T) back(T)(return scope inout(T)[] array)
in in
{ {
assert(array.length > 0); assert(array.length > 0);
@ -133,7 +133,7 @@ do
* *
* Precondition: $(D_INLINECODE array.length > 0). * Precondition: $(D_INLINECODE array.length > 0).
*/ */
void popFront(T)(ref T[] array) void popFront(T)(scope ref inout(T)[] array)
in in
{ {
assert(array.length > 0); assert(array.length > 0);
@ -144,7 +144,7 @@ do
} }
/// ditto /// ditto
void popBack(T)(ref T[] array) void popBack(T)(scope ref inout(T)[] array)
in in
{ {
assert(array.length > 0); assert(array.length > 0);
@ -178,7 +178,7 @@ do
* Returns: $(D_KEYWORD true) if $(D_PARAM array) has no elements, * Returns: $(D_KEYWORD true) if $(D_PARAM array) has no elements,
* $(D_KEYWORD false) otherwise. * $(D_KEYWORD false) otherwise.
*/ */
@property bool empty(T)(const T[] array) @property bool empty(T)(scope const T[] array)
{ {
return array.length == 0; return array.length == 0;
} }
@ -203,7 +203,7 @@ do
* *
* Returns: A copy of the slice $(D_PARAM array). * Returns: A copy of the slice $(D_PARAM array).
*/ */
@property T[] save(T)(T[] array) @property inout(T)[] save(T)(return scope inout(T)[] array)
{ {
return array; return array;
} }

View File

@ -5,7 +5,7 @@
/** /**
* This module defines primitives for working with ranges. * This module defines primitives for working with ranges.
* *
* Copyright: Eugene Wissner 2017-2018. * Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/, * License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0). * Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner) * Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -20,6 +20,19 @@ import tanya.meta.trait;
import tanya.meta.transform; import tanya.meta.transform;
import tanya.range.array; import tanya.range.array;
version (unittest)
{
import tanya.test.stub;
private struct AssertPostblit
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
}
/** /**
* Returns the element type of the range $(D_PARAM R). * Returns the element type of the range $(D_PARAM R).
* *
@ -73,10 +86,7 @@ template ElementType(R)
* *
* See_Also: $(D_PSYMBOL isInfinite). * See_Also: $(D_PSYMBOL isInfinite).
*/ */
template hasLength(R) enum bool hasLength(R) = is(ReturnType!((R r) => r.length) == size_t);
{
enum bool hasLength = is(ReturnType!((R r) => r.length) == size_t);
}
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
@ -294,34 +304,6 @@ template hasSlicing(R)
static assert(hasSlicing!D); static assert(hasSlicing!D);
} }
version (unittest)
{
mixin template InputRangeStub()
{
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property bool empty() const @nogc nothrow pure @safe
{
return false;
}
void popFront() @nogc nothrow pure @safe
{
}
}
mixin template BidirectionalRangeStub()
{
@property int back() @nogc nothrow pure @safe
{
return 0;
}
void popBack() @nogc nothrow pure @safe
{
}
}
}
private template isDynamicArrayRange(R) private template isDynamicArrayRange(R)
{ {
static if (is(R E : E[])) static if (is(R E : E[]))
@ -334,6 +316,26 @@ private template isDynamicArrayRange(R)
} }
} }
private struct Primitive(Candidate, string primitive)
{
auto ref returnType(Candidate candidate)
{
mixin("return candidate." ~ primitive ~ ";");
}
alias ReturnType = .ReturnType!returnType;
static assert(!is(ReturnType == void));
enum uint attributes = functionAttributes!returnType
& FunctionAttribute.ref_;
bool opEquals(That)(That) const
{
return is(ReturnType == That.ReturnType)
&& attributes == That.attributes;
}
}
/** /**
* Determines whether $(D_PARAM R) is an input range. * Determines whether $(D_PARAM R) is an input range.
* *
@ -353,11 +355,11 @@ private template isDynamicArrayRange(R)
*/ */
template isInputRange(R) template isInputRange(R)
{ {
static if (is(ReturnType!((R r) => r.front()) U) static if (is(Primitive!(R, "front()") U)
&& is(ReturnType!((R r) => r.empty) == bool) && is(ReturnType!((R r) => r.empty) == bool)
&& is(typeof(R.popFront()))) && is(typeof(R.popFront())))
{ {
enum bool isInputRange = !is(U == void); enum bool isInputRange = true;
} }
else else
{ {
@ -373,10 +375,12 @@ template isInputRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
int front() @nogc nothrow pure @safe int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
@ -391,13 +395,8 @@ template isInputRange(R)
{ {
static struct Range1(T) static struct Range1(T)
{ {
void popFront() mixin InputRangeStub;
{
}
int front()
{
return 0;
}
T empty() const T empty() const
{ {
return true; return true;
@ -408,50 +407,56 @@ template isInputRange(R)
static struct Range2 static struct Range2
{ {
mixin InputRangeStub;
int popFront() @nogc nothrow pure @safe int popFront() @nogc nothrow pure @safe
{ {
return 100; return 100;
} }
int front() @nogc nothrow pure @safe
{
return 100;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
} }
static assert(isInputRange!Range2); static assert(isInputRange!Range2);
static struct Range3 static struct Range3
{ {
void popFront() @nogc nothrow pure @safe mixin InputRangeStub;
{
}
void front() @nogc nothrow pure @safe void front() @nogc nothrow pure @safe
{ {
} }
bool empty() const @nogc nothrow pure @safe
{
return true;
}
} }
static assert(!isInputRange!Range3); static assert(!isInputRange!Range3);
static struct Range4 static struct Range4
{ {
void popFront() @nogc nothrow pure @safe mixin InputRangeStub;
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
enum bool empty = false; enum bool empty = false;
} }
static assert(isInputRange!Range4); static assert(isInputRange!Range4);
} }
// Ranges with non-copyable elements can be input ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin InputRangeStub!NonCopyable;
}
static assert(isInputRange!R);
}
// Ranges with const non-copyable elements can be input ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin InputRangeStub!(const(NonCopyable));
}
static assert(isInputRange!R);
}
/** /**
* Determines whether $(D_PARAM R) is a forward range. * Determines whether $(D_PARAM R) is a forward range.
* *
@ -489,14 +494,17 @@ template isForwardRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
int front() @nogc nothrow pure @safe int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
} }
typeof(this) save() @nogc nothrow pure @safe typeof(this) save() @nogc nothrow pure @safe
{ {
return this; return this;
@ -515,6 +523,7 @@ template isForwardRange(R)
static struct Range2 static struct Range2
{ {
mixin InputRangeStub; mixin InputRangeStub;
Range1 save() @nogc nothrow pure @safe Range1 save() @nogc nothrow pure @safe
{ {
return Range1(); return Range1();
@ -525,6 +534,7 @@ template isForwardRange(R)
static struct Range3 static struct Range3
{ {
mixin InputRangeStub; mixin InputRangeStub;
const(typeof(this)) save() const @nogc nothrow pure @safe const(typeof(this)) save() const @nogc nothrow pure @safe
{ {
return this; return this;
@ -553,11 +563,11 @@ template isForwardRange(R)
*/ */
template isBidirectionalRange(R) template isBidirectionalRange(R)
{ {
static if (is(ReturnType!((R r) => r.back()) U) static if (is(Primitive!(R, "back()") U)
&& is(typeof(R.popBack()))) && is(typeof(R.popBack())))
{ {
enum bool isBidirectionalRange = isForwardRange!R enum bool isBidirectionalRange = isForwardRange!R
&& is(U == ReturnType!((R r) => r.front())); && (U() == Primitive!(R, "front()")());
} }
else else
{ {
@ -573,21 +583,26 @@ template isBidirectionalRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
void popBack() @nogc nothrow pure @safe void popBack() @nogc nothrow pure @safe
{ {
} }
@property int front() @nogc nothrow pure @safe @property int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
@property int back() @nogc nothrow pure @safe @property int back() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
} }
Range save() @nogc nothrow pure @safe Range save() @nogc nothrow pure @safe
{ {
return this; return this;
@ -602,33 +617,33 @@ template isBidirectionalRange(R)
{ {
static struct Range(T, U) static struct Range(T, U)
{ {
void popFront() @nogc nothrow pure @safe mixin BidirectionalRangeStub;
{
}
void popBack() @nogc nothrow pure @safe
{
}
@property T front() @nogc nothrow pure @safe @property T front() @nogc nothrow pure @safe
{ {
return T.init; return T.init;
} }
@property U back() @nogc nothrow pure @safe @property U back() @nogc nothrow pure @safe
{ {
return U.init; return U.init;
} }
bool empty() const @nogc nothrow pure @safe
{
return true;
}
Range save() @nogc nothrow pure @safe
{
return this;
}
} }
static assert(!isBidirectionalRange!(Range!(int, uint))); static assert(!isBidirectionalRange!(Range!(int, uint)));
static assert(!isBidirectionalRange!(Range!(int, const int))); static assert(!isBidirectionalRange!(Range!(int, const int)));
} }
// Ranges with non-copyable elements can be bidirectional ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin BidirectionalRangeStub!NonCopyable;
}
static assert(isBidirectionalRange!R);
}
/** /**
* Determines whether $(D_PARAM R) is a random-access range. * Determines whether $(D_PARAM R) is a random-access range.
* *
@ -654,11 +669,11 @@ template isBidirectionalRange(R)
*/ */
template isRandomAccessRange(R) template isRandomAccessRange(R)
{ {
static if (is(ReturnType!((R r) => r.opIndex(size_t.init)) U)) static if (is(Primitive!(R, "opIndex(size_t.init)") U))
{ {
enum bool isRandomAccessRange = isInputRange!R enum bool isRandomAccessRange = isInputRange!R
&& (hasLength!R || isInfinite!R) && (hasLength!R || isInfinite!R)
&& is(U == ReturnType!((R r) => r.front())); && (U() == Primitive!(R, "front()")());
} }
else else
{ {
@ -674,29 +689,22 @@ template isRandomAccessRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
void popBack() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe @property int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
@property int back() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
} }
typeof(this) save() @nogc nothrow pure @safe
{ int opIndex(size_t) @nogc nothrow pure @safe
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
size_t length() const @nogc nothrow pure @safe size_t length() const @nogc nothrow pure @safe
{ {
return 0; return 0;
@ -711,15 +719,14 @@ template isRandomAccessRange(R)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
@property int front() @nogc nothrow pure @safe @property int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
enum bool empty = false; enum bool empty = false;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe int opIndex(const size_t pos) @nogc nothrow pure @safe
{ {
return 0; return 0;
@ -732,76 +739,43 @@ template isRandomAccessRange(R)
{ {
static struct Range1 static struct Range1
{ {
mixin InputRangeStub;
mixin BidirectionalRangeStub; mixin BidirectionalRangeStub;
mixin RandomAccessRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{
return 0;
}
} }
static assert(!isRandomAccessRange!Range1); static assert(!isRandomAccessRange!Range1);
@Length
static struct Range2(Args...) static struct Range2(Args...)
{ {
mixin InputRangeStub;
mixin BidirectionalRangeStub; mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(Args) @nogc nothrow pure @safe int opIndex(Args) @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
} }
static assert(isRandomAccessRange!(Range2!size_t)); static assert(isRandomAccessRange!(Range2!size_t));
static assert(!isRandomAccessRange!(Range2!())); static assert(!isRandomAccessRange!(Range2!()));
static assert(!isRandomAccessRange!(Range2!(size_t, size_t))); static assert(!isRandomAccessRange!(Range2!(size_t, size_t)));
@Length
static struct Range3 static struct Range3
{ {
mixin InputRangeStub;
mixin BidirectionalRangeStub; mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1, const size_t pos2 = 0) int opIndex(const size_t pos1, const size_t pos2 = 0)
@nogc nothrow pure @safe @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
} }
static assert(isRandomAccessRange!Range3); static assert(isRandomAccessRange!Range3);
static struct Range4 static struct Range4
{ {
mixin InputRangeStub;
mixin BidirectionalRangeStub; mixin BidirectionalRangeStub;
mixin RandomAccessRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1) @nogc nothrow pure @safe
{
return 0;
}
size_t opDollar() const @nogc nothrow pure @safe size_t opDollar() const @nogc nothrow pure @safe
{ {
return 0; return 0;
@ -810,18 +784,27 @@ template isRandomAccessRange(R)
static assert(!isRandomAccessRange!Range4); static assert(!isRandomAccessRange!Range4);
} }
// Ranges with non-copyable elements can be random-access ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements @Infinite
static struct R
{
mixin RandomAccessRangeStub!NonCopyable;
}
static assert(isRandomAccessRange!R);
}
/** /**
* Puts $(D_PARAM e) into the $(D_PARAM range). * Puts $(D_PARAM e) into the $(D_PARAM range).
* *
* $(D_PSYMBOL R) should be an output range for $(D_PARAM E). It doesn't mean * $(D_PSYMBOL R) should be an output range for $(D_PARAM E), i.e. at least one
* that everything $(D_PARAM range) is an output range for can be put into it, * of the following conditions should met:
* but only if one of the following conditions is met:
* *
* $(OL * $(OL
* $(LI $(D_PARAM R) defines a `put`-method for $(D_PARAM E))
* $(LI $(D_PARAM e) can be assigned to $(D_INLINECODE range.front))
* $(LI $(D_PARAM e) can be put into $(D_PARAM range) using * $(LI $(D_PARAM e) can be put into $(D_PARAM range) using
* $(D_INLINECODE range(e)) * $(D_INLINECODE range(e))
* $(LI $(D_PARAM e) can be assigned to $(D_INLINECODE range.front))
* ) * )
* ) * )
* *
@ -848,18 +831,19 @@ void put(R, E)(ref R range, auto ref E e)
static if (__traits(hasMember, R, "put") static if (__traits(hasMember, R, "put")
&& is(typeof((R r, E e) => r.put(e)))) && is(typeof((R r, E e) => r.put(e))))
{ {
pragma(msg, "OutputRange.put()-primitive is deprecated. Define opCall() instead.");
range.put(e); range.put(e);
} }
else static if (is(typeof((R r, E e) => r(e))))
{
range(e);
}
else static if (isInputRange!R else static if (isInputRange!R
&& is(typeof((R r, E e) => r.front = e))) && is(typeof((R r, E e) => r.front = e)))
{ {
range.front = e; range.front = e;
range.popFront(); range.popFront();
} }
else static if (is(typeof((R r, E e) => r(e))))
{
range(e);
}
else else
{ {
static assert(false, R.stringof ~ " is not an output range for " static assert(false, R.stringof ~ " is not an output range for "
@ -877,23 +861,6 @@ void put(R, E)(ref R range, auto ref E e)
assert(actual == [2, 0]); assert(actual == [2, 0]);
} }
///
@nogc nothrow pure @safe unittest
{
static struct Put
{
int e;
void put(int e)
{
this.e = e;
}
}
Put p;
put(p, 2);
assert(p.e == 2);
}
/// ///
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
@ -925,36 +892,28 @@ void put(R, E)(ref R range, auto ref E e)
* $(TH Scenario) * $(TH Scenario)
* ) * )
* $(TR * $(TR
* $(TD r.put(e))
* $(TD $(D_PARAM R) defines `put` for $(D_PARAM E).)
* )
* $(TR
* $(TD r.front = e)
* $(TD $(D_PARAM R) is an input range, whose element type is
* $(D_PARAM E) and `front` is an lvalue.)
* )
* $(TR
* $(TD r(e)) * $(TD r(e))
* $(TD $(D_PARAM R) defines `opCall` for $(D_PARAM E).) * $(TD $(D_PARAM R) defines `opCall` for $(D_PARAM E).)
* ) * )
* $(TR * $(TR
* $(TD for (; !e.empty; e.popFront()) r.put(e.front) $(BR) * $(TD r.front = e)
* for (; !e.empty; e.popFront(), r.popFront()) * $(TD $(D_PARAM R) is an input range with assignable elements of type
* r.front = e.front $(BR) * $(D_PARAM E).)
* for (; !e.empty; e.popFront()) r(e.front)
* )
* $(TD $(D_PARAM E) is input range, whose elements can be put into
* $(D_PARAM R) according to the rules described above in this table.
* )
* ) * )
* ) * )
* *
* Output ranges don't have element type (so $(D_PSYMBOL ElementType) returns
* $(D_KEYWORD void) when applied to an output range). It is because an output
* range can support puting differently typed elements into it.
*
* Params: * Params:
* R = The type to be tested. * R = The type to be tested.
* E = Element type should be tested for. * E = Element type should be tested for.
* *
* Returns: $(D_KEYWORD true) if $(D_PARAM R) is an output range for the * Returns: $(D_KEYWORD true) if $(D_PARAM R) is an output range for the
* elements of the type $(D_PARAM E), $(D_KEYWORD false) otherwise. * elements of the type $(D_PARAM E), $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL put).
*/ */
template isOutputRange(R, E) template isOutputRange(R, E)
{ {
@ -964,6 +923,11 @@ template isOutputRange(R, E)
} }
else static if (isInputRange!E) else static if (isInputRange!E)
{ {
pragma(msg, "Deprecation. An input range whose element type is "
~ "supported by the output range isn't considered itself to "
~ "be a source for such an output range. Don't rely on this "
~ "behavior and use tanya.algorithm.copy() to write one "
~ "range into another one.");
alias ET = ElementType!E; alias ET = ElementType!E;
enum bool isOutputRange = is(typeof((R r, ET e) => put(r, e))); enum bool isOutputRange = is(typeof((R r, ET e) => put(r, e)));
} }
@ -978,7 +942,7 @@ template isOutputRange(R, E)
{ {
static struct R1 static struct R1
{ {
void put(int) @nogc nothrow pure @safe void opCall(int) @nogc nothrow pure @safe
{ {
} }
} }
@ -987,13 +951,16 @@ template isOutputRange(R, E)
static struct R2 static struct R2
{ {
int value; int value;
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
ref int front() @nogc nothrow pure @safe ref int front() @nogc nothrow pure @safe
{ {
return value; return value;
} }
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
@ -1006,28 +973,18 @@ template isOutputRange(R, E)
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
} }
int front() @nogc nothrow pure @safe int front() @nogc nothrow pure @safe
{ {
return 0; return 0;
} }
bool empty() const @nogc nothrow pure @safe bool empty() const @nogc nothrow pure @safe
{ {
return true; return true;
} }
} }
static assert(!isOutputRange!(R3, int)); static assert(!isOutputRange!(R3, int));
static struct R4
{
void opCall(int) @nogc nothrow pure @safe
{
}
}
static assert(isOutputRange!(R4, int));
static assert(isOutputRange!(R1, R3));
static assert(isOutputRange!(R2, R3));
static assert(isOutputRange!(R4, R3));
} }
/** /**
@ -1097,28 +1054,20 @@ template isInfinite(R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
@Infinite
static struct StaticConstRange static struct StaticConstRange
{ {
void popFront() @nogc nothrow pure @safe mixin InputRangeStub;
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
static bool empty = false; static bool empty = false;
} }
static assert(!isInfinite!StaticConstRange); static assert(!isInfinite!StaticConstRange);
@Infinite
static struct TrueRange static struct TrueRange
{ {
void popFront() @nogc nothrow pure @safe mixin InputRangeStub;
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
static const bool empty = true; static const bool empty = true;
} }
static assert(!isInfinite!TrueRange); static assert(!isInfinite!TrueRange);
@ -1348,15 +1297,12 @@ if (isBidirectionalRange!R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
@Infinite
static struct InfiniteRange static struct InfiniteRange
{ {
mixin ForwardRangeStub;
private int i; private int i;
InfiniteRange save() @nogc nothrow pure @safe
{
return this;
}
void popFront() @nogc nothrow pure @safe void popFront() @nogc nothrow pure @safe
{ {
++this.i; ++this.i;
@ -1376,8 +1322,6 @@ if (isBidirectionalRange!R)
{ {
return this.i; return this.i;
} }
enum bool empty = false;
} }
{ {
InfiniteRange range; InfiniteRange range;
@ -1497,44 +1441,19 @@ if (isInputRange!R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference. // Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1 static struct R1
{ {
Element element; mixin InputRangeStub!AssertPostblit;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
} }
static assert(is(typeof(moveFront(R1())))); static assert(is(typeof(moveFront(R1()))));
// Returns elements with a postblit constructor by value. moveFront fails. // Returns elements with a postblit constructor by value. moveFront fails.
@Infinite
static struct R2 static struct R2
{ {
enum bool empty = false; mixin InputRangeStub!AssertPostblit;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
} }
static assert(!is(typeof(moveFront(R2())))); static assert(!is(typeof(moveFront(R2()))));
} }
@ -1582,58 +1501,19 @@ if (isBidirectionalRange!R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference. // Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1 static struct R1
{ {
Element element; mixin BidirectionalRangeStub!AssertPostblit;
enum bool empty = false;
ref Element back() @nogc nothrow pure @safe
{
return element;
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R1 save() @nogc nothrow pure @safe
{
return this;
}
} }
static assert(is(typeof(moveBack(R1())))); static assert(is(typeof(moveBack(R1()))));
// Returns elements with a postblit constructor by value. moveBack fails. // Returns elements with a postblit constructor by value. moveBack fails.
@Infinite
static struct R2 static struct R2
{ {
enum bool empty = false; mixin BidirectionalRangeStub!AssertPostblit;
Element back() @nogc nothrow pure @safe
{
return Element();
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R2 save() @nogc nothrow pure @safe
{
return this;
}
} }
static assert(!is(typeof(moveBack(R2())))); static assert(!is(typeof(moveBack(R2()))));
} }
@ -1680,54 +1560,19 @@ if (isRandomAccessRange!R)
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference. // Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1 static struct R1
{ {
Element element; mixin RandomAccessRangeStub!AssertPostblit;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
ref Element opIndex(size_t)
{
return element;
}
} }
static assert(is(typeof(moveAt(R1(), 0)))); static assert(is(typeof(moveAt(R1(), 0))));
// Returns elements with a postblit constructor by value. moveAt fails. // Returns elements with a postblit constructor by value. moveAt fails.
@Infinite
static struct R2 static struct R2
{ {
enum bool empty = false; mixin RandomAccessRangeStub!AssertPostblit;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
Element opIndex() @nogc nothrow pure @safe
{
return Element();
}
} }
static assert(!is(typeof(moveAt(R2(), 0)))); static assert(!is(typeof(moveAt(R2(), 0))));
} }
@ -1889,10 +1734,6 @@ template hasLvalueElements(R)
// Works with non-copyable elements // Works with non-copyable elements
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct NonCopyable
{
@disable this(this);
}
static assert(hasLvalueElements!(NonCopyable[])); static assert(hasLvalueElements!(NonCopyable[]));
} }
@ -2051,3 +1892,41 @@ template hasSwappableElements(R)
} }
static assert(!hasSwappableElements!R2); static assert(!hasSwappableElements!R2);
} }
/**
* Determines whether `r1.front` and `r2.front` point to the same element.
*
* Params:
* r1 = First range.
* r2 = Second range.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) have the same
* head, $(D_KEYWORD false) otherwise.
*/
bool sameHead(Range)(Range r1, Range r2) @trusted
if (isInputRange!Range && hasLvalueElements!Range)
{
return &r1.front is &r2.front;
}
///
@nogc nothrow pure @safe unittest
{
const int[2] array;
auto r1 = array[];
auto r2 = array[];
assert(sameHead(r1, r2));
}
///
@nogc nothrow pure @safe unittest
{
const int[2] array;
auto r1 = array[];
auto r2 = array[1 .. $];
assert(!sameHead(r1, r2));
}

View File

@ -15,3 +15,4 @@
module tanya.test; module tanya.test;
public import tanya.test.assertion; public import tanya.test.assertion;
public import tanya.test.stub;

373
source/tanya/test/stub.d Normal file
View File

@ -0,0 +1,373 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Range and generic type generators.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/test/stub.d,
* tanya/test/stub.d)
*/
module tanya.test.stub;
/**
* Attribute signalizing that the generated range should contain the given
* number of elements.
*
* $(D_PSYMBOL Count) should be always specified with some value and not as a
* type, so $(D_INLINECODE Count(1)) instead just $(D_INLINECODE Count),
* otherwise you can just omit $(D_PSYMBOL Count) and it will default to 0.
*
* $(D_PSYMBOL Count) doesn't generate `.length` property - use
* $(D_PSYMBOL Length) for that.
*
* If neither $(D_PSYMBOL Length) nor $(D_PSYMBOL Infinite) is given,
* $(D_ILNINECODE Count(0)) is assumed.
*
* This attribute conflicts with $(D_PSYMBOL Infinite) and $(D_PSYMBOL Length).
*/
struct Count
{
/// Original range length.
size_t count = 0;
@disable this();
/**
* Constructs the attribute with the given length.
*
* Params:
* count = Original range length.
*/
this(size_t count) @nogc nothrow pure @safe
{
this.count = count;
}
}
/**
* Attribute signalizing that the generated range should be infinite.
*
* This attribute conflicts with $(D_PSYMBOL Count) and $(D_PSYMBOL Length).
*/
struct Infinite
{
}
/**
* Generates `.length` property for the range.
*
* The length of the range can be specified as a constructor argument,
* otherwise it is 0.
*
* This attribute conflicts with $(D_PSYMBOL Count) and $(D_PSYMBOL Infinite).
*/
struct Length
{
/// Original range length.
size_t length = 0;
}
/**
* Attribute signalizing that the generated range should return values by
* reference.
*
* This atribute affects the return values of `.front`, `.back` and `[]`.
*/
struct WithLvalueElements
{
}
/**
* Generates an input range.
*
* Params:
* E = Element type.
*/
mixin template InputRangeStub(E = int)
{
import tanya.meta.metafunction : Alias;
import tanya.meta.trait : evalUDA, getUDAs, hasUDA;
/*
* Aliases for the attribute lookups to access them faster
*/
private enum bool infinite = hasUDA!(typeof(this), Infinite);
private enum bool withLvalueElements = hasUDA!(typeof(this),
WithLvalueElements);
private alias Count = getUDAs!(typeof(this), .Count);
private alias Length = getUDAs!(typeof(this), .Length);
static if (Count.length != 0)
{
private enum size_t count = Count[0].count;
static assert (!infinite,
"Range cannot have count and be infinite at the same time");
static assert (Length.length == 0,
"Range cannot have count and length at the same time");
}
else static if (Length.length != 0)
{
private enum size_t count = evalUDA!(Length[0]).length;
static assert (!infinite,
"Range cannot have length and be infinite at the same time");
}
else static if (!infinite)
{
private enum size_t count = 0;
}
/*
* Member generation
*/
static if (infinite)
{
enum bool empty = false;
}
else
{
private size_t length_ = count;
@property bool empty() const @nogc nothrow pure @safe
{
return this.length_ == 0;
}
}
static if (withLvalueElements)
{
private E* element; // Pointer to enable range copying in save()
}
void popFront() @nogc nothrow pure @safe
in (!empty)
{
static if (!infinite)
{
--this.length_;
}
}
static if (withLvalueElements)
{
ref E front() @nogc nothrow pure @safe
in (!empty)
{
return *this.element;
}
}
else
{
E front() @nogc nothrow pure @safe
in (!empty)
{
return E.init;
}
}
static if (Length.length != 0)
{
size_t length() const @nogc nothrow pure @safe
{
return this.length_;
}
}
}
/**
* Generates a forward range.
*
* This mixin includes input range primitives as well, but can be combined with
* $(D_PSYMBOL RandomAccessRangeStub).
*
* Params:
* E = Element type.
*/
mixin template ForwardRangeStub(E = int)
{
static if (!is(typeof(this.InputRangeMixin) == void))
{
mixin InputRangeStub!E InputRangeMixin;
}
auto save() @nogc nothrow pure @safe
{
return this;
}
}
/**
* Generates a bidirectional range.
*
* This mixin includes forward range primitives as well, but can be combined with
* $(D_PSYMBOL RandomAccessRangeStub).
*
* Params:
* E = Element type.
*/
mixin template BidirectionalRangeStub(E = int)
{
mixin ForwardRangeStub!E;
void popBack() @nogc nothrow pure @safe
in (!empty)
{
static if (!infinite)
{
--this.length_;
}
}
static if (withLvalueElements)
{
ref E back() @nogc nothrow pure @safe
in (!empty)
{
return *this.element;
}
}
else
{
E back() @nogc nothrow pure @safe
in (!empty)
{
return E.init;
}
}
}
/**
* Generates a random-access range.
*
* This mixin includes input range primitives as well, but can be combined with
* $(D_PSYMBOL ForwardRangeStub) or $(D_PSYMBOL BidirectionalRangeStub).
*
* Note that a random-access range also requires $(D_PSYMBOL Length) or
* $(D_PARAM Infinite) by definition.
*
* Params:
* E = Element type.
*/
mixin template RandomAccessRangeStub(E = int)
{
static if (!is(typeof(this.InputRangeMixin) == void))
{
mixin InputRangeStub!E InputRangeMixin;
}
static if (withLvalueElements)
{
ref E opIndex(size_t) @nogc nothrow pure @safe
{
return *this.element;
}
}
else
{
E opIndex(size_t) @nogc nothrow pure @safe
{
return E.init;
}
}
}
/**
* Struct with a disabled postblit constructor.
*
* $(D_PSYMBOL NonCopyable) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*/
struct NonCopyable
{
@disable this(this);
}
/**
* Struct with an elaborate destructor.
*
* $(D_PSYMBOL WithDtor) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*
* When used as a standalone object the constructor of $(D_PSYMBOL WithDtor)
* accepts an additional `counter` argument, which is incremented by the
* destructor. $(D_PSYMBOL WithDtor) stores a pointer to the passed variable,
* so the variable can be investigated after the struct isn't available
* anymore.
*/
struct WithDtor
{
size_t* counter;
this(ref size_t counter) @nogc nothrow pure @trusted
{
this.counter = &counter;
}
~this() @nogc nothrow pure @safe
{
if (this.counter !is null)
{
++*this.counter;
}
}
}
/**
* Struct supporting hashing.
*
* $(D_PSYMBOL Hashable) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*
* The constructor accepts an additional parameter, which is returned by the
* `toHash()`-function. `0U` is returned if no hash value is given.
*/
struct Hashable
{
size_t hash;
size_t toHash() const @nogc nothrow pure @safe
{
return this.hash;
}
}
/**
* Generates a $(D_KEYWORD struct) with common functionality.
*
* To specify the needed functionality use user-defined attributes on the
* $(D_KEYWORD struct) $(D_PSYMBOL StructStub) is mixed in.
*
* Supported attributes are: $(D_PSYMBOL NonCopyable), $(D_PSYMBOL Hashable),
* $(D_PSYMBOL WithDtor).
*/
mixin template StructStub()
{
import tanya.meta.trait : evalUDA, getUDAs, hasUDA;
static if (hasUDA!(typeof(this), NonCopyable))
{
@disable this(this);
}
private alias Hashable = getUDAs!(typeof(this), .Hashable);
static if (Hashable.length > 0)
{
size_t toHash() const @nogc nothrow pure @safe
{
return evalUDA!(Hashable[0]).hash;
}
}
static if (hasUDA!(typeof(this), WithDtor))
{
~this() @nogc nothrow pure @safe
{
}
}
}

View File

@ -8,7 +8,7 @@
* This module contains templates that allow to build new types from the * This module contains templates that allow to build new types from the
* available ones. * available ones.
* *
* Copyright: Eugene Wissner 2017-2018. * Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/, * License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0). * Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner) * Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -18,10 +18,12 @@
module tanya.typecons; module tanya.typecons;
import tanya.algorithm.mutation; import tanya.algorithm.mutation;
import tanya.conv;
import tanya.format; import tanya.format;
import tanya.functional; import tanya.functional;
import tanya.meta.metafunction; import tanya.meta.metafunction;
import tanya.meta.trait; import tanya.meta.trait;
version (unittest) import tanya.test.stub;
/** /**
* $(D_PSYMBOL Tuple) can store two or more heterogeneous objects. * $(D_PSYMBOL Tuple) can store two or more heterogeneous objects.
@ -226,11 +228,15 @@ struct Option(T)
* Precondition: `!isNothing`. * Precondition: `!isNothing`.
*/ */
@property ref inout(T) get() inout @property ref inout(T) get() inout
in in (!isNothing, "Option is nothing")
{ {
assert(!isNothing, "Option is nothing"); return this.value;
} }
do
/// ditto
deprecated("Call Option.get explicitly instead of relying on alias this")
@property ref inout(T) get_() inout
in (!isNothing, "Option is nothing")
{ {
return this.value; return this.value;
} }
@ -366,8 +372,15 @@ struct Option(T)
ref typeof(this) opAssign(U)(ref U that) ref typeof(this) opAssign(U)(ref U that)
if (is(U == Option)) if (is(U == Option))
{ {
this.value = that; if (that.isNothing)
this.isNothing_ = that.isNothing; {
reset();
}
else
{
this.value = that.get;
this.isNothing_ = false;
}
return this; return this;
} }
@ -398,7 +411,7 @@ struct Option(T)
} }
} }
alias get this; alias get_ this;
} }
/// ///
@ -454,29 +467,24 @@ struct Option(T)
// Moving // Moving
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct NotCopyable static assert(is(typeof(Option!NonCopyable(NonCopyable()))));
{
@disable this(this);
}
static assert(is(typeof(Option!NotCopyable(NotCopyable()))));
// The value cannot be returned by reference because the default value // The value cannot be returned by reference because the default value
// isn't passed by reference // isn't passed by reference
static assert(!is(typeof(Option!DisabledPostblit().or(NotCopyable())))); static assert(!is(typeof(Option!DisabledPostblit().or(NonCopyable()))));
{ {
NotCopyable notCopyable; NonCopyable notCopyable;
static assert(is(typeof(Option!NotCopyable().or(notCopyable)))); static assert(is(typeof(Option!NonCopyable().or(notCopyable))));
} }
{ {
Option!NotCopyable option; Option!NonCopyable option;
assert(option.isNothing); assert(option.isNothing);
option = NotCopyable(); option = NonCopyable();
assert(!option.isNothing); assert(!option.isNothing);
} }
{ {
Option!NotCopyable option; Option!NonCopyable option;
assert(option.isNothing); assert(option.isNothing);
option = Option!NotCopyable(NotCopyable()); option = Option!NonCopyable(NonCopyable());
assert(!option.isNothing); assert(!option.isNothing);
} }
} }
@ -507,30 +515,25 @@ struct Option(T)
// Returns default value // Returns default value
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
{ int i = 5;
int i = 5; assert(((ref e) => e)(Option!int().or(i)) == 5);
assert(((ref e) => e)(Option!int().or(i)) == 5);
}
} }
// Implements toHash() for nothing // Implements toHash() for nothing
@nogc nothrow pure @safe unittest @nogc nothrow pure @safe unittest
{ {
static struct ToHash alias OptionT = Option!Hashable;
{ assert(OptionT().toHash() == 0U);
size_t toHash() const @nogc nothrow pure @safe assert(OptionT(Hashable(1U)).toHash() == 1U);
{ }
return 1U;
} // Can assign Option that is nothing
} @nogc nothrow pure @safe unittest
{ {
Option!ToHash toHash; auto option1 = Option!int(5);
assert(toHash.toHash() == 0U); Option!int option2;
} option1 = option2;
{ assert(option1.isNothing);
auto toHash = Option!ToHash(ToHash());
assert(toHash.toHash() == 1U);
}
} }
/** /**
@ -559,3 +562,373 @@ Option!T option(T)()
assert(option!int().isNothing); assert(option!int().isNothing);
assert(option(5) == 5); assert(option(5) == 5);
} }
/**
* Type that can hold one of the types listed as its template parameters.
*
* $(D_PSYMBOL Variant) is a type similar to $(D_KEYWORD union), but
* $(D_PSYMBOL Variant) keeps track of the actually used type and throws an
* assertion error when trying to access an invalid type at runtime.
*
* Params:
* Specs = Types this $(D_SPYBMOL Variant) can hold.
*/
template Variant(Specs...)
if (isTypeTuple!Specs && NoDuplicates!Specs.length == Specs.length)
{
union AlignedUnion(Args...)
{
static if (Args.length > 0)
{
Args[0] value;
}
static if (Args.length > 1)
{
AlignedUnion!(Args[1 .. $]) rest;
}
}
private struct VariantAccessorInfo
{
string accessor;
ptrdiff_t tag;
}
template accessor(T, Union)
{
enum VariantAccessorInfo info = accessorImpl!(T, Union, 1);
enum accessor = VariantAccessorInfo("this.values" ~ info.accessor, info.tag);
}
template accessorImpl(T, Union, size_t tag)
{
static if (is(T == typeof(Union.value)))
{
enum accessorImpl = VariantAccessorInfo(".value", tag);
}
else
{
enum VariantAccessorInfo info = accessorImpl!(T, typeof(Union.rest), tag + 1);
enum accessorImpl = VariantAccessorInfo(".rest" ~ info.accessor, info.tag);
}
}
struct Variant
{
/// Types can be present in this $(D_PSYMBOL Variant).
alias Types = Specs;
private ptrdiff_t tag = -1;
private AlignedUnion!Types values;
/**
* Constructs this $(D_PSYMBOL Variant) with one of the types supported
* in it.
*
* Params:
* T = Type of the initial value.
* value = Initial value.
*/
this(T)(ref T value)
if (canFind!(T, Types))
{
copyAssign!T(value);
}
/// ditto
this(T)(T value)
if (canFind!(T, Types))
{
moveAssign!T(value);
}
~this()
{
reset();
}
this(this)
{
alias pred(U) = hasElaborateCopyConstructor!(U.Seq[1]);
static foreach (Type; Filter!(pred, Enumerate!Types))
{
if (this.tag == Type.Seq[0])
{
get!(Type.Seq[1]).__postblit();
}
}
}
/**
* Tells whether this $(D_PSYMBOL Variant) is initialized.
*
* Returns: $(D_KEYWORD true) if this $(D_PSYMBOL Variant) contains a
* value, $(D_KEYWORD false) otherwise.
*/
bool hasValue() const
{
return this.tag != -1;
}
/**
* Tells whether this $(D_PSYMBOL Variant) holds currently a value of
* type $(D_PARAM T).
*
* Params:
* T = Examined type.
*
* Returns: $(D_KEYWORD true) if this $(D_PSYMBOL Variant) currently
* contains a value of type $(D_PARAM T), $(D_KEYWORD false)
* otherwise.
*/
bool peek(T)() const
if (canFind!(T, Types))
{
return this.tag == staticIndexOf!(T, Types);
}
/**
* Returns the underlying value, assuming it is of the type $(D_PARAM T).
*
* Params:
* T = Type of the value should be returned.
*
* Returns: The underyling value.
*
* Precondition: The $(D_PSYMBOL Variant) has a value.
*
* See_Also: $(D_PSYMBOL peek), $(D_PSYMBOL hasValue).
*/
ref inout(T) get(T)() inout
if (canFind!(T, Types))
in (this.tag == staticIndexOf!(T, Types), "Variant isn't initialized")
{
mixin("return " ~ accessor!(T, AlignedUnion!Types).accessor ~ ";");
}
/**
* Reassigns the value.
*
* Params:
* T = Type of the new value
* that = New value.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(T)(T that)
if (canFind!(T, Types))
{
reset();
return moveAssign!T(that);
}
/// ditto
ref typeof(this) opAssign(T)(ref T that)
if (canFind!(T, Types))
{
reset();
return copyAssign!T(that);
}
private ref typeof(this) moveAssign(T)(ref T that) @trusted
{
this.tag = staticIndexOf!(T, Types);
enum string accessorMixin = accessor!(T, AlignedUnion!Types).accessor;
moveEmplace(that, mixin(accessorMixin));
return this;
}
private ref typeof(this) copyAssign(T)(ref T that)
{
this.tag = staticIndexOf!(T, Types);
enum string accessorMixin = accessor!(T, AlignedUnion!Types).accessor;
emplace!T((() @trusted => (&mixin(accessorMixin))[0 .. 1])(), that);
return this;
}
private void reset()
{
alias pred(U) = hasElaborateDestructor!(U.Seq[1]);
static foreach (Type; Filter!(pred, Enumerate!Types))
{
if (this.tag == Type.Seq[0])
{
destroy(get!(Type.Seq[1]));
}
}
}
/**
* Returns $(D_PSYMBOL TypeInfo) corresponding to the current type.
*
* If this $(D_PSYMBOL Variant) isn't initialized, returns
* $(D_KEYWORD null).
*
* Returns: $(D_PSYMBOL TypeInfo) of the current type.
*/
@property TypeInfo type()
{
static foreach (i, Type; Types)
{
if (this.tag == i)
{
return typeid(Type);
}
}
return null;
}
/**
* Compares this $(D_PSYMBOL Variant) with another one with the same
* specification for equality.
*
* $(UL
* $(LI If both hold values of the same type, these values are
* compared.)
* $(LI If they hold values of different types, then the
* $(D_PSYMBOL Variant)s aren't equal.)
* $(LI If only one of them is initialized but another one not, they
* aren't equal.)
* $(LI If neither of them is initialized, they are equal.)
* )
*
* Params:
* that = The $(D_PSYMBOL Variant) to compare with.
*
* Returns: $(D_KEYWORD true) if this $(D_PSYMBOL Variant) is equal to
* $(D_PARAM that), $(D_KEYWORD false) otherwise.
*/
bool opEquals()(auto ref inout Variant that) inout
{
if (this.tag != that.tag)
{
return false;
}
static foreach (i, Type; Types)
{
if (this.tag == i)
{
return get!Type == that.get!Type;
}
}
return true;
}
}
}
///
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant = 5;
assert(variant.peek!int);
assert(variant.get!int == 5);
variant = 5.4;
assert(!variant.peek!int);
assert(variant.get!double == 5.4);
}
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant;
variant = 5;
assert(variant.peek!int);
}
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant;
variant = 5.0;
assert(!variant.peek!int);
}
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant = 5;
assert(variant.get!int == 5);
}
@nogc nothrow pure @safe unittest
{
static assert(is(Variant!(int, float)));
static assert(is(Variant!int));
}
@nogc nothrow pure @safe unittest
{
static struct WithDestructorAndCopy
{
this(this) @nogc nothrow pure @safe
{
}
~this() @nogc nothrow pure @safe
{
}
}
static assert(is(Variant!WithDestructorAndCopy));
}
// Equality compares the underlying objects
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant1 = 5;
Variant!(int, double) variant2 = 5;
assert(variant1 == variant2);
}
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant1 = 5;
Variant!(int, double) variant2 = 6;
assert(variant1 != variant2);
}
// Differently typed variants aren't equal
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant1 = 5;
Variant!(int, double) variant2 = 5.0;
assert(variant1 != variant2);
}
// Uninitialized variants are equal
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant1, variant2;
assert(variant1 == variant2);
}
// Calls postblit constructor of the active type
@nogc nothrow pure @safe unittest
{
static struct S
{
bool called;
this(this)
{
this.called = true;
}
}
Variant!(int, S) variant1 = S();
auto variant2 = variant1;
assert(variant2.get!S.called);
}
// Variant.type is null if the Variant doesn't have a value
@nogc nothrow pure @safe unittest
{
Variant!(int, uint) variant;
assert(variant.type is null);
}
// Variant can contain only distinct types
@nogc nothrow pure @safe unittest
{
static assert(!is(Variant!(int, int)));
}