66 Commits

Author SHA1 Message Date
d7dfa3f6f1 net.ip.Address6.toString() recommended notation
Fix #65.
2019-03-01 08:28:36 +01:00
8fd0452cd0 algorithm.iteration: Add singleton()
... iterating over a single value.
2019-02-25 09:27:03 +01:00
df99ea45f2 range.adapter: new arrayInserter 2019-02-24 13:14:30 +01:00
87ba58098e format.sformat: Support range-based toString() 2019-02-19 06:39:39 +01:00
5a134ce768 net.ip: Implement .toString() with output ranges 2019-02-16 08:37:45 +01:00
0835edce1d range.adapter: Add container-range adapters. Fix #67 2019-02-16 08:36:50 +01:00
a786bdbec5 Use word-wise hash instead of FNV-1a for arrays of word-aligned scalars
Also special case int-aligned scalars on 64-bit machines.
On a 64-bit machine hashing an array of pointers is now ~5.95x faster
with LDC2 and ~8.54x faster with DMD, and hashing an array of ints is
~3.34x faster with LDC2 and ~8.12x faster with DMD.
2019-02-12 10:34:18 -05:00
0bef2ef76d Add sformat() writing to an output range 2019-02-12 07:37:24 +01:00
1d3d750adb Update dmd to 2.084.1 2019-02-11 22:14:59 +01:00
0c8f1eb4ce Deprecate InputRange source for OutputRanges
An output range for E won't be automatically an output range for [E]
anymore. The same, an output range for [E] won't be automatically an
output range for E. Automatic E <-> [E] conversion seems to be a nice
feature at first glance, but it causes much ambiguity.

1) If I want that my output range accepts only UTF-8 strings but not
single characters (because it could be only part of a code point and
look like broken UTF-8 without the remaining code units), I can't do it
because an OutputRange(R, E) can't distinguish between char and string.

2) Here is an example from 2013:

import std.range;
import std.stdio;
Appender!(const(char)[][]) app;
put(app, "aasdf");
put(app, 'b');
writeln(app.data);

This outputs: ["aasdf", "\0"].
Whether it is a common case or not, such code just shouldn't compile.
2019-02-06 07:26:28 +01:00
bf197a6554 Deprecate put() as an OutputRange primitive 2019-02-04 10:49:12 +01:00
7af5c30820 move(): Give compiler an opportunity to optimize
Fix #75.
2019-02-01 06:33:41 +01:00
c1535e8752 typecons.Variant: Make public. Fix #73 2019-01-31 06:33:19 +01:00
5453f6417f typecons.Option: Deprecate alias this 2019-01-30 06:58:02 +01:00
410b865df9 typecons.Option: Fix assigning nothing 2019-01-29 08:24:58 +01:00
4566cf7857 meta.metafunction: Add Enumerate and EnumerateFrom 2019-01-28 08:30:54 +01:00
0a2798cc96 Call postblit when emplacing a struct. Fix #81 2019-01-27 07:18:53 +01:00
a505a033ab net.ip.Address: Address4/Address6 compatibility 2019-01-25 13:07:32 +01:00
1f02ba5042 net.ip: Add Address4 and Address6 wrapper 2019-01-24 07:14:15 +01:00
50aaa170fb Merge remote-tracking branch 'n8sh/retro-slicing' 2019-01-09 18:17:41 +01:00
ff7d20f167 retro supports slicing if source range supports slicing 2019-01-08 20:19:53 -05:00
03e21d4368 Remove deprecated memory.op.cmp and Entropy class 2018-12-21 20:05:23 +01:00
c293c6c809 container.array: Fix assigning non-copyable values
Fix #59.
2018-12-18 05:37:52 +01:00
e93898d837 Update dmd to 2.083.1 2018-12-17 18:04:36 +01:00
49d7452b33 Make containers work with non-copyable elements
It is the first step. The containers can be at least created with
non-copyable structs without compilation errors now.
Fix #69.
2018-11-24 06:25:55 +01:00
884dc30953 Fix emplacing POD structs 2018-11-23 13:36:31 +01:00
e67a05138e range.primitive: Support non copyable elements
... in all ranges.
2018-11-19 21:37:58 +01:00
7585bf59e7 Add test.stub. Fix #51 2018-11-18 06:32:10 +01:00
0a121d9d19 Disable length when taking from a lengthless range
Fix #79.
2018-11-13 08:29:51 +01:00
9e6f5c3105 Add algorithm.mutation.rotate 2018-11-12 07:54:52 +01:00
3f66782368 Add support for DMD 2.083.0 2018-11-11 07:27:25 +01:00
3c8f6e3435 Merge remote-tracking branch 'n8sh/take-slice' 2018-11-07 07:08:52 +01:00
ee8b7ef719 Merge remote-tracking branch 'retro-retro' 2018-11-06 16:59:57 +01:00
6b22cd60df take(take(range,...),n) is take(range, n) and use slicing in take like in takeExactly
Also take!R is the same as takeExactly!R when isInfinite!R.
2018-11-05 22:49:10 -05:00
c290c85088 retro(retro(range)) is range 2018-11-05 18:43:58 -05:00
65e2e344df Use inout in tanya.range.array functions
This is to reduce distinct generated functions in final executable.
Also add `scope` and `return` to function parameters.
2018-11-05 16:40:48 -05:00
184d307e40 Add range primitive sameHead 2018-11-04 06:31:38 +01:00
8aec781e2a memory.op.equal: Fix parameter documentation 2018-10-30 12:57:09 +01:00
1e46109e50 algorithm.mutation.destroyAll: New
Fix #71.
2018-10-29 11:14:33 +01:00
64ceb0330c Merge pull request #74 from n8sh/128-bit-fnv
Add FNV constants for size_t == ucent
2018-10-25 20:05:21 +02:00
b230685595 Add FNV constants for size_t == ucent 2018-10-25 07:07:29 -04:00
ff58b5e81c Add algorithm.mutation.initializeAll 2018-10-24 08:14:15 +02:00
373a192b3a Make hasLvalueElements work with non-copyable 2018-10-22 08:39:38 +02:00
4e8c9bd28f Use new __traits(isZeroInit) to check for a null initializer at compile time instead of runtime 2018-10-21 18:52:02 -04:00
3b5709821a Add algorithm.mutation.uninitializedFill 2018-10-20 10:42:01 +02:00
a04a04bb96 conv.emplace: Don't call a destructor
Don't call the destructor on uninitialized elements.
2018-10-14 11:30:02 +02:00
d0d682ca65 Update dmd to 2.082.1, Update GDC .gitignore 2018-10-12 19:57:49 +02:00
6d01680685 conv.emplace: Fix emplacing structs w/o this() 2018-10-08 17:51:59 +02:00
4f9927a8c3 Add algorithm.mutation.fill() 2018-10-06 16:00:08 +02:00
a8b18d7603 Deprecate Entropy (leaving platform sources alone)
Also introduces unavoidable breaking change in EntropySource interface:
poll() returns Option!ubyte instead of Nullable.
2018-10-05 13:23:57 +02:00
9364112690 net.ip: Parse embedded Ipv4. Fix #64 2018-10-03 20:49:14 +02:00
772e87739c Replace memory.op.cmp with optimized equal version
Deprecate cmp.
Fix #68.
2018-10-02 08:55:29 +02:00
2a90a812db Add algorithm.searching.count 2018-09-30 15:25:10 +02:00
e68fcc3a38 Remove code deprecated in 0.11.2 and earlier
- conv.to!String
- meta.metafunction.Tuple
- range.adapter.take
- range.adapter.takeExactly
- range.primitive: put()-ting input range into an output one
2018-09-29 09:00:43 +02:00
c5eb2f27be Add algorithm.iteration 2018-09-28 05:40:33 +02:00
349e6dfede Create separate travis job for D-Scanner 2018-09-26 06:30:05 +02:00
fd133554f3 net.ip: Implement opCmp. Fix #63 2018-09-24 06:45:44 +02:00
9ac56c50f1 typecons: Add option constructor function 2018-09-23 06:59:41 +02:00
03b45ae441 Add typecons.tuple(), Tuple construction function 2018-09-22 07:32:30 +02:00
31d4f30a49 functional.forward: Fix template visibility bug
Because of the private template forwardOne, forward couldn't be used in
other modules. forwardOne cannot be a local template either since it
accepts an alias as its template parameter.
2018-09-21 06:23:59 +02:00
180c4d3956 typecons.Option: Implement toHash forwarder 2018-09-18 22:27:54 +02:00
b0dc7b59e5 Add predicate support for algorithm.comparison.equal 2018-09-17 19:17:39 +02:00
eb796e0ddf Add bitmanip.BitFlags 2018-09-16 19:07:55 +02:00
e5569e5fea meta.trait.EnumMembers: Fix one-member enums
Produce a tuple for an enum with only one member.
2018-09-15 06:06:17 +02:00
b831a05407 Introduce hash.lookup.isHashFunction trait
Fix #66.
2018-09-14 15:16:08 +02:00
b6d1766d58 Implement compare algorithm. Fix #50 2018-09-11 10:05:15 +02:00
39 changed files with 4312 additions and 1405 deletions

2
.gitignore vendored
View File

@ -10,7 +10,7 @@ dub.selections.json
__test__*__
__test__*__.core
/tanya-test-*
/dub_platform_probe-*
/dub_platform_probe[_-]*
/docs/
/docs.json

View File

@ -1,37 +1,62 @@
sudo: false
os:
- linux
- osx
- linux
- osx
language: d
d:
- dmd-2.082.0
- dmd-2.081.2
- dmd-2.084.1
- dmd-2.083.1
- dmd-2.082.1
env:
global:
- LATEST=2.084.1
matrix:
- ARCH=x86_64
- ARCH=x86
matrix:
include:
- name: D-Scanner
d: dmd-$LATEST
env: DSCANNER=0.6.0
os: linux
- name: DDoc
d: dmd-$LATEST
env: DDOC=true
os: linux
allow_failures:
- name: D-Scanner
d: dmd-$LATEST
env: DSCANNER=0.6.0
os: linux
addons:
apt:
packages:
- gcc-multilib
before_script:
- if [ "`$DC --version | head -n 1 | grep 'v2.082.0'`" ]; then
- if [ "`$DC --version | head -n 1 | grep v$LATEST`" ] &&
[ -z "$DSCANNER$DDOC" ]; then
export UNITTEST="unittest-cov";
fi
script:
- dub test -b ${UNITTEST:-unittest} --arch=$ARCH --compiler=$DC
- if [ "$UNITTEST" ] && [ "$ARCH" = "x86_64" ] && [ "$TRAVIS_OS_NAME" = "linux" ];
then
dub fetch dscanner --version=0.5.10;
dub run dscanner -- --styleCheck ./source/;
- if [ -n "$DDOC" ]; then
dub build -b ddox --compiler=$DC;
elif [ -z "$DSCANNER" ]; then
dub test -b ${UNITTEST:-unittest} --arch=$ARCH --compiler=$DC;
else
dub fetch dscanner --version=$DSCANNER;
FILES=$(find source -type f);
dub run dscanner -- --styleCheck $FILES;
fi
after_success:
- test "$UNITTEST" && bash <(curl -s https://codecov.io/bash)
- test "$UNITTEST" && bash <(curl -s https://codecov.io/bash)

View File

@ -25,6 +25,7 @@ Tanya consists of the following packages and (top-level) modules:
* `algorithm`: Collection of generic algorithms.
* `async`: Event loop (epoll, kqueue and IOCP).
* `bitmanip`: Bit manipulation.
* `container`: Queue, Array, Singly and doubly linked lists, Buffers, UTF-8
string, Set, Hash table.
* `conv`: This module provides functions for converting between different
@ -173,9 +174,10 @@ parameter is used)
### Supported compilers
| DMD | GCC |
|:-------:|:------:|
| 2.082.0 | gdc-8 |
| 2.081.2 | gdc-7 |
|:-------:|:---------------:|
| 2.084.1 | gdc-8 (2.081.2) |
| 2.083.1 | gdc-7 (2.081.2) |
| 2.082.1 | |
### Release management

View File

@ -4,16 +4,22 @@ os: Visual Studio 2015
environment:
matrix:
- DC: dmd
DVersion: 2.082.0
DVersion: 2.084.1
arch: x64
- DC: dmd
DVersion: 2.082.0
DVersion: 2.084.1
arch: x86
- DC: dmd
DVersion: 2.081.2
DVersion: 2.083.1
arch: x64
- DC: dmd
DVersion: 2.081.2
DVersion: 2.083.1
arch: x86
- DC: dmd
DVersion: 2.082.1
arch: x64
- DC: dmd
DVersion: 2.082.1
arch: x86
skip_tags: true

View File

@ -6,9 +6,9 @@ rule archive
build abs.o: gas x64/linux/math/abs.S
build log.o: gas x64/linux/math/log.S
build cmp.o: gas x64/linux/memory/cmp.S
build equal.o: gas x64/linux/memory/equal.S
build fill.o: gas x64/linux/memory/fill.S
build copy.o: gas x64/linux/memory/copy.S
build syscall.o: gas x64/linux/syscall.S
build tanya.a: archive syscall.o copy.o fill.o cmp.o log.o abs.o
build tanya.a: archive syscall.o copy.o fill.o equal.o log.o abs.o

View File

@ -1,20 +1,19 @@
.text
/*
* cmpMemory.
* equalMemory.
*
* rdi - r1 length
* rsi - r1 data.
* rdx - r2 length.
* rcx - r2 data.
*/
.globl _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi
.type _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi, @function
_D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi:
.globl _D5tanya6memory2op11equalMemoryFNaNbNixAvxQdZb
.type _D5tanya6memory2op11equalMemoryFNaNbNixAvxQdZb, @function
_D5tanya6memory2op11equalMemoryFNaNbNixAvxQdZb:
// Compare the lengths
cmp %rdx, %rdi
jl less
jg greater
jne not_equal
mov %rcx, %rdi
@ -26,8 +25,7 @@ _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi:
naligned:
cmpsb
jl less
jg greater
jne not_equal
dec %rdx
test $0x07, %edi
@ -38,8 +36,7 @@ _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi:
shr $0x03, %rcx
repe cmpsq
jl less
jg greater
jne not_equal
and $0x07, %edx
jz equal
@ -49,19 +46,14 @@ _D5tanya6memory2op9cmpMemoryFNaNbNixAvxQdZi:
cmp $0x0, %rcx
repe cmpsb
jl less
jg greater
jne not_equal
equal:
mov $0x01, %rax // Return 1
jmp end
not_equal:
xor %rax, %rax // Return 0
jmp end
greater:
mov $0x01, %rax
jmp end
less:
mov $-0x01, %rax
end:
ret

View File

@ -15,8 +15,8 @@
module tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.math : isNaN;
import tanya.memory.op;
import tanya.math;
static import tanya.memory.op;
import tanya.meta.metafunction;
import tanya.meta.trait;
import tanya.meta.transform;
@ -278,6 +278,7 @@ if (isForwardRange!Range && isOrderingComparable!(ElementType!Range))
* If the ranges have different lengths, they aren't equal.
*
* Params:
* pred = Predicate used to compare individual element pairs.
* R1 = First range type.
* R2 = Second range type.
* r1 = First range.
@ -286,14 +287,16 @@ if (isForwardRange!Range && isOrderingComparable!(ElementType!Range))
* Returns: $(D_KEYWORD true) if both ranges are equal, $(D_KEYWORD false)
* otherwise.
*/
bool equal(R1, R2)(R1 r1, R2 r2)
if (allSatisfy!(isInputRange, R1, R2) && is(typeof(r1.front == r2.front)))
bool equal(alias pred = (auto ref a, auto ref b) => a == b, R1, R2)
(R1 r1, R2 r2)
if (allSatisfy!(isInputRange, R1, R2)
&& is(typeof(pred(r1.front, r2.front)) == bool))
{
static if (isDynamicArray!R1
&& is(R1 == R2)
&& __traits(isPOD, ElementType!R1))
{
return cmp(r1, r2) == 0;
return tanya.memory.op.equal(r1, r2);
}
else
{
@ -306,7 +309,7 @@ if (allSatisfy!(isInputRange, R1, R2) && is(typeof(r1.front == r2.front)))
}
for (; !r1.empty && !r2.empty; r1.popFront(), r2.popFront())
{
if (r1.front != r2.front)
if (!pred(r1.front, r2.front))
{
return false;
}
@ -331,3 +334,130 @@ if (allSatisfy!(isInputRange, R1, R2) && is(typeof(r1.front == r2.front)))
int[3] range2 = [1, 2, 3];
assert(!equal(range1[], range2[]));
}
/**
* Compares element-wise two ranges for ordering.
*
* $(D_PSYMBOL compare) returns a negative value if $(D_PARAM r1) is less than
* $(D_PARAM r2), a positive value if $(D_PARAM r2) is less than $(D_PARAM r1),
* or `0` if $(D_PARAM r1) and $(D_PARAM r2) equal.
*
* $(D_PSYMBOL compare) iterates both ranges in lockstep. Whichever of them
* contains an element that is greater than the respective element at the same
* position in the other range is the greater one of the two.
*
* If one of the ranges becomes empty when iterating, but all elements equal so
* far, the range with more elements is the greater one.
*
* If $(D_PARAM pred) is given, it is used for comparison. $(D_PARAM pred) is
* called as $(D_INLINECODE pred(r1.front, r2.front)) and
* $(D_INLINECODE pred(r2.front, r1.front)) to perform three-way comparison.
* $(D_PARAM pred) should return a $(D_KEYWORD bool).
*
* If $(D_PARAM pred) is not given, but the element type of $(D_PARAM R1)
* defines `opCmp()` for the element type of $(D_PARAM R2), `opCmp()` is used.
*
* Otherwise the comparison is perfomed using the basic comparison operators.
*
* Params:
* pred = Predicate used for comparison.
* R1 = First range type.
* R2 = Second range type.
* r1 = First range.
* r2 = Second range.
*
* Returns: A negative value if $(D_PARAM r1) is less than $(D_PARAM r2), a
* positive value if $D(_PARAM r2) is less than $(D_PARAM r1), `0`
* otherwise.
*/
int compare(alias pred, R1, R2)(R1 r1, R2 r2)
if (allSatisfy!(isInputRange, R1, R2)
&& is(typeof(pred(r1.front, r2.front)) == bool)
&& is(typeof(pred(r2.front, r1.front)) == bool))
{
alias predImpl = (ref r1, ref r2) {
return pred(r2.front, r1.front) - pred(r1.front, r2.front);
};
return compareImpl!(predImpl, R1, R2)(r1, r2);
}
/// ditto
int compare(R1, R2)(R1 r1, R2 r2)
if (allSatisfy!(isInputRange, R1, R2)
&& is(typeof(r1.front < r2.front || r2.front < r1.front)))
{
static if (is(typeof(r1.front.opCmp(r2.front)) == int))
{
alias pred = (ref r1, ref r2) => r1.front.opCmp(r2.front);
}
else
{
alias pred = (ref r1, ref r2) {
return (r2.front < r1.front) - (r1.front < r2.front);
};
}
return compareImpl!(pred, R1, R2)(r1, r2);
}
///
@nogc nothrow pure @safe unittest
{
assert(compare("abc", "abc") == 0);
assert(compare("abcd", "abc") > 0);
assert(compare("ab", "abc") < 0);
assert(compare("abc", "abcd") < 0);
assert(compare("abc", "ab") > 0);
assert(compare("aec", "abc") > 0);
assert(compare("aac", "abc") < 0);
assert(compare("abc", "aec") < 0);
assert(compare("abc", "aab") > 0);
assert(compare("aacd", "abc") < 0);
assert(compare("abc", "aacd") > 0);
assert(compare!((a, b) => a > b)("aec", "abc") < 0);
assert(compare!((a, b) => a > b)("aac", "abc") > 0);
}
private int compareImpl(alias pred, R1, R2)(ref R1 r1, ref R2 r2)
{
for (; !r1.empty || !r2.empty; r1.popFront(), r2.popFront())
{
if (r1.empty)
{
return -1;
}
else if (r2.empty)
{
return 1;
}
const comparison = pred(r1, r2);
if (comparison != 0)
{
return comparison;
}
}
return 0;
}
@nogc nothrow pure @safe unittest
{
static struct OpCmp(int value)
{
int opCmp(OpCmp) @nogc nothrow pure @safe
{
return value;
}
}
{
OpCmp!(-1)[1] range;
assert(compare(range[], range[]) < 0);
}
{
OpCmp!1[1] range;
assert(compare(range[], range[]) > 0);
}
{
OpCmp!0[1] range;
assert(compare(range[], range[]) == 0);
}
}

View File

@ -3,13 +3,13 @@
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Range adapters.
* Iteration algorithms.
*
* A range adapter wraps another range and modifies the way, how the original
* These algorithms wrap other ranges and modify the way, how the original
* range is iterated, or the order in which its elements are accessed.
*
* All adapters are lazy algorithms, they request the next element of the
* adapted range on demand.
* All algorithms in this module are lazy, they request the next element of the
* original range on demand.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
@ -22,9 +22,13 @@ module tanya.algorithm.iteration;
import tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range;
import tanya.typecons;
version (unittest) import tanya.test.stub;
private mixin template Take(R, bool exactly)
private struct Take(R, bool exactly)
{
private R source;
size_t length_;
@ -73,14 +77,17 @@ private mixin template Take(R, bool exactly)
}
else
{
return length == 0 || this.source.empty;
return this.length_ == 0 || this.source.empty;
}
}
static if (exactly || hasLength!R)
{
@property size_t length()
{
return this.length_;
}
}
static if (hasAssignableElements!R)
{
@ -187,6 +194,22 @@ private mixin template Take(R, bool exactly)
}
}
}
static if (!exactly && hasSlicing!R)
{
auto opSlice(size_t i, size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
do
{
return typeof(this)(this.source[i .. j], length);
}
}
version (unittest) static assert(isInputRange!Take);
}
/**
@ -212,25 +235,34 @@ private mixin template Take(R, bool exactly)
auto take(R)(R range, size_t n)
if (isInputRange!R)
{
static struct Take
static if (hasSlicing!R && hasLength!R)
{
mixin .Take!(R, false);
static if (hasSlicing!R)
if (range.length <= n)
return range;
else
return range[0 .. n];
}
// Special case: take(take(...), n)
else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
{
auto opSlice(size_t i, size_t j)
in
if (n > range.length_)
n = range.length_;
static if (exact)
// `take(takeExactly(r, n0), n)` is rewritten `takeExactly(r, min(n0, n))`.
return Take!(RRange, true)(range.source, n);
else
// `take(take(r, n0), n)` is rewritten `take(r, min(n0, n))`.
return Take!(RRange, false)(range.source, n);
}
else static if (isInfinite!R)
{
assert(i <= j);
assert(j <= length);
// If the range is infinite then `take` is the same as `takeExactly`.
return Take!(R, true)(range, n);
}
do
else
{
return typeof(this)(this.source[i .. j], length);
return Take!(R, false)(range, n);
}
}
}
return Take(range, n);
}
///
@ -290,6 +322,18 @@ if (isInputRange!R)
assert(t.empty);
}
// length is unknown when taking from a range without length
@nogc nothrow pure @safe unittest
{
static struct R
{
mixin InputRangeStub;
}
auto actual = take(R(), 100);
static assert(!hasLength!(typeof(actual)));
}
/**
* Takes exactly $(D_PARAM n) elements from $(D_PARAM range).
*
@ -315,13 +359,15 @@ if (isInputRange!R)
{
return range[0 .. n];
}
// Special case: takeExactly(take(range, ...), n) is takeExactly(range, n)
else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
{
assert(n <= range.length_);
return Take!(RRange, true)(range.source, n);
}
else
{
static struct TakeExactly
{
mixin Take!(R, true);
}
return TakeExactly(range, n);
return Take!(R, true)(range, n);
}
}
@ -407,3 +453,403 @@ if (isInputRange!R)
assert(slice.back == 3);
}
}
// Reverse-access-order range returned by `retro`.
private struct Retro(Range)
{
Range source;
@disable this();
private this(Range source)
{
this.source = source;
}
Retro save()
{
return this;
}
@property auto ref front()
in (!empty)
{
return this.source.back;
}
void popFront()
in (!empty)
{
this.source.popBack();
}
@property auto ref back()
in (!empty)
{
return this.source.front;
}
void popBack()
in (!empty)
{
this.source.popFront();
}
@property bool empty()
{
return this.source.empty;
}
static if (hasLength!Range)
{
@property size_t length()
{
return this.source.length;
}
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
auto ref opIndex(size_t i)
in (i < length)
{
return this.source[$ - ++i];
}
}
static if (hasLength!Range && hasSlicing!Range)
{
alias opDollar = length;
auto opSlice(size_t i, size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
do
{
return typeof(this)(this.source[$-j .. $-i]);
}
}
static if (hasAssignableElements!Range)
{
@property void front(ref ElementType!Range value)
in (!empty)
{
this.source.back = value;
}
@property void front(ElementType!Range value)
in (!empty)
{
this.source.back = move(value);
}
@property void back(ref ElementType!Range value)
in (!empty)
{
this.source.front = value;
}
@property void back(ElementType!Range value)
in (!empty)
{
this.source.front = move(value);
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
void opIndexAssign(ref ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = value;
}
void opIndexAssign(ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = move(value);
}
}
}
version (unittest) static assert(isBidirectionalRange!Retro);
}
/**
* Iterates a bidirectional range backwards.
*
* If $(D_PARAM Range) is a random-access range as well, the resulting range
* is a random-access range too.
*
* Params:
* Range = Bidirectional range type.
* range = Bidirectional range.
*
* Returns: Bidirectional range with the elements order reversed.
*/
auto retro(Range)(return Range range)
if (isBidirectionalRange!Range)
{
// Special case: retro(retro(range)) is range
static if (is(Range == Retro!RRange, RRange))
return range.source;
else
return Retro!Range(range);
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[3] given = [1, 2, 3];
const int[3] expected = [3, 2, 1];
auto actual = retro(given[]);
assert(actual.length == expected.length);
assert(!actual.empty);
assert(equal(actual, expected[]));
}
// Elements are accessible in reverse order
@nogc nothrow pure @safe unittest
{
const int[3] given = [1, 2, 3];
auto actual = retro(given[]);
assert(actual.back == given[].front);
assert(actual[0] == 3);
assert(actual[2] == 1);
actual.popBack();
assert(actual.back == 2);
assert(actual[1] == 2);
// Check slicing.
auto slice = retro(given[])[1 .. $];
assert(slice.length == 2 && slice.front == 2 && slice.back == 1);
}
// Elements can be assigned
@nogc nothrow pure @safe unittest
{
int[4] given = [1, 2, 3, 4];
auto actual = retro(given[]);
actual.front = 5;
assert(given[].back == 5);
actual.back = 8;
assert(given[].front == 8);
actual[2] = 10;
assert(given[1] == 10);
}
private struct SingletonByValue(E)
{
private Option!E element;
@disable this();
private this(U)(ref U element)
if (is(U == E))
{
this.element = move(element);
}
private this(U)(ref U element)
if (is(Unqual!U == Option!(Unqual!E)) || is(Unqual!U == Option!(const E)))
{
if (!element.isNothing)
{
this.element = element.get;
}
}
@property ref inout(E) front() inout
in (!empty)
{
return this.element.get;
}
alias back = front;
void popFront()
in (!empty)
{
this.element.reset();
}
alias popBack = popFront;
@property bool empty() const
{
return this.element.isNothing;
}
@property size_t length() const
{
return !this.element.isNothing;
}
auto save()
{
return SingletonByValue!E(this.element);
}
auto save() const
{
return SingletonByValue!(const E)(this.element);
}
ref inout(E) opIndex(size_t i) inout
in (!empty)
in (i == 0)
{
return this.element.get;
}
}
private struct SingletonByRef(E)
{
private E* element;
@disable this();
private this(return ref E element) @trusted
{
this.element = &element;
}
@property ref inout(E) front() inout return
in (!empty)
{
return *this.element;
}
alias back = front;
void popFront()
in (!empty)
{
this.element = null;
}
alias popBack = popFront;
@property bool empty() const
{
return this.element is null;
}
@property size_t length() const
{
return this.element !is null;
}
auto save() return
{
return typeof(this)(*this.element);
}
auto save() const return
{
return SingletonByRef!(const E)(*this.element);
}
ref inout(E) opIndex(size_t i) inout return
in (!empty)
in (i == 0)
{
return *this.element;
}
}
/**
* Creates a bidirectional and random-access range with the single element
* $(D_PARAM element).
*
* If $(D_PARAM element) is passed by value the resulting range stores it
* internally. If $(D_PARAM element) is passed by reference, the resulting
* range keeps only a pointer to the element.
*
* Params:
* E = Element type.
* element = Element.
*
* Returns: A range with one element.
*/
auto singleton(E)(return E element)
if (isMutable!E)
{
return SingletonByValue!E(element);
}
/// ditto
auto singleton(E)(return ref E element)
{
return SingletonByRef!E(element);
}
///
@nogc nothrow pure @safe unittest
{
auto singleChar = singleton('a');
assert(singleChar.length == 1);
assert(singleChar.front == 'a');
singleChar.popFront();
assert(singleChar.empty);
}
// Singleton range is bidirectional and random-access
@nogc nothrow pure @safe unittest
{
static assert(isBidirectionalRange!(typeof(singleton('a'))));
static assert(isRandomAccessRange!(typeof(singleton('a'))));
assert({ char a; return isBidirectionalRange!(typeof(singleton(a))); });
assert({ char a; return isRandomAccessRange!(typeof(singleton(a))); });
}
@nogc nothrow pure @safe unittest
{
char a = 'a';
auto single = singleton(a);
assert(single.front == 'a');
assert(single.back == 'a');
assert(single[0] == 'a');
assert(single.length == 1);
assert(!single.empty);
}
// popFront makes SingletonByRef empty
@nogc nothrow pure @safe unittest
{
char a = 'a';
auto single = singleton(a);
single.popFront();
assert(single.empty);
assert(single.length == 0);
assert(single.empty);
}
// popBack makes SingletonByRef empty
@nogc nothrow pure @safe unittest
{
char a = 'b';
auto single = singleton(a);
single.popBack();
assert(single.empty);
assert(single.length == 0);
assert(single.empty);
}

View File

@ -5,7 +5,7 @@
/**
* Algorithms that modify its arguments.
*
* Copyright: Eugene Wissner 2017-2018.
* Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -14,10 +14,12 @@
*/
module tanya.algorithm.mutation;
import tanya.conv;
static import tanya.memory.op;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range;
version (unittest) import tanya.test.stub;
private void deinitialize(bool zero, T)(ref T value)
{
@ -87,6 +89,12 @@ do
tanya.memory.op.copy((&source)[0 .. 1], (&target)[0 .. 1]);
static if (hasElaborateCopyConstructor!T || hasElaborateDestructor!T)
{
static if (__VERSION__ >= 2083) // __traits(isZeroInit) available.
{
deinitialize!(__traits(isZeroInit, T))(source);
}
else
{
if (typeid(T).initializer().ptr is null)
{
@ -98,6 +106,7 @@ do
}
}
}
}
else
{
target = source;
@ -214,9 +223,16 @@ void move(T)(ref T source, ref T target)
/// ditto
T move(T)(ref T source) @trusted
{
static if (hasElaborateCopyConstructor!T || hasElaborateDestructor!T)
{
T target = void;
moveEmplace(source, target);
return target;
}
else
{
return source;
}
}
///
@ -293,7 +309,7 @@ void swap(T)(ref T a, ref T b) @trusted
* $(D_PARAM source) elements.
*/
Target copy(Source, Target)(Source source, Target target)
if (isInputRange!Source && isOutputRange!(Target, Source))
if (isInputRange!Source && isOutputRange!(Target, ElementType!Source))
in
{
static if (hasLength!Source && hasLength!Target)
@ -373,12 +389,9 @@ do
static struct OutPutRange
{
int value;
void put(int value) @nogc nothrow pure @safe
in
{
assert(this.value == 0);
}
do
void opCall(int value) @nogc nothrow pure @safe
in (this.value == 0)
{
this.value = value;
}
@ -388,3 +401,296 @@ do
assert(copy(source[], target).value == 5);
}
/**
* Fills $(D_PARAM range) with $(D_PARAM value).
*
* Params:
* Range = Input range type.
* Value = Filler type.
* range = Input range.
* value = Filler.
*/
void fill(Range, Value)(Range range, auto ref Value value)
if (isInputRange!Range && isAssignable!(ElementType!Range, Value))
{
static if (!isDynamicArray!Range && is(typeof(range[] = value)))
{
range[] = value;
}
else
{
for (; !range.empty; range.popFront())
{
range.front = value;
}
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
int[6] actual;
const int[6] expected = [1, 1, 1, 1, 1, 1];
fill(actual[], 1);
assert(equal(actual[], expected[]));
}
// [] is called where possible
@nogc nothrow pure @system unittest
{
static struct Slice
{
bool* slicingCalled;
int front() @nogc nothrow pure @safe
{
return 0;
}
void front(int) @nogc nothrow pure @safe
{
}
void popFront() @nogc nothrow pure @safe
{
}
bool empty() @nogc nothrow pure @safe
{
return true;
}
void opIndexAssign(int) @nogc nothrow pure @safe
{
*this.slicingCalled = true;
}
}
bool slicingCalled;
auto range = Slice(&slicingCalled);
fill(range, 0);
assert(slicingCalled);
}
/**
* Fills $(D_PARAM range) with $(D_PARAM value) assuming the elements of the
* $(D_PARAM range) aren't initialized.
*
* Params:
* Range = Input range type.
* Value = Initializer type.
* range = Input range.
* value = Initializer.
*/
void uninitializedFill(Range, Value)(Range range, auto ref Value value)
if (isInputRange!Range && hasLvalueElements!Range
&& isAssignable!(ElementType!Range, Value))
{
static if (hasElaborateDestructor!(ElementType!Range))
{
for (; !range.empty; range.popFront())
{
ElementType!Range* p = &range.front;
emplace!(ElementType!Range)(cast(void[]) (p[0 .. 1]), value);
}
}
else
{
fill(range, value);
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
int[6] actual = void;
const int[6] expected = [1, 1, 1, 1, 1, 1];
uninitializedFill(actual[], 1);
assert(equal(actual[], expected[]));
}
/**
* Initializes all elements of the $(D_PARAM range) assuming that they are
* uninitialized.
*
* Params:
* Range = Input range type
* range = Input range.
*/
void initializeAll(Range)(Range range) @trusted
if (isInputRange!Range && hasLvalueElements!Range)
{
import tanya.memory.op : copy, fill;
alias T = ElementType!Range;
static if (__VERSION__ >= 2083
&& isDynamicArray!Range
&& __traits(isZeroInit, T))
{
fill!0(range);
}
else
{
static immutable init = T.init;
for (; !range.empty; range.popFront())
{
copy((&init)[0 .. 1], (&range.front)[0 .. 1]);
}
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
int[2] actual = void;
const int[2] expected = [0, 0];
initializeAll(actual[]);
assert(equal(actual[], expected[]));
}
@nogc nothrow pure @safe unittest
{
NonCopyable[] nonCopyable;
initializeAll(nonCopyable);
}
/**
* Destroys all elements in the $(D_PARAM range).
*
* This function has effect only if the element type of $(D_PARAM Range) has
* an elaborate destructor, i.e. it is a $(D_PSYMBOL struct) with an explicit
* or generated by the compiler destructor.
*
* Params:
* Range = Input range type.
* range = Input range.
*/
void destroyAll(Range)(Range range)
if (isInputRange!Range && hasLvalueElements!Range)
{
static if (hasElaborateDestructor!(ElementType!Range))
{
foreach (ref e; range)
{
destroy(e);
}
}
}
///
@nogc nothrow pure @trusted unittest
{
static struct WithDtor
{
private size_t* counter;
~this() @nogc nothrow pure
{
if (this.counter !is null)
{
++(*this.counter);
}
}
}
size_t counter;
WithDtor[2] withDtor = [WithDtor(&counter), WithDtor(&counter)];
destroyAll(withDtor[]);
assert(counter == 2);
}
/**
* Rotates the elements of a union of two ranges.
*
* Performs a left rotation on the given ranges, as if it would be a signle
* range, so that [`front.front`, `back.front`$(RPAREN) is a valid range, that
* is $(D_PARAM back) would continue $(D_PARAM front).
*
* The elements are moved so, that the first element of $(D_PARAM back) becomes
* the first element of $(D_PARAM front) without changing the relative order of
* their elements.
*
* Params:
* Range = Range type.
* front = Left half.
* back = Right half.
*/
void rotate(Range)(Range front, Range back)
if (isForwardRange!Range && hasSwappableElements!Range)
{
auto next = back.save();
while (!front.empty && !next.empty && !sameHead(front, next))
{
swap(front.front, next.front);
front.popFront();
next.popFront();
if (next.empty)
{
next = back.save();
}
else if (front.empty)
{
front = back.save();
back = next.save();
}
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[7] expected = [1, 2, 3, 4, 5, 6, 7];
int[7] actual = [5, 6, 3, 4, 1, 2, 7];
rotate(actual[0 .. 2], actual[4 .. 6]);
assert(equal(actual[], expected[]));
}
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[5] expected = [1, 2, 3, 4, 5];
int[5] actual = [4, 5, 1, 2, 3];
rotate(actual[0 .. 2], actual[2 .. $]);
assert(equal(actual[], expected[]));
}
// Doesn't cause an infinite loop if back is shorter than the front
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[5] expected = [1, 2, 3, 4, 5];
int[5] actual = [3, 4, 5, 1, 2];
rotate(actual[0 .. 3], actual[3 .. $]);
assert(equal(actual[], expected[]));
}
// Doesn't call .front on an empty front
@nogc nothrow pure @safe unittest
{
import tanya.algorithm.comparison : equal;
const int[2] expected = [2, 8];
int[2] actual = expected;
rotate(actual[0 .. 0], actual[]);
assert(equal(actual[], expected[]));
}

View File

@ -0,0 +1,78 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Searching algorithms.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/algorithm/searching.d,
* tanya/algorithm/searching.d)
*/
module tanya.algorithm.searching;
import tanya.range;
/**
* Counts the elements in an input range.
*
* If $(D_PARAM R) has length, $(D_PSYMBOL count) returns it, otherwise it
* iterates over the range and counts the elements.
*
* Params:
* R = Input range type.
* range = Input range.
*
* Returns: $(D_PARAM range) length.
*/
size_t count(R)(R range)
if (isInputRange!R)
{
static if (hasLength!R)
{
return range.length;
}
else
{
size_t counter;
for (; !range.empty; range.popFront(), ++counter)
{
}
return counter;
}
}
///
@nogc nothrow pure @safe unittest
{
int[3] array;
assert(count(array) == 3);
}
@nogc nothrow pure @safe unittest
{
static struct Range
{
private int counter = 3;
int front() const @nogc nothrow pure @safe
{
return this.counter;
}
void popFront() @nogc nothrow pure @safe
{
--this.counter;
}
bool empty() const @nogc nothrow pure @safe
{
return this.counter == 0;
}
}
Range range;
assert(count(range) == 3);
}

View File

@ -318,7 +318,9 @@ final class IOCPLoop : Loop
connection.incoming.insertBack(transport);
reify(transport, EventMask(Event.none), EventMask(Event.read, Event.write));
reify(transport,
EventMask(Event.none),
EventMask(Event.read | Event.write));
pendings.insertBack(connection);
listener.beginAccept(overlapped);

View File

@ -140,7 +140,7 @@ package class StreamTransport : SocketWatcher, DuplexTransport, SocketTransport
{
closing = true;
loop.reify(this,
EventMask(Event.read, Event.write),
EventMask(Event.read | Event.write),
EventMask(Event.write));
}
@ -393,7 +393,9 @@ abstract class SelectorLoop : Loop
transport.socket = client;
}
reify(transport, EventMask(Event.none), EventMask(Event.read, Event.write));
reify(transport,
EventMask(Event.none),
EventMask(Event.read | Event.write));
connection.incoming.insertBack(transport);
}

View File

@ -72,9 +72,9 @@
module tanya.async.loop;
import core.time;
import std.typecons;
import tanya.async.transport;
import tanya.async.watcher;
import tanya.bitmanip;
import tanya.container.buffer;
import tanya.container.list;
import tanya.memory;

359
source/tanya/bitmanip.d Normal file
View File

@ -0,0 +1,359 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Bit manipulation.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/bitmanip.d,
* tanya/bitmanip.d)
*/
module tanya.bitmanip;
import tanya.meta.metafunction;
import tanya.meta.trait;
import tanya.meta.transform;
/**
* Determines whether $(D_PARAM E) is a $(D_KEYWORD enum), whose members can be
* used as bit flags.
*
* This is the case if all members of $(D_PARAM E) are integral numbers that
* are either 0 or positive integral powers of 2.
*
* Params:
* E = Some $(D_KEYWORD enum).
*
* Returns: $(D_KEYWORD true) if $(D_PARAM E) contains only bit flags,
* $(D_KEYWORD false) otherwise.
*/
template isBitFlagEnum(E)
{
enum bool isValid(OriginalType!E x) = x == 0
|| (x > 0 && ((x & (x - 1)) == 0));
static if (isIntegral!E)
{
enum bool isBitFlagEnum = allSatisfy!(isValid, EnumMembers!E);
}
else
{
enum bool isBitFlagEnum = false;
}
}
///
@nogc nothrow pure @safe unittest
{
enum Valid
{
none = 0,
one = 1 << 0,
two = 1 << 1,
}
static assert(isBitFlagEnum!Valid);
enum Invalid
{
one,
two,
three,
four,
}
static assert(!isBitFlagEnum!Invalid);
enum Negative
{
one = -1,
two = -2,
}
static assert(!isBitFlagEnum!Negative);
}
/**
* Validates that $(D_PARAM field) contains only bits from $(D_PARAM E).
*
* Params:
* E = Some $(D_KEYWORD enum).
* field = Bit field.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM field) is valid, $(D_KEYWORD false)
* otherwise.
*/
bool containsBitFlags(E)(E field)
if (isBitFlagEnum!E)
{
OriginalType!E fillField()
{
typeof(return) full;
static foreach (member; EnumMembers!E)
{
full |= member;
}
return full;
}
enum OriginalType!E full = fillField();
return (field & ~full) == OriginalType!E.init;
}
///
@nogc nothrow pure @safe unittest
{
enum E
{
one,
two,
three,
}
assert(containsBitFlags(E.one | E.two));
assert(!containsBitFlags(cast(E) 0x8));
}
/**
* Allows to use $(D_KEYWORD enum) values as a set of bit flags.
*
* $(D_PSYMBOL BitFlags) behaves the same as a bit field of type $(D_PARAM E),
* but does additional cheks to ensure that the bit field contains only valid
* values, this is only values from $(D_PARAM E).
*
* Params:
* E = Some $(D_KEYWORD enum).
*/
struct BitFlags(E)
if (isBitFlagEnum!E)
{
private OriginalType!E field;
/**
* Constructs $(D_PSYMBOL BitFlags) from $(D_PARAM field).
*
* Params:
* field = Bits to be set.
*/
this(E field)
{
this.field = field;
}
/**
* Converts $(D_PSYMBOL BitFlags) to a boolean.
*
* It is $(D_KEYWORD true) if any bit is set, $(D_KEYWORD false) otherwise.
*
* Returns: $(D_KEYWORD true) if this $(D_PSYMBOL BitFlags) contains any
* set bits, $(D_KEYWORD false) otherwise.
*/
bool opCast(T : bool)()
{
return this.field != 0;
}
/**
* Converts to the original type of $(D_PARAM E) ($(D_KEYWORD int) by
* default).
*
* Returns: $(D_KEYWORD this) as $(D_INLINECODE OriginalType!T).
*/
OriginalType!E opCast(T : OriginalType!E)() const
{
return this.field;
}
/**
* Tests (&), sets (|) or toggles (^) bits.
*
* Params:
* op = Operation.
* that = 0 or more bit flags.
*
* Returns: New $(D_PSYMBOL BitFlags) object.
*/
BitFlags opBinary(string op)(E that) const
if (op == "&" || op == "|" || op == "^")
{
BitFlags result = this;
mixin("return result " ~ op ~ "= that;");
}
/// ditto
BitFlags opBinary(string op)(BitFlags that) const
if (op == "&" || op == "|" || op == "^")
{
BitFlags result = this;
mixin("return result " ~ op ~ "= that;");
}
/// ditto
BitFlags opBinaryRight(string op)(E that) const
if (op == "&" || op == "|" || op == "^")
{
BitFlags result = this;
mixin("return result " ~ op ~ "= that;");
}
/**
* Tests (&), sets (|) or toggles (^) bits.
*
* Params:
* op = Operation.
* that = 0 or more bit flags.
*
* Returns: $(D_KEYWORD this).
*/
ref BitFlags opOpAssign(string op)(E that)
if (op == "&" || op == "|" || op == "^")
{
mixin("this.field " ~ op ~ "= that;");
return this;
}
/// ditto
ref BitFlags opOpAssign(string op)(BitFlags that)
if (op == "&" || op == "|" || op == "^")
{
mixin("this.field " ~ op ~ "= that.field;");
return this;
}
/**
* Inverts all bit flags.
*
* Returns: New $(D_PSYMBOL BitFlags) object with all bits inverted.
*/
BitFlags opUnary(string op : "~")() const
{
BitFlags result;
result.field = ~this.field;
return result;
}
/**
* Assigns a bit field.
*
* Params:
* that = Bit field of type $(D_PARAM E).
*
* Returns: $(D_KEYWORD this).
*/
ref BitFlags opAssign(E that)
{
this.field = that;
return this;
}
/**
* Compares this $(D_PSYMBOL BitFlags) object to another bit field.
*
* Params:
* that = $(D_PSYMBOL BitFlags) object or a bit field of type
* $(D_PARAM E).
*
* Returns: $(D_KEYWORD true) if $(D_KEYWORD this) and $(D_PARAM that)
* contain the same bits ,$(D_KEYWORD false) otherwise.
*/
bool opEquals(E that) const
{
return this.field == that;
}
/// ditto
bool opEquals(BitFlags that) const
{
return this.field == that.field;
}
/**
* Generates a hash value of this object.
*
* Returns: Hash value.
*/
size_t toHash() const
{
return cast(size_t) this.field;
}
}
@nogc nothrow pure @safe unittest
{
enum E : int
{
one = 1,
}
// Casts to a boolean
assert(BitFlags!E(E.one));
assert(!BitFlags!E());
// Assigns to and compares with a single value
{
BitFlags!E bitFlags;
bitFlags = E.one;
assert(bitFlags == E.one);
}
// Assigns to and compares with the same type
{
auto bitFlags1 = BitFlags!E(E.one);
BitFlags!E bitFlags2;
bitFlags2 = bitFlags1;
assert(bitFlags1 == bitFlags2);
}
assert((BitFlags!E() | E.one) == BitFlags!E(E.one));
assert((BitFlags!E() | BitFlags!E(E.one)) == BitFlags!E(E.one));
assert(!(BitFlags!E() & BitFlags!E(E.one)));
assert(!(BitFlags!E(E.one) ^ E.one));
assert(BitFlags!E() ^ BitFlags!E(E.one));
assert(~BitFlags!E());
assert(BitFlags!E().toHash() == 0);
assert(BitFlags!E(E.one).toHash() != 0);
// opBinaryRight is allowed
static assert(is(typeof({ E.one | BitFlags!E(); })));
}
/**
* Creates a $(D_PSYMBOL BitFlags) object initialized with $(D_PARAM field).
*
* Params:
* E = Some $(D_KEYWORD enum).
* field = Bits to be set.
*/
BitFlags!E bitFlags(E)(E field)
if (isBitFlagEnum!E)
{
return BitFlags!E(field);
}
///
@nogc nothrow pure @safe unittest
{
enum E
{
one = 1 << 0,
two = 1 << 1,
three = 1 << 2,
}
// Construct with E.one and E.two set
auto flags = bitFlags(E.one | E.two);
// Test wheter E.one is set
assert(flags & E.one);
// Toggle E.one
flags ^= E.one;
assert(!(flags & E.one));
// Set E.three
flags |= E.three;
assert(flags & E.three);
// Clear E.three
flags &= ~E.three;
assert(!(flags & E.three));
}

View File

@ -15,19 +15,15 @@
module tanya.container.array;
import core.checkedint;
import std.algorithm.mutation : bringToFront,
copy,
fill,
initializeAll,
uninitializedFill;
import std.meta;
import tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.exception;
import tanya.functional;
import tanya.memory;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.primitive;
import tanya.range;
version (unittest) import tanya.test.stub;
/**
* Random-access range for the $(D_PSYMBOL Array).
@ -299,7 +295,9 @@ struct Array(T)
* init = Initial value to fill the array with.
* allocator = Allocator.
*/
this(size_t len, T init, shared Allocator allocator = defaultAllocator)
this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{
this(allocator);
reserve(len);
@ -354,9 +352,8 @@ struct Array(T)
(() @trusted => allocator.deallocate(slice(capacity)))();
}
/**
* Copies the array.
*/
static if (isCopyable!T)
{
this(this)
{
auto buf = slice(this.length);
@ -364,6 +361,11 @@ struct Array(T)
this.data = null;
insertBack(buf);
}
}
else
{
@disable this(this);
}
/**
* Removes all elements.
@ -419,28 +421,20 @@ struct Array(T)
*/
@property void length(size_t len) @trusted
{
if (len == length)
{
return;
}
else if (len > length)
if (len > length)
{
reserve(len);
initializeAll(this.data[length_ .. len]);
}
else
{
static if (hasElaborateDestructor!T)
destroyAll(this.data[len .. this.length_]);
}
if (len != length)
{
const T* end = this.data + length_ - 1;
for (T* e = this.data + len; e != end; ++e)
{
destroy(*e);
}
}
}
length_ = len;
}
}
///
@nogc nothrow pure @safe unittest
@ -817,10 +811,11 @@ struct Array(T)
}
do
{
const oldLen = length;
const offset = r.end - this.data;
const oldLength = length;
const after = r.end - this.data;
const inserted = insertBack(el);
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]);
rotate(this.data[after .. oldLength], this.data[oldLength .. length]);
return inserted;
}
@ -859,7 +854,7 @@ struct Array(T)
{
moveBack(el);
}
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]);
rotate(this.data[offset .. oldLen], this.data[oldLen .. length]);
return 1;
}
@ -915,7 +910,7 @@ struct Array(T)
{
moveBack(el);
}
bringToFront(this.data[offset .. oldLen], this.data[oldLen .. length]);
rotate(this.data[offset .. oldLen], this.data[oldLen .. length]);
return 1;
}
@ -1006,7 +1001,7 @@ struct Array(T)
*/
ref T opIndexAssign(E : T)(auto ref E value, size_t pos)
{
return opIndex(pos) = value;
return opIndex(pos) = forward!value;
}
/// ditto
@ -1040,7 +1035,7 @@ struct Array(T)
}
/// ditto
Range opIndexAssign(Range value)
Range opIndexAssign()(Range value)
{
return opSliceAssign(value, 0, length);
}
@ -1334,7 +1329,7 @@ struct Array(T)
}
/// ditto
Range opSliceAssign(Range value, size_t i, size_t j) @trusted
Range opSliceAssign()(Range value, size_t i, size_t j) @trusted
in
{
assert(i <= j);
@ -1554,14 +1549,14 @@ struct Array(T)
{
struct MutableEqualsStruct
{
int opEquals(typeof(this) that) @nogc nothrow pure @safe
bool opEquals(typeof(this) that) @nogc nothrow pure @safe
{
return true;
}
}
struct ConstEqualsStruct
{
int opEquals(const typeof(this) that) const @nogc nothrow pure @safe
bool opEquals(const typeof(this) that) const @nogc nothrow pure @safe
{
return true;
}
@ -1588,15 +1583,10 @@ struct Array(T)
assert(v7[].equal(v8[]));
}
// Destructor can destroy empty arrays
@nogc nothrow pure @safe unittest
{
struct SWithDtor
{
~this() @nogc nothrow pure @safe
{
}
}
auto v = Array!SWithDtor(); // Destructor can destroy empty arrays.
auto v = Array!WithDtor();
}
@nogc nothrow pure @safe unittest
@ -1607,7 +1597,6 @@ struct Array(T)
A a1, a2;
auto v1 = Array!A([a1, a2]);
// Issue 232: https://issues.caraus.io/issues/232.
static assert(is(Array!(A*)));
}
@ -1692,3 +1681,10 @@ struct Array(T)
}
func(array);
}
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(is(Array!NonCopyable));
static assert(is(typeof({ Array!NonCopyable.init[0] = NonCopyable(); })));
}

View File

@ -20,6 +20,7 @@ import tanya.memory.allocator;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.typecons;
version (unittest) import tanya.test.stub;
package struct SEntry(T)
{
@ -59,12 +60,12 @@ package struct Bucket(K, V = void)
}
BucketStatus status = BucketStatus.empty;
this(ref K key)
this()(ref K key)
{
this.key = key;
}
@property void key(ref K key)
@property void key()(ref K key)
{
this.key() = key;
this.status = BucketStatus.used;
@ -170,7 +171,7 @@ package struct HashArray(alias hasher, K, V = void)
.swap(this.length, data.length);
}
void opAssign(ref typeof(this) that)
void opAssign()(ref typeof(this) that)
{
this.array = that.array;
this.lengthIndex = that.lengthIndex;
@ -326,3 +327,13 @@ package struct HashArray(alias hasher, K, V = void)
return false;
}
}
// Can be constructed with non-copyable key/values
@nogc nothrow pure @safe unittest
{
static assert(is(Bucket!NonCopyable));
static assert(is(Bucket!(NonCopyable, NonCopyable)));
static assert(is(HashArray!((ref NonCopyable) => 0U, NonCopyable)));
static assert(is(HashArray!((ref NonCopyable) => 0U, NonCopyable, NonCopyable)));
}

View File

@ -22,6 +22,7 @@ import tanya.memory;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/**
* Bidirectional range whose element type is a tuple of a key and the
@ -68,7 +69,7 @@ struct Range(T)
return this.dataRange.empty();
}
@property void popFront()
void popFront()
in
{
assert(!empty);
@ -87,7 +88,7 @@ struct Range(T)
while (!empty && dataRange.front.status != BucketStatus.used);
}
@property void popBack()
void popBack()
in
{
assert(!empty);
@ -386,7 +387,7 @@ struct ByValue(T)
* hasher = Hash function for $(D_PARAM Key).
*/
struct HashTable(Key, Value, alias hasher = hash)
if (is(typeof(((Key k) => hasher(k))(Key.init)) == size_t))
if (isHashFunction!(hasher, Key))
{
private alias HashArray = .HashArray!(hasher, Key, Value);
private alias Buckets = HashArray.Buckets;
@ -759,7 +760,7 @@ if (is(typeof(((Key k) => hasher(k))(Key.init)) == size_t))
*
* Returns: The number of the inserted elements with a unique key.
*/
size_t insert(ref KeyValue keyValue)
size_t insert()(ref KeyValue keyValue)
{
auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key);
size_t inserted;
@ -773,7 +774,7 @@ if (is(typeof(((Key k) => hasher(k))(Key.init)) == size_t))
}
/// ditto
size_t insert(KeyValue keyValue)
size_t insert()(KeyValue keyValue)
{
auto e = ((ref v) @trusted => &this.data.insert(v))(keyValue.key);
size_t inserted;
@ -1197,3 +1198,16 @@ if (is(typeof(((Key k) => hasher(k))(Key.init)) == size_t))
static assert(is(typeof("asdf" in HashTable!(String, int)())));
static assert(is(typeof(HashTable!(String, int)()["asdf"])));
}
// Can have non-copyable keys and elements
@nogc nothrow pure @safe unittest
{
@NonCopyable @Hashable
static struct S
{
mixin StructStub;
}
static assert(is(HashTable!(S, int)));
static assert(is(HashTable!(int, S)));
static assert(is(HashTable!(S, S)));
}

View File

@ -15,7 +15,6 @@
*/
module tanya.container.list;
import std.algorithm.searching;
import tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.container.entry;
@ -24,6 +23,7 @@ import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.array;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/**
* Forward range for the $(D_PSYMBOL SList).
@ -156,8 +156,9 @@ struct SList(T)
* init = Initial value to fill the list with.
* allocator = Allocator.
*/
this(size_t len, T init, shared Allocator allocator = defaultAllocator)
@trusted
this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{
this(allocator);
if (len == 0)
@ -183,7 +184,18 @@ struct SList(T)
/// ditto
this(size_t len, shared Allocator allocator = defaultAllocator)
{
this(len, T.init, allocator);
this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next = next.next;
}
}
///
@ -272,15 +284,19 @@ struct SList(T)
clear();
}
/**
* Copies the list.
*/
static if (isCopyable!T)
{
this(this)
{
auto list = typeof(this)(this[], this.allocator);
this.head = list.head;
list.head = null;
}
}
else
{
@disable this(this);
}
///
@nogc nothrow pure @safe unittest
@ -513,7 +529,7 @@ struct SList(T)
}
/// ditto
size_t insertBefore(Range r, ref T el) @trusted
size_t insertBefore()(Range r, ref T el) @trusted
in
{
assert(checkRangeBelonging(r));
@ -1121,8 +1137,9 @@ struct DList(T)
* init = Initial value to fill the list with.
* allocator = Allocator.
*/
this(size_t len, T init, shared Allocator allocator = defaultAllocator)
@trusted
this()(size_t len,
auto ref T init,
shared Allocator allocator = defaultAllocator)
{
this(allocator);
if (len == 0)
@ -1151,7 +1168,20 @@ struct DList(T)
/// ditto
this(size_t len, shared Allocator allocator = defaultAllocator)
{
this(len, T.init, allocator);
this(allocator);
if (len == 0)
{
return;
}
Entry* next = this.head = allocator.make!Entry();
foreach (i; 1 .. len)
{
next.next = allocator.make!Entry();
next.next.prev = next;
next = next.next;
}
this.tail = next;
}
///
@ -1243,9 +1273,8 @@ struct DList(T)
clear();
}
/**
* Copies the list.
*/
static if (isCopyable!T)
{
this(this)
{
auto list = typeof(this)(this[], this.allocator);
@ -1253,6 +1282,11 @@ struct DList(T)
this.tail = list.tail;
list.head = list .tail = null;
}
}
else
{
@disable this(this);
}
///
@nogc nothrow pure @safe unittest
@ -1642,7 +1676,7 @@ struct DList(T)
}
/// ditto
size_t insertBefore(Range r, ref T el) @trusted
size_t insertBefore()(Range r, ref T el) @trusted
in
{
assert(checkRangeBelonging(r));
@ -1759,7 +1793,7 @@ struct DList(T)
}
/// ditto
size_t insertAfter(Range r, ref T el) @trusted
size_t insertAfter()(Range r, ref T el) @trusted
in
{
assert(checkRangeBelonging(r));
@ -2356,3 +2390,10 @@ struct DList(T)
assert(!l1.remove(r).empty);
assert(l1 == l2);
}
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(is(SList!NonCopyable));
static assert(is(DList!NonCopyable));
}

View File

@ -22,6 +22,7 @@ import tanya.memory;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
/**
* Bidirectional range that iterates over the $(D_PSYMBOL Set)'s values.
@ -67,7 +68,7 @@ struct Range(T)
return this.dataRange.empty();
}
@property void popFront()
void popFront()
in
{
assert(!empty);
@ -86,7 +87,7 @@ struct Range(T)
while (!empty && dataRange.front.status != BucketStatus.used);
}
@property void popBack()
void popBack()
in
{
assert(!empty);
@ -154,7 +155,7 @@ struct Range(T)
* hasher = Hash function for $(D_PARAM T).
*/
struct Set(T, alias hasher = hash)
if (is(typeof(((T x) => hasher(x))(T.init)) == size_t))
if (isHashFunction!(hasher, T))
{
private alias HashArray = .HashArray!(hasher, T);
private alias Buckets = HashArray.Buckets;
@ -459,7 +460,7 @@ if (is(typeof(((T x) => hasher(x))(T.init)) == size_t))
*
* Returns: Amount of new elements inserted.
*/
size_t insert(ref T value)
size_t insert()(ref T value)
{
auto e = ((ref v) @trusted => &this.data.insert(v))(value);
if (e.status != BucketStatus.used)
@ -470,7 +471,7 @@ if (is(typeof(((T x) => hasher(x))(T.init)) == size_t))
return 0;
}
size_t insert(T value)
size_t insert()(T value)
{
auto e = ((ref v) @trusted => &this.data.insert(v))(value);
if (e.status != BucketStatus.used)
@ -768,8 +769,19 @@ if (is(typeof(((T x) => hasher(x))(T.init)) == size_t))
testFunc(set);
}
// Hasher can take argument by ref
@nogc nothrow pure @safe unittest
{
// Using hasher that takes argument by ref.
Set!(int, (const ref x) => cast(size_t)x) set;
static assert(is(Set!(int, (const ref x) => cast(size_t) x)));
}
// Can have non-copyable elements
@nogc nothrow pure @safe unittest
{
@NonCopyable @Hashable
static struct S
{
mixin StructStub;
}
static assert(is(Set!S));
}

View File

@ -26,9 +26,6 @@
*/
module tanya.container.string;
import std.algorithm.comparison : cmp;
import std.algorithm.mutation : bringToFront;
import std.algorithm.searching;
import tanya.algorithm.comparison;
import tanya.algorithm.mutation;
import tanya.hash.lookup;
@ -1284,14 +1281,14 @@ struct String
int opCmp(S)(auto ref S that) const @trusted
if (is(Unqual!S == String))
{
return cmp(this.data[0 .. length], that.data[0 .. that.length]);
return compare(this.data[0 .. length], that.data[0 .. that.length]);
}
/// ditto
int opCmp(S)(ByCodeUnit!S that) const @trusted
if (is(Unqual!S == char))
{
return cmp(this.data[0 .. length],
return compare(this.data[0 .. length],
that.begin[0 .. that.end - that.begin]);
}
@ -1299,14 +1296,14 @@ struct String
int opCmp(S)(ByCodePoint!S that) const @trusted
if (is(Unqual!S == char))
{
return cmp(this.data[0 .. length],
return compare(this.data[0 .. length],
that.begin[0 .. that.end - that.begin]);
}
/// ditto
int opCmp()(const char[] that) const @trusted
{
return cmp(this.data[0 .. length], that);
return compare(this.data[0 .. length], that);
}
///
@ -1486,6 +1483,8 @@ struct String
///
@nogc pure @safe unittest
{
import tanya.algorithm.searching : count;
auto s = String("Из пословицы слова не выкинешь.");
assert(s.remove(s[5 .. 24]).length == 33);
@ -1531,11 +1530,10 @@ struct String
do
{
const oldLength = length;
const rangeEnd = r.end - this.data;
const after = r.end - this.data;
const inserted = insertBack(el);
auto containerEnd = this.data + oldLength;
bringToFront(ByCodeUnit!char(this, this.data + rangeEnd, containerEnd),
ByCodeUnit!char(this, containerEnd, this.data + length));
rotate(this.data[after .. oldLength], this.data[oldLength .. length]);
return inserted;
}

View File

@ -5,7 +5,7 @@
/**
* This module provides functions for converting between different types.
*
* Copyright: Eugene Wissner 2017-2018.
* Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -14,6 +14,7 @@
*/
module tanya.conv;
import tanya.algorithm.mutation;
import tanya.container.string;
import tanya.format;
import tanya.memory;
@ -26,6 +27,7 @@ import tanya.range.primitive;
version (unittest)
{
import tanya.test.assertion;
import tanya.test.stub;
}
/**
@ -60,15 +62,8 @@ version (unittest)
*/
T emplace(T, U, Args...)(void[] memory, U outer, auto ref Args args)
if (!isAbstractClass!T && isInnerClass!T && is(typeof(T.outer) == U))
in
{
assert(memory.length >= stateSize!T);
}
out (result)
{
assert(memory.ptr is (() @trusted => cast(void*) result)());
}
do
in (memory.length >= stateSize!T)
out (result; memory.ptr is (() @trusted => cast(void*) result)())
{
copy(typeid(T).initializer, memory);
@ -86,15 +81,8 @@ do
/// ditto
T emplace(T, Args...)(void[] memory, auto ref Args args)
if (is(T == class) && !isAbstractClass!T && !isInnerClass!T)
in
{
assert(memory.length == stateSize!T);
}
out (result)
{
assert(memory.ptr is (() @trusted => cast(void*) result)());
}
do
in (memory.length == stateSize!T)
out (result; memory.ptr is (() @trusted => cast(void*) result)())
{
copy(typeid(T).initializer, memory);
@ -139,15 +127,8 @@ do
/// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isAggregateType!T && (Args.length <= 1))
in
{
assert(memory.length >= T.sizeof);
}
out (result)
{
assert(memory.ptr is result);
}
do
in (memory.length >= T.sizeof)
out (result; memory.ptr is result)
{
auto result = (() @trusted => cast(T*) memory.ptr)();
static if (Args.length == 1)
@ -161,43 +142,57 @@ do
return result;
}
/// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isPolymorphicType!T && isAggregateType!T)
in
private void initializeOne(T)(ref void[] memory, ref T* result) @trusted
{
assert(memory.length >= T.sizeof);
}
out (result)
{
assert(memory.ptr is result);
}
do
{
auto result = (() @trusted => cast(T*) memory.ptr)();
static if (!hasElaborateAssign!T && isAssignable!T)
{
*result = T.init;
}
else static if (__VERSION__ >= 2083 // __traits(isZeroInit) available.
&& __traits(isZeroInit, T))
{
memory.ptr[0 .. T.sizeof].fill!0;
}
else
{
static const T init = T.init;
copy((cast(void*) &init)[0 .. T.sizeof], memory);
static immutable T init = T.init;
copy((&init)[0 .. 1], memory);
}
}
/// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isPolymorphicType!T && isAggregateType!T)
in (memory.length >= T.sizeof)
out (result; memory.ptr is result)
{
auto result = (() @trusted => cast(T*) memory.ptr)();
static if (Args.length == 0)
{
static assert(is(typeof({ static T t; })),
"Default constructor is disabled");
}
else static if (is(typeof(T(args))))
{
*result = T(args);
initializeOne(memory, result);
}
else static if (is(typeof(result.__ctor(args))))
{
initializeOne(memory, result);
result.__ctor(args);
}
else static if (Args.length == 1 && is(typeof({ T t = args[0]; })))
{
((ref arg) @trusted =>
copy((cast(void*) &arg)[0 .. T.sizeof], memory))(args[0]);
static if (hasElaborateCopyConstructor!T)
{
result.__postblit();
}
}
else static if (is(typeof({ T t = T(args); })))
{
auto init = T(args);
(() @trusted => moveEmplace(init, *result))();
}
else
{
static assert(false,
@ -245,6 +240,59 @@ do
static assert(is(typeof(emplace!F((void[]).init))));
}
// Can emplace structs without a constructor
@nogc nothrow pure @safe unittest
{
static assert(is(typeof(emplace!WithDtor(null, WithDtor()))));
static assert(is(typeof(emplace!WithDtor(null))));
}
// Doesn't call a destructor on uninitialized elements
@nogc nothrow pure @system unittest
{
static struct SWithDtor
{
private bool canBeInvoked = false;
~this() @nogc nothrow pure @safe
{
assert(this.canBeInvoked);
}
}
void[SWithDtor.sizeof] memory = void;
auto actual = emplace!SWithDtor(memory[], SWithDtor(true));
assert(actual.canBeInvoked);
}
// Initializes structs if no arguments are given
@nogc nothrow pure @safe unittest
{
static struct SEntry
{
byte content;
}
ubyte[1] mem = [3];
assert(emplace!SEntry(cast(void[]) mem[0 .. 1]).content == 0);
}
// Postblit is called when emplacing a struct
@nogc nothrow pure @system unittest
{
static struct S
{
bool called = false;
this(this) @nogc nothrow pure @safe
{
this.called = true;
}
}
S target;
S* sp = &target;
emplace!S(sp[0 .. 1], S());
assert(target.called);
}
/**
* Thrown if a type conversion fails.
*/
@ -856,13 +904,6 @@ if (is(Unqual!From == bool) && isNumeric!To && !is(Unqual!To == Unqual!From))
assert(false.to!int == 0);
}
deprecated("Use tanya.format.format instead")
To to(To, From)(auto ref From from)
if (is(Unqual!To == String))
{
return format!"{}"(from);
}
/**
* Converts a stringish range to an integral value.
*

View File

@ -17,11 +17,19 @@
* To escape `{` or `}`, use `{{` and `}}` respectively. `{{` will be outputted
* as a single `{`, `}}` - as a single `}`.
*
* If a custom data type (like $(D_KEYWORD struct) or $(D_KEYWORD class))
* defines a `stringify()` function that is callable without arguments and
* returns a $(D_PSYMBOL String), this function is used to produce a string
* representation for the value. String conversions for the most built-in
* data types a also available.
* To define the string representation for a custom data type (like
* $(D_KEYWORD class) or $(D_KEYWORD struct)), `toString()`-function can be
* implemented for that type. `toString()` should be $(D_KEYWORD const) and
* accept exactly one argument: an output range for `const(char)[]`. It should
* return the same output range, advanced after putting the corresponding value
* into it. That is `toString()` signature should look like:
*
* ---
* OR toString(OR)(OR range) const
* if (isOutputRange!(OR, const(char)[]));
* ---
*
* String conversions for the most built-in data types a also available.
*
* $(D_KEYWORD char), $(D_KEYWORD wchar) and $(D_KEYWORD dchar) ranges are
* outputted as plain strings (without any delimiters between their elements).
@ -30,7 +38,7 @@
*
* More advanced formatting is currently not implemented.
*
* Copyright: Eugene Wissner 2017-2018.
* Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -43,12 +51,11 @@ import tanya.algorithm.comparison;
import tanya.container.string;
import tanya.encoding.ascii;
import tanya.math;
import tanya.memory.op;
static import tanya.memory.op;
import tanya.meta.metafunction;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.array;
import tanya.range.primitive;
import tanya.range;
import tanya.typecons : Tuple;
// Returns the last part of buffer with converted number.
@ -1351,7 +1358,7 @@ do
intSlice.popBack();
}
const begin = buffer.length - intSlice.length;
copy(intSlice, buffer[begin .. $]);
tanya.memory.op.copy(intSlice, buffer[begin .. $]);
exponent = cast(int) (intSlice.length + mismatch);
@ -1388,7 +1395,7 @@ do
char[21] intBuffer;
auto intSlice = integral2String(decimal, intBuffer);
copy(intSlice, buffer);
tanya.memory.op.copy(intSlice, buffer);
exponent = cast(int) intSlice.length;
size_t position = exponent;
@ -1903,7 +1910,7 @@ private char[] errol3(double value,
if (pathologies[middle].representation == bits.integral)
{
exponent = pathologies[middle].exponent;
copy(pathologies[middle].digits, buffer);
tanya.memory.op.copy(pathologies[middle].digits, buffer);
return buffer[0 .. pathologies[middle].digits.length];
}
else if (pathologies[middle].representation < bits.integral)
@ -1989,7 +1996,7 @@ private const(char)[] real2String(double value,
}
}
private void formatReal(T)(ref T arg, ref String result)
private void formatReal(T, OR)(ref T arg, OR result)
if (isFloatingPoint!T)
{
char[512] buffer; // Big enough for e+308 or e-307.
@ -2017,11 +2024,11 @@ if (isFloatingPoint!T)
if (negative)
{
result.insertBack('-');
put(result, "-");
}
if (decimalPoint == special)
{
result.insertBack(realString);
put(result, realString);
return;
}
@ -2054,7 +2061,7 @@ if (isFloatingPoint!T)
{
length = precision + 1;
}
realString[1 .. length].copy(bufferSlice);
tanya.memory.op.copy(realString[1 .. length], bufferSlice);
bufferSlice.popFrontExactly(length - 1);
// Dump the exponent.
@ -2116,7 +2123,7 @@ if (isFloatingPoint!T)
n = precision;
}
fill!'0'(bufferSlice[0 .. n]);
tanya.memory.op.fill!'0'(bufferSlice[0 .. n]);
bufferSlice.popFrontExactly(n);
if ((length + n) > precision)
@ -2124,7 +2131,7 @@ if (isFloatingPoint!T)
length = precision - n;
}
realString[0 .. length].copy(bufferSlice);
tanya.memory.op.copy(realString[0 .. length], bufferSlice);
bufferSlice.popFrontExactly(length);
}
else if (cast(uint) decimalPoint >= length)
@ -2142,7 +2149,7 @@ if (isFloatingPoint!T)
{
n = decimalPoint - n;
fill!'0'(bufferSlice[0 .. n]);
tanya.memory.op.fill!'0'(bufferSlice[0 .. n]);
bufferSlice.popFrontExactly(n);
}
if (precision != 0)
@ -2173,7 +2180,7 @@ if (isFloatingPoint!T)
length = precision + decimalPoint;
}
realString[n .. length].copy(bufferSlice);
tanya.memory.op.copy(realString[n .. length], bufferSlice);
bufferSlice.popFrontExactly(length - n);
}
}
@ -2181,11 +2188,11 @@ if (isFloatingPoint!T)
// Get the length that we've copied.
length = cast(uint) (buffer.length - bufferSlice.length);
result.insertBack(buffer[64 .. length]); // Number.
result.insertBack(tail[1 .. tail[0] + 1]); // Tail.
put(result, buffer[64 .. length]); // Number.
put(result, tail[1 .. tail[0] + 1]); // Tail.
}
private void formatStruct(T)(ref T arg, ref String result)
private void formatStruct(T, OR)(ref T arg, OR result)
if (is(T == struct))
{
template pred(alias f)
@ -2202,24 +2209,24 @@ if (is(T == struct))
}
alias fields = Filter!(pred, __traits(allMembers, T));
result.insertBack(T.stringof);
result.insertBack('(');
put(result, T.stringof);
put(result, "(");
static if (fields.length > 0)
{
printToString!"{}"(result, __traits(getMember, arg, fields[0]));
foreach (field; fields[1 .. $])
{
result.insertBack(", ");
put(result, ", ");
printToString!"{}"(result, __traits(getMember, arg, field));
}
}
result.insertBack(')');
put(result, ")");
}
private void formatRange(T)(ref T arg, ref String result)
private void formatRange(T, OR)(ref T arg, OR result)
if (isInputRange!T && !isInfinite!T)
{
result.insertBack('[');
put(result, "[");
if (!arg.empty)
{
printToString!"{}"(result, arg.front);
@ -2227,24 +2234,24 @@ if (isInputRange!T && !isInfinite!T)
}
foreach (e; arg)
{
result.insertBack(", ");
put(result, ", ");
printToString!"{}"(result, e);
}
result.insertBack(']');
put(result, "]");
}
private ref String printToString(string fmt, Args...)(return ref String result,
private void printToString(string fmt, OR, Args...)(ref OR result,
auto ref Args args)
{
alias Arg = Args[0];
static if (is(Unqual!Arg == typeof(null))) // null
{
result.insertBack("null");
put(result, "null");
}
else static if (is(Unqual!Arg == bool)) // Boolean
{
result.insertBack(args[0] ? "true" : "false");
put(result, args[0] ? "true" : "false");
}
else static if (is(Arg == enum)) // Enum
{
@ -2252,19 +2259,19 @@ private ref String printToString(string fmt, Args...)(return ref String result,
{
if (args[0] == __traits(getMember, Arg, m))
{
result.insertBack(m);
put(result, m);
}
}
}
else static if (isSomeChar!Arg || isSomeString!Arg) // String or char
{
result.insertBack(args[0]);
put(result, args[0]);
}
else static if (isInputRange!Arg
&& !isInfinite!Arg
&& isSomeChar!(ElementType!Arg)) // Stringish range
{
result.insertBack(args[0]);
put(result, args[0]);
}
else static if (isInputRange!Arg && !isInfinite!Arg)
{
@ -2272,29 +2279,49 @@ private ref String printToString(string fmt, Args...)(return ref String result,
}
else static if (is(Unqual!(typeof(args[0].stringify())) == String))
{
pragma(msg, ".stringify() is deprecated. Use toString() with an output"
~ " range instead");
static if (is(Arg == class) || is(Arg == interface))
{
if (args[0] is null)
{
result.insertBack("null");
put(result, "null");
}
else
{
result.insertBack(args[0].stringify()[]);
put(result, args[0].stringify()[]);
}
}
else
{
result.insertBack(args[0].stringify()[]);
put(result, args[0].stringify()[]);
}
}
else static if (is(typeof(args[0].toString(result)) == OR))
{
static if (is(Arg == class) || is(Arg == interface))
{
if (args[0] is null)
{
put(result, "null");
}
else
{
result = args[0].toString(result);
}
}
else
{
result = args[0].toString(result);
}
}
else static if (is(Arg == class))
{
result.insertBack(args[0] is null ? "null" : args[0].toString());
put(result, args[0] is null ? "null" : args[0].toString());
}
else static if (is(Arg == interface))
{
result.insertBack(Arg.classinfo.name);
put(result, Arg.classinfo.name);
}
else static if (is(Arg == struct))
{
@ -2302,7 +2329,7 @@ private ref String printToString(string fmt, Args...)(return ref String result,
}
else static if (is(Arg == union))
{
result.insertBack(Arg.stringof);
put(result, Arg.stringof);
}
else static if (isFloatingPoint!Arg) // Float
{
@ -2321,21 +2348,19 @@ private ref String printToString(string fmt, Args...)(return ref String result,
}
while (address != 0);
result.insertBack("0x");
result.insertBack(buffer[position .. $]);
put(result, "0x");
put(result, buffer[position .. $]);
}
else static if (isIntegral!Arg) // Integer
{
char[21] buffer;
result.insertBack(integral2String(args[0], buffer));
put(result, integral2String(args[0], buffer));
}
else
{
static assert(false,
"Formatting type " ~ Arg.stringof ~ " is not supported");
}
return result;
}
/**
@ -2351,28 +2376,47 @@ private ref String printToString(string fmt, Args...)(return ref String result,
String format(string fmt, Args...)(auto ref Args args)
{
String formatted;
sformat!fmt(backInserter(formatted), args);
return formatted;
}
/**
* Produces a string according to the specified format and writes it into an
* output range. $(D_PSYMBOL sformat) writes the final string in chunks, so the
* output range should be in output range for `const(char)[]`.
*
* Params:
* fmt = Format.
* R = Output range type.
* output = Output range.
* args = Arguments.
*
* Returns: $(D_PARAM output).
*/
R sformat(string fmt, R, Args...)(R output, auto ref Args args)
if (isOutputRange!(R, const(char)[]))
{
alias Specs = ParseFmt!fmt;
enum bool FormatSpecFilter(alias spec) = is(typeof(spec) == FormatSpec);
static assert((Filter!(FormatSpecFilter, ParseFmt!fmt)).length == Args.length,
"Number of the arguments doesn't match the format strign");
"Number of the arguments doesn't match the format string");
foreach (spec; Specs)
{
static if (FormatSpecFilter!spec)
{
printToString!"{}"(formatted, args[spec.position]);
printToString!"{}"(output, args[spec.position]);
}
else static if (isSomeString!(typeof(spec)))
{
formatted.insertBack(spec);
put(output, spec);
}
else
{
static assert(false, "Format string parsed incorrectly");
}
}
return formatted;
return output;
}
// doesn't print the first argument repeatedly
@ -2507,14 +2551,15 @@ String format(string fmt, Args...)(auto ref Args args)
}
assert(format!"{}"(Nested()) == "Nested(0)");
static struct WithStringify
static struct WithToString
{
String stringify() const @nogc nothrow pure @safe
OR toString(OR)(OR range) const
{
return String("stringify method");
put(range, "toString method");
return range;
}
}
assert(format!"{}"(WithStringify()) == "stringify method");
assert(format!"{}"(WithToString()) == "toString method");
}
// Aggregate types.
@ -2536,9 +2581,10 @@ String format(string fmt, Args...)(auto ref Args args)
class B
{
String stringify() @nogc nothrow pure @safe
OR toString(OR)(OR range) const
{
return String("Class B");
put(range, "Class B");
return range;
}
}
assert(format!"{}"(cast(B) null) == "null");

View File

@ -17,21 +17,6 @@ module tanya.functional;
import tanya.algorithm.mutation;
import tanya.meta.metafunction;
private template forwardOne(alias arg)
{
static if (__traits(isRef, arg) || __traits(isOut, arg))
{
alias forwardOne = arg;
}
else
{
@property auto forwardOne()
{
return move(arg);
}
}
}
/**
* Forwards its argument list preserving $(D_KEYWORD ref) and $(D_KEYWORD out)
* storage classes.
@ -47,13 +32,35 @@ private template forwardOne(alias arg)
*/
template forward(args...)
{
static if (args.length == 0)
{
alias forward = AliasSeq!();
}
else static if (__traits(isRef, args[0]) || __traits(isOut, args[0]))
{
static if (args.length == 1)
{
alias forward = forwardOne!(args[0]);
alias forward = args[0];
}
else
{
alias forward = Map!(forwardOne, args);
alias forward = AliasSeq!(args[0], forward!(args[1 .. $]));
}
}
else
{
@property auto forwardOne()
{
return move(args[0]);
}
static if (args.length == 1)
{
alias forward = forwardOne;
}
else
{
alias forward = AliasSeq!(forwardOne, forward!(args[1 .. $]));
}
}
}

View File

@ -16,8 +16,9 @@ module tanya.hash.lookup;
import tanya.meta.trait;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
private struct FNV
private struct Hasher
{
static if (size_t.sizeof == 4)
{
@ -29,6 +30,11 @@ private struct FNV
enum ulong offsetBasis = 14695981039346656037UL;
enum ulong prime = 1099511628211UL;
}
else static if (size_t.sizeof == 16)
{
enum size_t offsetBasis = (size_t(0x6c62272e07bb0142UL) << 64) + 0x62b821756295c58dUL;
enum size_t prime = (size_t(1) << 88) + (1 << 8) + 0x3b;
}
else
{
static assert(false, "FNV requires at least 32-bit hash length");
@ -44,11 +50,33 @@ private struct FNV
}
else static if (isScalarType!T || isPointer!T)
{
(() @trusted => add((cast(const ubyte*) &key)[0 .. T.sizeof]))();
// Treat as an array of words
static if (T.sizeof % size_t.sizeof == 0
&& T.alignof >= size_t.alignof)
alias CastT = size_t;
// (64-bit or 128-bit) Treat as an array of ints
else static if (T.sizeof % uint.sizeof == 0
&& T.alignof >= uint.alignof)
alias CastT = uint;
// Treat as an array of bytes
else
alias CastT = ubyte;
add((() @trusted => (cast(const CastT*) &key)[0 .. T.sizeof / CastT.sizeof])());
}
else static if (isArray!T && isScalarType!(ElementType!T))
{
add(cast(const ubyte[]) key);
// Treat as an array of words
static if (ElementType!T.sizeof % size_t.sizeof == 0
&& ElementType!T.alignof >= size_t.alignof)
alias CastT = size_t;
// (64-bit or 128-bit) Treat as an array of ints
else static if (ElementType!T.sizeof % uint.sizeof == 0
&& ElementType!T.alignof >= uint.alignof)
alias CastT = uint;
// Treat as an array of bytes
else
alias CastT = ubyte;
add(cast(const CastT[]) key);
}
else static if (is(T == typeof(null)))
{
@ -67,13 +95,166 @@ private struct FNV
}
}
void add(const ubyte[] key) @nogc nothrow pure @safe
void add(scope const ubyte[] key) @nogc nothrow pure @safe
{
// FNV-1a
foreach (c; key)
{
this.hash = (this.hash ^ c) * prime;
}
}
void add(scope const size_t[] key) @nogc nothrow pure @safe
{
static if (size_t.sizeof == 4)
{
// Partial MurmurHash3_x86_32 (no finalization)
enum uint c1 = 0xcc9e2d51;
enum uint c2 = 0x1b873593;
alias h1 = hash;
foreach (x; key)
{
auto k1 = x * c1;
k1 = (k1 << 15) | (k1 >> (32 - 15));
k1 *= c2;
h1 ^= k1;
h1 = (h1 << 13) | (h1 >> (32 - 13));
h1 = h1 * 5 + 0xe6546b64;
}
}
else static if (size_t.sizeof == 8)
{
// Partial 64-bit MurmurHash64A (no finalization)
alias h = hash;
enum ulong m = 0xc6a4a7935bd1e995UL;
foreach (x; key)
{
auto k = x * m;
k ^= k >>> 47;
k *= m;
h ^= k;
h *= m;
}
}
else static if (size_t.sizeof == 16)
{
// Partial MurmurHash3_x64_128 (no finalization)
// treating each size_t as a pair of ulong.
ulong h1 = cast(ulong) hash;
ulong h2 = cast(ulong) (hash >> 64);
enum ulong c1 = 0x87c37b91114253d5UL;
enum ulong c2 = 0x4cf5ad432745937fUL;
foreach (x; key)
{
auto k1 = cast(ulong) x;
auto k2 = cast(ulong) (x >> 64);
k1 *= c1; k1 = (k1 << 32) | (k1 >> (64 - 31)); k1 *= c2; h1 ^= k1;
h1 = (h1 << 27) | (h1 >> (64 - 27)); h1 += h2; h1 = h1*5+0x52dce729;
k2 *= c2; k2 = (k2 << 33) | (k2 >> (64 - 33)); k2 *= c1; h2 ^= k2;
h2 = (h2 << 31) | (h2 >> (64 - 31)); h2 += h1; h2 = h2*5+0x38495ab5;
}
hash = cast(size_t) h1 + ((cast(size_t) h2) << 64);
}
else
{
static assert(0, "Hash length must be either 32, 64, or 128 bits.");
}
}
static if (size_t.sizeof != uint.sizeof)
void add(scope const uint[] key) @nogc nothrow pure @trusted
{
static if (size_t.sizeof == 8)
{
// Partial 32-bit MurmurHash64B (no finalization)
enum uint m = 0x5bd1e995;
enum r = 24;
uint h1 = cast(uint) hash;
uint h2 = cast(uint) (hash >> 32);
const(uint)* data = key.ptr;
auto len = key.length;
for (; len >= 2; data += 2, len -= 2)
{
uint k1 = data[0];
k1 *= m; k1 ^= k1 >> r; k1 *= m;
h1 *= m; h1 ^= k1;
uint k2 = data[1];
k2 *= m; k2 ^= k2 >> r; k2 *= m;
h2 *= m; h2 ^= k2;
}
if (len)
{
uint k1 = data[0];
k1 *= m; k1 ^= k1 >> r; k1 *= m;
h1 *= m; h1 ^= k1;
}
hash = cast(ulong) h1 + ((cast(ulong) h2) << 32);
}
else static if (size_t.sizeof == 16)
{
// Partial MurmurHash3_x86_128 (no finalization)
enum uint c1 = 0x239b961b;
enum uint c2 = 0xab0e9789;
enum uint c3 = 0x38b34ae5;
enum uint c4 = 0xa1e38b93;
uint h1 = cast(uint) hash;
uint h2 = cast(uint) (hash >> 32);
uint h3 = cast(uint) (hash >> 64);
uint h4 = cast(uint) (hash >> 96);
const(uint)* data = key.ptr;
auto len = key.length;
for (; len >= 4; data += 4, len -= 4)
{
uint k1 = data[0];
uint k2 = data[1];
uint k3 = data[2];
uint k4 = data[3];
h1 = (h1 << 19) | (h1 >> (32 - 19)); h1 += h2; h1 = h1*5+0x561ccd1b;
k2 *= c2; k2 = (k2 << 16) | (k2 >> (32 - 16)); k2 *= c3; h2 ^= k2;
h2 = (h2 << 17) | (h2 >> (32 - 17)); h2 += h3; h2 = h2*5+0x0bcaa747;
k3 *= c3; k3 = (k3 << 17) | (k3 >> (32 - 17)); k3 *= c4; h3 ^= k3;
h3 = (h3 << 15) | (h3 >> (32 - 15)); h3 += h4; h3 = h3*5+0x96cd1c35;
k4 *= c4; k4 = (k4 << 18) | (k4 >> (32 - 18)); k4 *= c1; h4 ^= k4;
h4 = (h4 << 13) | (h4 >> (32 - 13)); h4 += h1; h4 = h4*5+0x32ac3b17;
}
uint k1, k2, k3;
switch (len) // 0, 1, 2, 3
{
case 3:
k3 = data[2];
k3 *= c3; k3 = (k3 << 17) | (k3 >> (32 - 17)); k3 *= c4; h3 ^= k3;
goto case;
case 2:
k2 = data[1];
k2 *= c2; k2 = (k2 << 16) | (k2 >> (32 - 16)); k2 *= c3; h2 ^= k2;
goto case;
case 1:
k1 = data[0];
k1 *= c1; k1 = (k1 << 15) | (k1 >> (32 - 15)); k1 *= c2; h1 ^= k1;
break;
}
hash = cast(size_t) h1 +
((cast(size_t) h2) << 32) +
((cast(size_t) h3) << 64) +
((cast(size_t) h4) << 96);
}
else
{
static assert(0, "Hash length must be either 32, 64, or 128 bits.");
}
}
}
/**
@ -92,7 +273,8 @@ private struct FNV
* For pointers and for scalar types implicitly convertible to `size_t` this
* is an identity operation (i.e. the value is cast to `size_t` and returned
* unaltered). Integer types wider than `size_t` are XOR folded down to
* `size_t`. Other scalar types use the FNV-1a (Fowler-Noll-Vo) hash function.
* `size_t`. Other scalar types use an architecture-dependent hash function
* based on their width and alignment.
* If the type provides a `toHash`-function, only `toHash()` is called and its
* result is returned.
*
@ -128,9 +310,9 @@ size_t hash(T)(auto ref T key)
}
else
{
FNV fnv;
fnv(key);
return fnv.hash;
Hasher hasher;
hasher(key);
return hasher.hash;
}
}
@ -141,14 +323,6 @@ version (unittest)
~ r10!x ~ r10!x ~ r10!x ~ r10!x ~ r10!x;
enum string r500(string x) = r100!x ~ r100!x ~ r100!x ~ r100!x ~ r100!x;
private static struct ToHash
{
size_t toHash() const @nogc nothrow pure @safe
{
return 0;
}
}
private static struct HashRange
{
string fo = "fo";
@ -173,9 +347,9 @@ version (unittest)
{
bool empty_;
@property ToHash front() const @nogc nothrow pure @safe
@property Hashable front() const @nogc nothrow pure @safe
{
return ToHash();
return Hashable();
}
void popFront() @nogc nothrow pure @safe
@ -194,19 +368,19 @@ version (unittest)
@nogc nothrow pure @safe unittest
{
assert(hash(null) == 0);
assert(hash(ToHash()) == 0U);
assert(hash(Hashable()) == 0U);
assert(hash('a') == 'a');
}
static if (size_t.sizeof == 4) @nogc nothrow pure @safe unittest
{
assert(hash(HashRange()) == 0x6222e842U);
assert(hash(ToHashRange()) == 1268118805U);
assert(hash(ToHashRange()) == 3371162643U);
}
static if (size_t.sizeof == 8) @nogc nothrow pure @safe unittest
{
assert(hash(HashRange()) == 0x08985907b541d342UL);
assert(hash(ToHashRange()) == 12161962213042174405UL);
assert(hash(ToHashRange()) == 2072958611659694473);
}
static if (size_t.sizeof == 4) @nogc nothrow pure @system unittest
@ -636,3 +810,27 @@ static if (size_t.sizeof == 8) @nogc nothrow pure @safe unittest
assert(hash(r500!"~") == 0xc1af12bdfe16b5b5UL);
assert(hash(r500!"\x7f") == 0x39e9f18f2f85e221UL);
}
/**
* Determines whether $(D_PARAM hasher) is hash function for $(D_PARAM T), i.e.
* it is callable with a value of type $(D_PARAM T) and returns a
* $(D_PSYMBOL size_t) value.
*
* Params:
* hasher = Hash function candidate.
* T = Type to test the hash function with.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM hasher) is a hash function for
* $(D_PARAM T), $(D_KEYWORD false) otherwise.
*/
template isHashFunction(alias hasher, T)
{
private alias wrapper = (T x) => hasher(x);
enum bool isHashFunction = is(typeof(wrapper(T.init)) == size_t);
}
///
@nogc nothrow pure @safe unittest
{
static assert(isHashFunction!(hash, int));
}

View File

@ -14,16 +14,15 @@
*/
module tanya.math.mp;
import std.algorithm.comparison : cmp;
import std.algorithm.mutation : fill, reverse;
import std.range;
import tanya.algorithm.comparison;
import tanya.algorithm.iteration;
import tanya.algorithm.mutation;
import tanya.container.array;
import tanya.encoding.ascii;
import tanya.memory;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range;
/**
* Algebraic sign.
@ -629,7 +628,7 @@ struct Integer
}
return this.rep[0 .. this.size]
.retro
.cmp(that.rep[0 .. that.size].retro);
.compare(that.rep[0 .. that.size].retro);
}
/**
@ -930,7 +929,7 @@ struct Integer
const shift = digitBitCount - bit;
digit carry;
foreach (ref d; this.rep[0 .. this.size].retro)
foreach_reverse (ref d; this.rep[0 .. this.size])
{
const newCarry = d & mask;
d = (d >> bit) | (carry << shift);
@ -1506,14 +1505,11 @@ struct Integer
tmp = this;
}
do
array.length = length;
for (size_t i = array.length - 1; tmp != 0; tmp >>= 8, --i)
{
array.insertBack(cast(ubyte) (tmp.rep[0] & 0xff));
tmp >>= 8;
array[i] = (cast(ubyte) (tmp.rep[0] & 0xff));
}
while (tmp != 0);
array[].reverse();
return array;
}

View File

@ -15,11 +15,8 @@
module tanya.math.random;
import std.digest.sha;
import std.typecons;
import tanya.memory;
/// Block size of entropy accumulator (SHA-512).
enum blockSize = 64;
import tanya.typecons;
/// Maximum amount gathered from the entropy sources.
enum maxGather = 128;
@ -39,7 +36,7 @@ class EntropyException : Exception
this(string msg,
string file = __FILE__,
size_t line = __LINE__,
Throwable next = null) pure @safe nothrow const @nogc
Throwable next = null) const @nogc nothrow pure @safe
{
super(msg, file, line, next);
}
@ -56,17 +53,17 @@ abstract class EntropySource
/**
* Returns: Minimum bytes required from the entropy source.
*/
@property ubyte threshold() const pure nothrow @safe @nogc;
@property ubyte threshold() const @nogc nothrow pure @safe;
/**
* Returns: Whether this entropy source is strong.
*/
@property bool strong() const pure nothrow @safe @nogc;
@property bool strong() const @nogc nothrow pure @safe;
/**
* Returns: Amount of already generated entropy.
*/
@property ushort size() const pure nothrow @safe @nogc
@property ushort size() const @nogc nothrow pure @safe
{
return size_;
}
@ -76,7 +73,7 @@ abstract class EntropySource
* size = Amount of already generated entropy. Cannot be smaller than the
* already set value.
*/
@property void size(ushort size) pure nothrow @safe @nogc
@property void size(ushort size) @nogc nothrow pure @safe
{
size_ = size;
}
@ -89,9 +86,13 @@ abstract class EntropySource
* to fill the buffer).
*
* Returns: Number of bytes that were copied to the $(D_PARAM output)
* or $(D_PSYMBOL Nullable!ubyte.init) on error.
* or nothing on error.
*
* Postcondition: Returned length is less than or equal to
* $(D_PARAM output) length.
*/
Nullable!ubyte poll(out ubyte[maxGather] output) @nogc;
Option!ubyte poll(out ubyte[maxGather] output) @nogc
out (length; length.isNothing || length.get <= maxGather);
}
version (CRuntime_Bionic)
@ -118,7 +119,7 @@ else version (Solaris)
version (linux)
{
import core.stdc.config : c_long;
extern (C) c_long syscall(c_long number, ...) nothrow @system @nogc;
private extern(C) c_long syscall(c_long number, ...) @nogc nothrow @system;
/**
* Uses getrandom system call.
@ -128,7 +129,7 @@ version (linux)
/**
* Returns: Minimum bytes required from the entropy source.
*/
override @property ubyte threshold() const pure nothrow @safe @nogc
override @property ubyte threshold() const @nogc nothrow pure @safe
{
return 32;
}
@ -136,7 +137,7 @@ version (linux)
/**
* Returns: Whether this entropy source is strong.
*/
override @property bool strong() const pure nothrow @safe @nogc
override @property bool strong() const @nogc nothrow pure @safe
{
return true;
}
@ -149,19 +150,14 @@ version (linux)
* to fill the buffer).
*
* Returns: Number of bytes that were copied to the $(D_PARAM output)
* or $(D_PSYMBOL Nullable!ubyte.init) on error.
* or nothing on error.
*/
override Nullable!ubyte poll(out ubyte[maxGather] output) nothrow @nogc
out (length)
{
assert(length <= maxGather);
}
do
override Option!ubyte poll(out ubyte[maxGather] output) @nogc nothrow
{
// int getrandom(void *buf, size_t buflen, unsigned int flags);
import mir.linux._asm.unistd : NR_getrandom;
auto length = syscall(NR_getrandom, output.ptr, output.length, 0);
Nullable!ubyte ret;
Option!ubyte ret;
if (length >= 0)
{
@ -170,19 +166,11 @@ version (linux)
return ret;
}
}
@nogc @system unittest
{
auto entropy = defaultAllocator.make!Entropy();
ubyte[blockSize] output;
output = entropy.random;
defaultAllocator.dispose(entropy);
}
}
else version (SecureARC4Random)
{
private extern (C) void arc4random_buf(scope void* buf, size_t nbytes) nothrow @nogc @system;
private extern(C) void arc4random_buf(scope void* buf, size_t nbytes)
@nogc nothrow @system;
/**
* Uses arc4random_buf.
@ -192,7 +180,7 @@ else version (SecureARC4Random)
/**
* Returns: Minimum bytes required from the entropy source.
*/
override @property ubyte threshold() const pure nothrow @safe @nogc
override @property ubyte threshold() const @nogc nothrow pure @safe
{
return 32;
}
@ -200,7 +188,7 @@ else version (SecureARC4Random)
/**
* Returns: Whether this entropy source is strong.
*/
override @property bool strong() const pure nothrow @safe @nogc
override @property bool strong() const @nogc nothrow pure @safe
{
return true;
}
@ -213,23 +201,15 @@ else version (SecureARC4Random)
* to fill the buffer).
*
* Returns: Number of bytes that were copied to the $(D_PARAM output)
* or $(D_PSYMBOL Nullable!ubyte.init) on error.
* or nothing on error.
*/
override Nullable!ubyte poll(out ubyte[maxGather] output) nothrow @nogc @safe
override Option!ubyte poll(out ubyte[maxGather] output)
@nogc nothrow @safe
{
(() @trusted => arc4random_buf(output.ptr, output.length))();
return Nullable!ubyte(cast(ubyte) (output.length));
return Option!ubyte(cast(ubyte) (output.length));
}
}
@nogc @system unittest
{
auto entropy = defaultAllocator.make!Entropy();
ubyte[blockSize] output;
output = entropy.random;
defaultAllocator.dispose(entropy);
}
}
else version (Windows)
{
@ -248,22 +228,31 @@ else version (Windows)
BOOL CryptReleaseContext(HCRYPTPROV, ULONG_PTR);
}
private bool initCryptGenRandom(scope ref HCRYPTPROV hProvider) @nogc nothrow @trusted
private bool initCryptGenRandom(scope ref HCRYPTPROV hProvider)
@nogc nothrow @trusted
{
// https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886(v=vs.85).aspx
// For performance reasons, we recommend that you set the pszContainer
// parameter to NULL and the dwFlags parameter to CRYPT_VERIFYCONTEXT
// in all situations where you do not require a persisted key.
// CRYPT_SILENT is intended for use with applications for which the UI cannot be displayed by the CSP.
if (!CryptAcquireContextW(&hProvider, null, null, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_SILENT))
// CRYPT_SILENT is intended for use with applications for which the UI
// cannot be displayed by the CSP.
if (!CryptAcquireContextW(&hProvider,
null,
null,
PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT))
{
if (GetLastError() == NTE_BAD_KEYSET)
if (GetLastError() != NTE_BAD_KEYSET)
{
// Attempt to create default container
if (!CryptAcquireContextA(&hProvider, null, null, PROV_RSA_FULL, CRYPT_NEWKEYSET | CRYPT_SILENT))
return false;
}
else
// Attempt to create default container
if (!CryptAcquireContextA(&hProvider,
null,
null,
PROV_RSA_FULL,
CRYPT_NEWKEYSET | CRYPT_SILENT))
{
return false;
}
@ -299,7 +288,7 @@ else version (Windows)
/**
* Returns: Minimum bytes required from the entropy source.
*/
override @property ubyte threshold() const pure nothrow @safe @nogc
override @property ubyte threshold() const @nogc nothrow pure @safe
{
return 32;
}
@ -307,7 +296,7 @@ else version (Windows)
/**
* Returns: Whether this entropy source is strong.
*/
override @property bool strong() const pure nothrow @safe @nogc
override @property bool strong() const @nogc nothrow pure @safe
{
return true;
}
@ -320,16 +309,14 @@ else version (Windows)
* to fill the buffer).
*
* Returns: Number of bytes that were copied to the $(D_PARAM output)
* or $(D_PSYMBOL Nullable!ubyte.init) on error.
* or nothing on error.
*/
override Nullable!ubyte poll(out ubyte[maxGather] output) @nogc nothrow @safe
in
override Option!ubyte poll(out ubyte[maxGather] output)
@nogc nothrow @safe
{
assert(hProvider > 0, "hProvider not properly initialized.");
}
do
{
Nullable!ubyte ret;
Option!ubyte ret;
assert(hProvider > 0, "hProvider not properly initialized");
if ((() @trusted => CryptGenRandom(hProvider, output.length, cast(PBYTE) output.ptr))())
{
ret = cast(ubyte) (output.length);
@ -337,185 +324,14 @@ else version (Windows)
return ret;
}
}
@nogc @system unittest
{
auto entropy = defaultAllocator.make!Entropy();
ubyte[blockSize] output;
output = entropy.random;
defaultAllocator.dispose(entropy);
}
}
/**
* Pseudorandom number generator.
* ---
* auto entropy = defaultAllocator.make!Entropy();
*
* ubyte[blockSize] output;
*
* output = entropy.random;
*
* defaultAllocator.dispose(entropy);
* ---
*/
class Entropy
static if (is(PlatformEntropySource)) @nogc @system unittest
{
/// Entropy sources.
protected EntropySource[] sources;
import tanya.memory.smartref : unique;
private ubyte sourceCount_;
auto source = defaultAllocator.unique!PlatformEntropySource();
/// Entropy accumulator.
protected SHA!(maxGather * 8, 512) accumulator;
/**
* Params:
* maxSources = Maximum amount of entropy sources can be set.
* allocator = Allocator to allocate entropy sources available on the
* system.
*/
this(const size_t maxSources = 20,
shared Allocator allocator = defaultAllocator) @nogc
in
{
assert(maxSources > 0 && maxSources <= ubyte.max);
assert(allocator !is null);
}
do
{
allocator.resize(sources, maxSources);
static if (is(PlatformEntropySource))
{
this ~= allocator.make!PlatformEntropySource;
}
}
/**
* Returns: Amount of the registered entropy sources.
*/
@property ubyte sourceCount() const pure nothrow @safe @nogc
{
return sourceCount_;
}
/**
* Add an entropy source.
*
* Params:
* source = Entropy source.
*
* Returns: $(D_PSYMBOL this).
*
* See_Also:
* $(D_PSYMBOL EntropySource)
*/
Entropy opOpAssign(string op)(EntropySource source)
pure nothrow @safe @nogc
if (op == "~")
in
{
assert(sourceCount_ <= sources.length);
}
do
{
sources[sourceCount_++] = source;
return this;
}
/**
* Returns: Generated random sequence.
*
* Throws: $(D_PSYMBOL EntropyException) if no strong entropy source was
* registered or it failed.
*/
@property ubyte[blockSize] random() @nogc
in
{
assert(sourceCount_ > 0, "No entropy sources defined.");
}
do
{
bool haveStrong;
ushort done;
ubyte[blockSize] output;
do
{
ubyte[maxGather] buffer;
// Run through our entropy sources
for (ubyte i; i < sourceCount; ++i)
{
auto outputLength = sources[i].poll(buffer);
if (!outputLength.isNull)
{
if (outputLength > 0)
{
update(i, buffer, outputLength);
sources[i].size = cast(ushort) (sources[i].size + outputLength);
}
if (sources[i].size < sources[i].threshold)
{
continue;
}
else if (sources[i].strong)
{
haveStrong = true;
}
}
done = 257;
}
}
while (++done < 256);
if (!haveStrong)
{
throw defaultAllocator.make!EntropyException("No strong entropy source defined.");
}
output = accumulator.finish();
// Reset accumulator and counters and recycle existing entropy
accumulator.start();
// Perform second SHA-512 on entropy
output = sha512Of(output);
for (ubyte i; i < sourceCount; ++i)
{
sources[i].size = 0;
}
return output;
}
/**
* Update entropy accumulator.
*
* Params:
* sourceId = Entropy source index in $(D_PSYMBOL sources).
* data = Data got from the entropy source.
* length = Length of the received data.
*/
protected void update(in ubyte sourceId,
ref ubyte[maxGather] data,
ubyte length) pure nothrow @safe @nogc
{
ubyte[2] header;
if (length > blockSize)
{
data[0 .. 64] = sha512Of(data);
length = blockSize;
}
header[0] = sourceId;
header[1] = length;
accumulator.put(header);
accumulator.put(data[0 .. length]);
}
assert(source.threshold == 32);
assert(source.strong);
}

View File

@ -24,7 +24,7 @@ version (TanyaNative)
extern private void moveMemory(const void[], void[])
pure nothrow @system @nogc;
extern private int cmpMemory(const void[], const void[])
extern private bool equalMemory(const void[], const void[])
pure nothrow @system @nogc;
}
else
@ -43,7 +43,7 @@ version (TanyaNative)
@nogc nothrow pure @safe unittest
{
assert(cmp(null, null) == 0);
assert(equal(null, null));
}
}
@ -91,7 +91,7 @@ do
ubyte[9] source = [1, 2, 3, 4, 5, 6, 7, 8, 9];
ubyte[9] target;
source.copy(target);
assert(cmp(source, target) == 0);
assert(equal(source, target));
}
@nogc nothrow pure @safe unittest
@ -110,7 +110,7 @@ do
ubyte[8] source = [1, 2, 3, 4, 5, 6, 7, 8];
ubyte[8] target;
source.copy(target);
assert(cmp(source, target) == 0);
assert(equal(source, target));
}
}
@ -212,7 +212,7 @@ do
ubyte[6] expected = [ 'a', 'a', 'a', 'a', 'b', 'b' ];
copyBackward(mem[0 .. 4], mem[2 .. $]);
assert(cmp(expected, mem) == 0);
assert(equal(expected, mem));
}
@nogc nothrow pure @safe unittest
@ -221,76 +221,7 @@ do
ubyte[9] r2;
copyBackward(r1, r2);
assert(cmp(r1, r2) == 0);
}
/**
* Compares two memory areas $(D_PARAM r1) and $(D_PARAM r2).
*
* $(D_PSYMBOL cmp) returns a positive integer if
* $(D_INLINECODE r1.length > r2.length) or the first `n` compared bytes of
* $(D_PARAM r1) found to be greater than the first `n` bytes of $(D_PARAM r2),
*
* $(D_PSYMBOL cmp) returns a negative integer if
* $(D_INLINECODE r2.length > r1.length) or the first `n` compared bytes of
* $(D_PARAM r1) found to be less than the first `n` bytes of $(D_PARAM r2),
*
* `0` is returned otherwise.
*
* Returns: Positive integer if $(D_INLINECODE r1 > r2),
* negative integer if $(D_INLINECODE r2 > r1),
* `0` if $(D_INLINECODE r1 == r2).
*/
int cmp(const void[] r1, const void[] r2) @nogc nothrow pure @trusted
in
{
assert(r1.length == 0 || r1.ptr !is null);
assert(r2.length == 0 || r2.ptr !is null);
}
do
{
version (TanyaNative)
{
return cmpMemory(r1, r2);
}
else
{
if (r1.length > r2.length)
{
return 1;
}
return r1.length < r2.length ? -1 : memcmp(r1.ptr, r2.ptr, r1.length);
}
}
///
@nogc nothrow pure @safe unittest
{
ubyte[4] r1 = [ 'a', 'b', 'c', 'd' ];
ubyte[3] r2 = [ 'c', 'a', 'b' ];
assert(cmp(r1[0 .. 3], r2[]) < 0);
assert(cmp(r2[], r1[0 .. 3]) > 0);
assert(cmp(r1, r2) > 0);
assert(cmp(r2, r1) < 0);
}
@nogc nothrow pure @safe unittest
{
ubyte[16] r1 = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
];
ubyte[16] r2 = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
];
assert(cmp(r1, r2) == 0);
assert(cmp(r1[1 .. $], r2[1 .. $]) == 0);
assert(cmp(r1[0 .. $ - 1], r2[0 .. $ - 1]) == 0);
assert(cmp(r1[0 .. 8], r2[0 .. 8]) == 0);
assert(equal(r1, r2));
}
/**
@ -362,13 +293,13 @@ do
{
const ubyte[9] haystack = ['a', 'b', 'c', 'd', 'e', 'f', 'b', 'g', 'h'];
assert(cmp(find(haystack, 'a'), haystack[]) == 0);
assert(cmp(find(haystack, 'b'), haystack[1 .. $]) == 0);
assert(cmp(find(haystack, 'c'), haystack[2 .. $]) == 0);
assert(cmp(find(haystack, 'd'), haystack[3 .. $]) == 0);
assert(cmp(find(haystack, 'e'), haystack[4 .. $]) == 0);
assert(cmp(find(haystack, 'f'), haystack[5 .. $]) == 0);
assert(cmp(find(haystack, 'h'), haystack[8 .. $]) == 0);
assert(equal(find(haystack, 'a'), haystack[]));
assert(equal(find(haystack, 'b'), haystack[1 .. $]));
assert(equal(find(haystack, 'c'), haystack[2 .. $]));
assert(equal(find(haystack, 'd'), haystack[3 .. $]));
assert(equal(find(haystack, 'e'), haystack[4 .. $]));
assert(equal(find(haystack, 'f'), haystack[5 .. $]));
assert(equal(find(haystack, 'h'), haystack[8 .. $]));
assert(find(haystack, 'i').length == 0);
assert(find(null, 'a').length == 0);
@ -441,10 +372,66 @@ do
///
@nogc nothrow pure @safe unittest
{
assert(cmp(findNullTerminated("abcdef\0gh"), "abcdef") == 0);
assert(cmp(findNullTerminated("\0garbage"), "") == 0);
assert(cmp(findNullTerminated("\0"), "") == 0);
assert(cmp(findNullTerminated("cstring\0"), "cstring") == 0);
assert(equal(findNullTerminated("abcdef\0gh"), "abcdef"));
assert(equal(findNullTerminated("\0garbage"), ""));
assert(equal(findNullTerminated("\0"), ""));
assert(equal(findNullTerminated("cstring\0"), "cstring"));
assert(findNullTerminated(null) is null);
assert(findNullTerminated("abcdef") is null);
}
/**
* Compares two memory areas $(D_PARAM r1) and $(D_PARAM r2) for equality.
*
* Params:
* r1 = First memory block.
* r2 = Second memory block.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) are equal,
* $(D_KEYWORD false) otherwise.
*/
bool equal(const void[] r1, const void[] r2) @nogc nothrow pure @trusted
in
{
assert(r1.length == 0 || r1.ptr !is null);
assert(r2.length == 0 || r2.ptr !is null);
}
do
{
version (TanyaNative)
{
return equalMemory(r1, r2);
}
else
{
return r1.length == r2.length
&& memcmp(r1.ptr, r2.ptr, r1.length) == 0;
}
}
///
@nogc nothrow pure @safe unittest
{
assert(equal("asdf", "asdf"));
assert(!equal("asd", "asdf"));
assert(!equal("asdf", "asd"));
assert(!equal("asdf", "qwer"));
}
// Compares unanligned memory
@nogc nothrow pure @safe unittest
{
ubyte[16] r1 = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
];
ubyte[16] r2 = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
];
assert(equal(r1, r2));
assert(equal(r1[1 .. $], r2[1 .. $]));
assert(equal(r1[0 .. $ - 1], r2[0 .. $ - 1]));
assert(equal(r1[0 .. 8], r2[0 .. 8]));
}

View File

@ -14,7 +14,7 @@
*/
module tanya.memory;
import std.algorithm.mutation : uninitializedFill;
import tanya.algorithm.mutation;
import tanya.conv;
import tanya.exception;
public import tanya.memory.allocator;
@ -341,13 +341,7 @@ if (isPolymorphicType!T)
package(tanya) void[] finalize(T)(ref T[] p)
{
static if (hasElaborateDestructor!(typeof(p[0])))
{
foreach (ref e; p)
{
destroy(e);
}
}
destroyAll(p);
return p;
}

View File

@ -30,6 +30,7 @@ import tanya.exception;
import tanya.memory;
import tanya.meta.trait;
import tanya.range.primitive;
version (unittest) import tanya.test.stub;
private template Payload(T)
{
@ -611,19 +612,11 @@ do
@nogc @system unittest
{
static bool destroyed;
static struct F
size_t destroyed;
{
~this() @nogc nothrow @safe
{
destroyed = true;
auto rc = defaultAllocator.refCounted!WithDtor(destroyed);
}
}
{
auto rc = defaultAllocator.refCounted!F();
}
assert(destroyed);
assert(destroyed == 1);
}
/**

View File

@ -238,18 +238,6 @@ struct Pack(Args...)
alias Seq this;
}
deprecated("Use Pack instead")
struct Tuple(Args...)
{
/// Elements in this tuple as $(D_PSYMBOL AliasSeq).
alias Seq = Args;
/// The length of the tuple.
enum size_t length = Args.length;
alias Seq this;
}
///
@nogc nothrow pure @safe unittest
{
@ -1813,3 +1801,62 @@ if (T.length == 2)
static assert(is(Select!(true, int, float) == int));
static assert(is(Select!(false, int, float) == float));
}
/**
* Attaces a numeric index to each element from $(D_PARAM Args).
*
* $(D_PSYMBOL EnumerateFrom) returns a sequence of tuples ($(D_PSYMBOL Pack)s)
* consisting of the index of each element and the element itself.
*
* Params:
* start = Enumeration initial value.
* Args = Enumerated sequence.
*
* See_Also: $(D_PSYMBOL Enumerate).
*/
template EnumerateFrom(size_t start, Args...)
{
static if (Args.length == 0)
{
alias EnumerateFrom = AliasSeq!();
}
else
{
alias EnumerateFrom = AliasSeq!(Pack!(start, Args[0]), EnumerateFrom!(start + 1, Args[1 .. $]));
}
}
///
@nogc nothrow pure @safe unittest
{
static assert(EnumerateFrom!(0, int, uint, bool).length == 3);
}
///
@nogc nothrow pure @safe unittest
{
alias Expected = AliasSeq!(Pack!(cast(size_t) 0, int),
Pack!(cast(size_t) 1, uint));
static assert(is(EnumerateFrom!(0, int, uint) == Expected));
}
/**
* Attaces a numeric index to each element from $(D_PARAM Args).
*
* $(D_PSYMBOL EnumerateFrom) returns a sequence of tuples ($(D_PSYMBOL Pack)s)
* consisting of the index of each element and the element itself.
*
* Params:
* Args = Enumerated sequence.
*
* See_Also: $(D_PSYMBOL EnumerateFrom).
*/
alias Enumerate(Args...) = EnumerateFrom!(0, Args);
///
@nogc nothrow pure @safe unittest
{
alias Expected = AliasSeq!(Pack!(cast(size_t) 0, int),
Pack!(cast(size_t) 1, uint));
static assert(is(Enumerate!(int, uint) == Expected));
}

View File

@ -1493,6 +1493,8 @@ if (F.length == 1)
}
/**
* Determines whether $(D_PARAM T) defines a symbol $(D_PARAM member).
*
* Params:
* T = Aggregate type.
* member = Symbol name.
@ -1601,7 +1603,7 @@ if (is(T == class) || is(T == struct) || is(T == union))
}
///
pure nothrow @safe unittest
@nogc pure nothrow @safe unittest
{
static struct S
{
@ -2613,14 +2615,23 @@ if (is(T == enum))
}
else
{
alias getEnumMembers = AliasSeq!(__traits(getMember, T, Args[0]), getEnumMembers!(Args[1 .. $]));
alias getEnumMembers = AliasSeq!(__traits(getMember, T, Args[0]),
getEnumMembers!(Args[1 .. $]));
}
}
alias EnumMembers = getEnumMembers!(__traits(allMembers, T));
private alias allMembers = AliasSeq!(__traits(allMembers, T));
static if (allMembers.length == 1)
{
alias EnumMembers = AliasSeq!(__traits(getMember, T, allMembers));
}
else
{
alias EnumMembers = getEnumMembers!allMembers;
}
}
///
pure nothrow @nogc @safe unittest
@nogc nothrow pure @safe unittest
{
enum E : int
{
@ -2628,7 +2639,17 @@ pure nothrow @nogc @safe unittest
two,
three,
}
static assert([E.one, E.two, E.three] == [ EnumMembers!E ]);
static assert([EnumMembers!E] == [E.one, E.two, E.three]);
}
// Produces a tuple for an enum with only one member
@nogc nothrow pure @safe unittest
{
enum E : int
{
one = 0,
}
static assert(EnumMembers!E == AliasSeq!0);
}
/**
@ -2835,6 +2856,46 @@ template hasUDA(alias symbol, alias attr)
static assert(!hasUDA!(a, Attr2));
}
/**
* If $(D_PARAM T) is a type, constructs its default value, otherwise
* $(D_PSYMBOL evalUDA) aliases itself to $(D_PARAM T).
*
* This template is useful when working with UDAs with default parameters,
* i.e. if an attribute can be given as `@Attr` or `@Attr("param")`,
* $(D_PSYMBOL evalUDA) makes `@Attr()` from `@Attr`, but returns
* `@Attr("param")` as is.
*
* $(D_PARAM T) (or its type if it isn't a type already) should have a default
* constructor.
*
* Params:
* T = User Defined Attribute.
*/
alias evalUDA(alias T) = T;
/// ditto
alias evalUDA(T) = Alias!(T());
///
@nogc nothrow pure @safe unittest
{
static struct Length
{
size_t length = 8;
}
@Length @Length(0) int i;
alias uda = AliasSeq!(__traits(getAttributes, i));
alias attr1 = evalUDA!(uda[0]);
alias attr2 = evalUDA!(uda[1]);
static assert(is(typeof(attr1) == Length));
static assert(is(typeof(attr2) == Length));
static assert(attr1.length == 8);
static assert(attr2.length == 0);
}
/**
* Tests whether $(D_PARAM T) is an inner class, i.e. a class nested inside
* another class.

View File

@ -5,7 +5,7 @@
/**
* Internet Protocol implementation.
*
* Copyright: Eugene Wissner 2018.
* Copyright: Eugene Wissner 2018-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -14,6 +14,8 @@
*/
module tanya.net.ip;
import tanya.algorithm.comparison;
import tanya.algorithm.iteration;
import tanya.algorithm.mutation;
import tanya.container.string;
import tanya.conv;
@ -66,12 +68,43 @@ struct Address4
assert(Address4(0x00202000U).toUInt() == 0x00202000U);
}
/**
* Compares two $(D_PARAM Address4) objects.
*
* Params:
* that = Another address.
*
* Returns: Positive number if $(D_KEYWORD this) is larger than
* $(D_PARAM that), negative - if it is smaller, or 0 if they
* equal.
*/
int opCmp(ref const Address4 that) const @nogc nothrow pure @safe
{
const lhs = toUInt();
const rhs = that.toUInt();
return (rhs < lhs) - (lhs < rhs);
}
/// ditto
int opCmp(const Address4 that) const @nogc nothrow pure @safe
{
return opCmp(that);
}
///
@nogc nothrow pure @safe unittest
{
assert(address4("127.0.0.1") > address4("126.0.0.0"));
assert(address4("127.0.0.1") < address4("127.0.0.2"));
assert(address4("127.0.0.1") == address4("127.0.0.1"));
}
/**
* Returns object that represents 127.0.0.1.
*
* Returns: Object that represents the Loopback address.
*/
static Address4 loopback() @nogc nothrow pure @safe
static @property Address4 loopback() @nogc nothrow pure @safe
{
typeof(return) address;
address.address = Address4.loopback_;
@ -89,7 +122,7 @@ struct Address4
*
* Returns: Object that represents any address.
*/
static Address4 any() @nogc nothrow pure @safe
static @property Address4 any() @nogc nothrow pure @safe
{
typeof(return) address;
address.address = Address4.any_;
@ -116,7 +149,7 @@ struct Address4
///
@nogc nothrow pure @safe unittest
{
assert(address4("127.0.0.1").isLoopback());
assert(address4("127.0.0.1").get.isLoopback());
}
/**
@ -134,7 +167,7 @@ struct Address4
///
@nogc nothrow pure @safe unittest
{
assert(address4("0.0.0.0").isAny());
assert(address4("0.0.0.0").get.isAny());
}
/**
@ -151,7 +184,7 @@ struct Address4
///
@nogc nothrow pure @safe unittest
{
assert(address4("255.255.255.255").isBroadcast());
assert(address4("255.255.255.255").get.isBroadcast());
}
/**
@ -178,7 +211,7 @@ struct Address4
///
@nogc nothrow pure @safe unittest
{
assert(address4("224.0.0.3").isMulticast());
assert(address4("224.0.0.3").get.isMulticast());
}
/**
@ -197,7 +230,7 @@ struct Address4
///
@nogc nothrow pure @safe unittest
{
assert(address4("192.168.0.1").isUnicast());
assert(address4("192.168.0.1").get.isUnicast());
}
/**
@ -205,6 +238,7 @@ struct Address4
*
* Returns: This address in dotted-decimal notation.
*/
deprecated("Use Address4.toString() instead")
String stringify() const @nogc nothrow pure @safe
{
const octets = (() @trusted => (cast(ubyte*) &this.address)[0 .. 4])();
@ -219,12 +253,50 @@ struct Address4
}
}
/**
* Writes this IPv4 address in dotted-decimal notation.
*
* Params:
* OR = Type of the output range.
* output = Output range.
*
* Returns: $(D_PARAM output).
*/
OR toString(OR)(OR output) const @nogc nothrow pure @safe
if (isOutputRange!(OR, const(char)[]))
{
const octets = (() @trusted => (cast(ubyte*) &this.address)[0 .. 4])();
enum string fmt = "{}.{}.{}.{}";
version (LittleEndian)
{
return sformat!fmt(output,
octets[0],
octets[1],
octets[2],
octets[3]);
}
else
{
return sformat!fmt(output,
octets[3],
octets[2],
octets[1],
octets[0]);
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.container.string : String;
import tanya.range : backInserter;
const dottedDecimal = "192.168.0.1";
String actual;
const address = address4(dottedDecimal);
assert(address.get.stringify() == dottedDecimal);
address.get.toString(backInserter(actual));
assert(actual == dottedDecimal);
}
/**
@ -244,7 +316,7 @@ struct Address4
{
const actual = address4("192.168.0.1");
const ubyte[4] expected = [192, 168, 0, 1];
assert(actual.toBytes() == expected);
assert(actual.get.toBytes() == expected);
}
/**
@ -261,7 +333,7 @@ struct Address4
///
@nogc nothrow pure @safe unittest
{
assert(address4("127.0.0.1").toUInt() == 0x7f000001U);
assert(address4("127.0.0.1").get.toUInt() == 0x7f000001U);
}
}
@ -362,7 +434,7 @@ if (isInputRange!R && is(Unqual!(ElementType!R) == ubyte))
{
{
ubyte[4] actual = [127, 0, 0, 1];
assert(address4(actual[]).isLoopback());
assert(address4(actual[]).get.isLoopback());
}
{
ubyte[3] actual = [127, 0, 0];
@ -423,12 +495,51 @@ struct Address6
assert(actual.scopeID == 1);
}
/**
* Compares two $(D_PARAM Address6) objects.
*
* If $(D_KEYWORD this) and $(D_PARAM that) contain the same address, scope
* IDs are compared.
*
* Params:
* that = Another address.
*
* Returns: Positive number if $(D_KEYWORD this) is larger than
* $(D_PARAM that), negative - if it is smaller, or 0 if they
* equal.
*/
int opCmp(ref const Address6 that) const @nogc nothrow pure @safe
{
const diff = compare(this.address[], that.address[]);
if (diff == 0)
{
return (that.scopeID < this.scopeID) - (this.scopeID < that.scopeID);
}
return diff;
}
/// ditto
int opCmp(const Address6 that) const @nogc nothrow pure @safe
{
return opCmp(that);
}
///
@nogc nothrow @safe unittest
{
assert(address6("::14") > address6("::1"));
assert(address6("::1") < address6("::14"));
assert(address6("::1") == address6("::1"));
assert(address6("fe80::1%1") < address6("fe80::1%2"));
assert(address6("fe80::1%2") > address6("fe80::1%1"));
}
/**
* Returns object that represents ::.
*
* Returns: Object that represents any address.
*/
static Address6 any() @nogc nothrow pure @safe
static @property Address6 any() @nogc nothrow pure @safe
{
return Address6();
}
@ -444,7 +555,7 @@ struct Address6
*
* Returns: Object that represents the Loopback address.
*/
static Address6 loopback() @nogc nothrow pure @safe
static @property Address6 loopback() @nogc nothrow pure @safe
{
typeof(return) address;
address.address[$ - 1] = 1;
@ -472,7 +583,7 @@ struct Address6
///
@nogc nothrow @safe unittest
{
assert(address6("::").isAny());
assert(address6("::").get.isAny());
}
/**
@ -489,7 +600,7 @@ struct Address6
///
@nogc nothrow @safe unittest
{
assert(address6("::1").isLoopback());
assert(address6("::1").get.isLoopback());
}
/**
@ -508,7 +619,7 @@ struct Address6
///
@nogc nothrow @safe unittest
{
assert(address6("ff00::").isMulticast());
assert(address6("ff00::").get.isMulticast());
}
/**
@ -527,7 +638,7 @@ struct Address6
///
@nogc nothrow @safe unittest
{
assert(address6("::1").isUnicast());
assert(address6("::1").get.isUnicast());
}
/**
@ -544,7 +655,7 @@ struct Address6
///
@nogc nothrow @safe unittest
{
assert(address6("fe80::1").isLinkLocal());
assert(address6("fe80::1").get.isLinkLocal());
}
/**
@ -561,7 +672,7 @@ struct Address6
///
@nogc nothrow @safe unittest
{
assert(address6("fd80:124e:34f3::1").isUniqueLocal());
assert(address6("fd80:124e:34f3::1").get.isUniqueLocal());
}
/**
@ -569,34 +680,78 @@ struct Address6
*
* Returns: text representation of this address.
*/
deprecated("Use Address6.toString() instead")
String stringify() const @nogc nothrow pure @safe
{
String output;
foreach (i, b; this.address)
{
ubyte low = b & 0xf;
ubyte high = b >> 4;
if (high < 10)
toString(backInserter(output));
return output;
}
/**
* Writes text representation of this address to an output range.
*
* Params:
* OR = Type of the output range.
* output = Output range.
*
* Returns: $(D_PARAM output).
*/
OR toString(OR)(OR output) const
if (isOutputRange!(OR, const(char)[]))
{
output.insertBack(cast(char) (high + '0'));
ptrdiff_t largestGroupIndex = -1;
size_t largestGroupSize;
size_t zeroesInGroup;
size_t groupIndex;
// Look for the longest group of zeroes
for (size_t i; i < this.address.length; i += 2)
{
if (this.address[i] == 0 && this.address[i + 1] == 0)
{
if (zeroesInGroup++ == 0)
{
groupIndex = i;
}
}
else
{
output.insertBack(cast(char) (high - 10 + 'a'));
zeroesInGroup = 0;
}
if (low < 10)
if (zeroesInGroup > largestGroupSize && zeroesInGroup > 1)
{
output.insertBack(cast(char) (low + '0'));
largestGroupSize = zeroesInGroup;
largestGroupIndex = groupIndex;
}
else
}
// Write the address
size_t i;
if (largestGroupIndex != 0)
{
output.insertBack(cast(char) (low - 10 + 'a'));
writeGroup(output, i);
}
if (i % 2 != 0 && i != (this.address.length - 1))
if (largestGroupIndex != -1)
{
output.insertBack(':');
while (i < largestGroupIndex)
{
put(output, ":");
writeGroup(output, i);
}
put(output, "::");
i += largestGroupSize + 2;
if (i < (this.address.length - 1))
{
writeGroup(output, i);
}
}
while (i < this.address.length - 1)
{
put(output, ":");
writeGroup(output, i);
}
return output;
@ -605,10 +760,74 @@ struct Address6
///
@nogc nothrow @safe unittest
{
import tanya.algorithm.comparison : equal;
import tanya.container.string : String;
import tanya.range : backInserter;
assert(equal(address6("1:2:3:4:5:6:7:8").stringify()[],
"0001:0002:0003:0004:0005:0006:0007:0008"));
String actual;
address6("1:2:3:4:5:6:7:8").get.toString(backInserter(actual));
assert(actual == "1:2:3:4:5:6:7:8");
}
@nogc nothrow @safe unittest
{
char[18] actual;
address6("ff00:2:3:4:5:6:7:8").get.toString(arrayInserter(actual));
assert(actual[] == "ff00:2:3:4:5:6:7:8");
}
// Skips zero group in the middle
@nogc nothrow @safe unittest
{
char[12] actual;
address6("1::4:5:6:7:8").get.toString(arrayInserter(actual));
assert(actual[] == "1::4:5:6:7:8");
}
// Doesn't replace lonely zeroes
@nogc nothrow @safe unittest
{
char[15] actual;
address6("0:1:0:2:3:0:4:0").get.toString(arrayInserter(actual));
assert(actual[] == "0:1:0:2:3:0:4:0");
}
// Skips zero group at the beginning
@nogc nothrow @safe unittest
{
char[13] actual;
address6("::3:4:5:6:7:8").get.toString(arrayInserter(actual));
assert(actual[] == "::3:4:5:6:7:8");
}
// Skips zero group at the end
@nogc nothrow @safe unittest
{
char[13] actual;
address6("1:2:3:4:5:6::").get.toString(arrayInserter(actual));
assert(actual[] == "1:2:3:4:5:6::");
}
private void writeGroup(OR)(ref OR output, ref size_t i) const
{
ubyte low = this.address[i] & 0xf;
ubyte high = this.address[i] >> 4;
bool groupStarted = writeHexDigit!OR(output, high);
groupStarted = writeHexDigit!OR(output, low, groupStarted);
++i;
low = this.address[i] & 0xf;
high = this.address[i] >> 4;
writeHexDigit!OR(output, high, groupStarted);
put(output, low.toHexDigit.singleton);
++i;
}
/**
@ -626,17 +845,36 @@ struct Address6
{
auto actual = address6("1:2:3:4:5:6:7:8");
ubyte[16] expected = [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8];
assert(actual.toBytes() == expected);
assert(actual.get.toBytes() == expected);
}
}
private void write2Bytes(R)(ref R range, ubyte[] address)
private void read2Bytes(R)(ref R range, ubyte[] address)
{
ushort group = readIntegral!ushort(range, 16);
address[0] = cast(ubyte) (group >> 8);
address[1] = group & 0xff;
}
private char toHexDigit(ubyte digit) @nogc nothrow pure @safe
in (digit < 16)
{
return cast(char) (digit >= 10 ? (digit - 10 + 'a') : (digit + '0'));
}
private bool writeHexDigit(OR)(ref OR output,
ubyte digit,
bool groupStarted = false)
in (digit < 16)
{
if (digit != 0 || groupStarted)
{
put(output, digit.toHexDigit.singleton);
return true;
}
return groupStarted;
}
/**
* Parses a string containing an IPv6 address.
*
@ -645,20 +883,17 @@ private void write2Bytes(R)(ref R range, ubyte[] address)
* is specified (i.e. first character after `%` is not a digit), the parser
* tries to convert it to the ID of that interface. If the interface with the
* given name can't be found, the parser doesn't fail, but just ignores the
* invalid interface name.
* invalid interface name, scope ID is `0` then.
*
* If an ID is given (i.e. first character after `%` is a digit),
* $(D_PSYMBOL address6) just stores it in $(D_PSYMBOL Address6.scopeID) without
* checking whether an interface with this ID really exists. If the ID is
* invalid (if it is too long or contains non decimal characters), parsing
* and nothing is returned.
* fails and nothing is returned.
*
* If neither an ID nor a name is given, $(D_PSYMBOL Address6.scopeID) is set
* to `0`.
*
* The parser doesn't support notation with an embedded IPv4 address (e.g.
* ::1.2.3.4).
*
* Params:
* R = Input range type.
* range = Stringish range containing the address.
@ -675,7 +910,6 @@ if (isForwardRange!R && is(Unqual!(ElementType!R) == char) && hasLength!R)
}
Address6 result;
ubyte[12] tail;
size_t i;
size_t j;
// An address begins with a number, not ':'. But there is a special case
@ -693,10 +927,27 @@ if (isForwardRange!R && is(Unqual!(ElementType!R) == char) && hasLength!R)
// Parse the address before '::'.
// This loop parses the whole address if it doesn't contain '::'.
for (; i < 13; i += 2)
static foreach (i; 0 .. 7)
{
write2Bytes(range, result.address[i .. $]);
if (range.empty || range.front != ':')
{ // To make "state" definition local
static if (i == 6) // Can be embedded IPv4
{
auto state = range.save();
}
read2Bytes(range, result.address[i * 2 .. $]);
if (range.empty)
{
return typeof(return)();
}
static if (i == 6)
{
if (range.front == '.')
{
swap(range, state);
goto ParseIPv4;
}
}
if (range.front != ':')
{
return typeof(return)();
}
@ -711,7 +962,8 @@ if (isForwardRange!R && is(Unqual!(ElementType!R) == char) && hasLength!R)
goto ParseTail;
}
}
write2Bytes(range, result.address[14 .. $]);
}
read2Bytes(range, result.address[14 .. $]);
if (range.empty)
{
@ -739,7 +991,10 @@ ParseTail: // after ::
{
return typeof(return)();
}
write2Bytes(range, tail[j .. $]);
{ // To make "state" definition local
auto state = range.save();
read2Bytes(range, tail[j .. $]);
if (range.empty)
{
goto CopyTail;
@ -748,19 +1003,27 @@ ParseTail: // after ::
{
goto ParseIface;
}
else if (range.front == '.')
{
swap(range, state);
goto ParseIPv4;
}
else if (range.front != ':')
{
return typeof(return)();
}
range.popFront();
}
for (i = 2, j = 2; i <= 11; i += 2, j += 2, range.popFront())
j = 2;
for (size_t i = 2; i <= 11; i += 2, j += 2, range.popFront())
{
if (range.empty || range.front == ':')
{
return typeof(return)();
}
write2Bytes(range, tail[j .. $]);
auto state = range.save();
read2Bytes(range, tail[j .. $]);
if (range.empty)
{
@ -770,12 +1033,45 @@ ParseTail: // after ::
{
goto ParseIface;
}
else if (range.front == '.')
{
swap(range, state);
goto ParseIPv4;
}
else if (range.front != ':')
{
return typeof(return)();
}
}
ParseIPv4:
// We know there is a number followed by '.'. We have to ensure this number
// is an octet
tail[j] = readIntegral!ubyte(range);
static foreach (i; 1 .. 4)
{
if (range.empty || range.front != '.')
{
return typeof(return)();
}
range.popFront();
if (range.empty)
{
return typeof(return)();
}
tail[j + i] = readIntegral!ubyte(range);
}
j += 2;
if (range.empty)
{
goto CopyTail;
}
else if (range.front != '%')
{
return typeof(return)();
}
ParseIface: // Scope name or ID
range.popFront();
if (range.empty)
@ -806,26 +1102,30 @@ CopyTail:
@nogc nothrow @safe unittest
{
{
ubyte[16] expected = [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8];
auto actual = address6("1:2:3:4:5:6:7:8");
assert(actual.address == expected);
}
{
assert(actual.get.address == expected);
}
@nogc nothrow @safe unittest
{
ubyte[16] expected;
auto actual = address6("::");
assert(actual.address == expected);
}
{
assert(actual.get.address == expected);
}
@nogc nothrow @safe unittest
{
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
auto actual = address6("::1");
assert(actual.address == expected);
}
{
assert(actual.get.address == expected);
}
@nogc nothrow @safe unittest
{
ubyte[16] expected = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
auto actual = address6("1::");
assert(actual.address == expected);
}
assert(actual.get.address == expected);
}
// Rejects malformed addresses
@ -836,7 +1136,37 @@ CopyTail:
assert(address6(":a").isNothing);
assert(address6("a:").isNothing);
assert(address6("1:2:3:4::6:").isNothing);
assert(address6("1:2:3:4::6:7:8%").isNothing);
assert(address6("fe80:2:3:4::6:7:8%").isNothing);
}
// Parses embedded IPv4 address
@nogc nothrow @safe unittest
{
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4];
auto actual = address6("0:0:0:0:0:0:1.2.3.4");
assert(actual.get.address == expected);
}
@nogc nothrow @safe unittest
{
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4];
auto actual = address6("::1.2.3.4");
assert(actual.get.address == expected);
}
@nogc nothrow @safe unittest
{
ubyte[16] expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 6, 1, 2, 3, 4];
auto actual = address6("::5:6:1.2.3.4");
assert(actual.get.address == expected);
}
@nogc nothrow @safe unittest
{
assert(address6("0:0:0:0:0:0:1.2.3.").isNothing);
assert(address6("0:0:0:0:0:0:1.2:3.4").isNothing);
assert(address6("0:0:0:0:0:0:1.2.3.4.").isNothing);
assert(address6("fe80:0:0:0:0:0:1.2.3.4%1").get.scopeID == 1);
}
/**
@ -888,3 +1218,261 @@ if (isInputRange!R && is(Unqual!(ElementType!R) == ubyte))
assert(address6(cast(ubyte[]) []).isNothing);
}
}
/**
* Address storage, that can hold either an IPv4 or IPv6 address.
*/
struct Address
{
private Variant!(Address4, Address6) address;
@disable this();
/**
* Initializes the addres with an IPv4 address.
*
* Params:
* address = IPv6 address.
*/
this(Address4 address) @nogc nothrow pure @safe
{
this.address = address;
}
/**
* Initializes the addres with an IPv4 address.
*
* Params:
* address = IPv6 address.
*/
this(Address6 address) @nogc nothrow pure @safe
{
this.address = address;
}
/**
* Determines whether this is an IPv4 address.
*
* Returns: $(D_KEYWORD true) if this is an IPv4 address,
* $(D_KEYWORD false) otherwise.
*/
bool isV4() const @nogc nothrow pure @safe
{
return this.address.peek!Address4;
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address4.any()).isV4());
}
/**
* Determines whether this is an IPv6 address.
*
* Returns: $(D_KEYWORD true) if this is an IPv6 address,
* $(D_KEYWORD false) otherwise.
*/
bool isV6() const @nogc nothrow pure @safe
{
return this.address.peek!Address6;
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address6.any()).isV6());
}
/**
* Get the address as an IPv4 address.
*
* This method doesn't convert the address, so the address should be
* already an IPv4 one.
*
* Returns: IPv4 address.
*
* Precondition: This is an IPv4 address.
*/
ref inout(Address4) toV4() inout @nogc nothrow pure @safe
in (this.address.peek!Address4)
{
return this.address.get!Address4;
}
///
@nogc nothrow pure @safe unittest
{
auto expected = Address4.loopback;
assert(Address(expected).toV4() == expected);
}
/**
* Get the address as an IPv6 address.
*
* This method doesn't convert the address, so the address should be
* already an IPv6 one.
*
* Returns: IPv6 address.
*
* Precondition: This is an IPv6 address.
*/
ref inout(Address6) toV6() inout @nogc nothrow pure @safe
in (this.address.peek!Address6)
{
return this.address.get!Address6;
}
///
@nogc nothrow pure @safe unittest
{
auto expected = Address6.loopback;
assert(Address(expected).toV6() == expected);
}
/**
* Determines whether this is a loopback address.
*
* Returns: $(D_KEYWORD true) if this is a loopback address,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL Address4.loopback),
* $(D_PSYMBOL Address6.loopback).
*/
bool isLoopback() const @nogc nothrow pure @safe
in (this.address.hasValue)
{
if (this.address.peek!Address4)
{
return this.address.get!Address4.isLoopback();
}
return this.address.get!Address6.isLoopback();
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address4.loopback()).isLoopback());
assert(Address(Address6.loopback()).isLoopback());
}
/**
* Determines whether this address' destination is a group of endpoints.
*
* Returns: $(D_KEYWORD true) if this is a multicast address,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL Address4.isMulticast),
* $(D_PSYMBOL Address6.isMulticast).
*/
bool isMulticast() const @nogc nothrow pure @safe
in (this.address.hasValue)
{
if (this.address.peek!Address4)
{
return this.address.get!Address4.isMulticast();
}
return this.address.get!Address6.isMulticast();
}
///
@nogc nothrow @safe unittest
{
assert(Address(address4("224.0.0.3").get).isMulticast());
assert(Address(address6("ff00::").get).isMulticast());
}
/**
* Determines whether this is an unspecified address.
*
* Returns: $(D_KEYWORD true) if this is an unspecified address,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL Address4.isAny), $(D_PSYMBOL Address6.isAny).
*/
bool isAny() const @nogc nothrow pure @safe
in (this.address.hasValue)
{
if (this.address.peek!Address4)
{
return this.address.get!Address4.isAny();
}
return this.address.get!Address6.isAny();
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address4.any).isAny());
assert(Address(Address6.any).isAny());
}
/**
* Compares two addresses for equality.
*
* Params:
* T = The type of the other address. It can be $(D_PSYMBOL Address),
* $(D_PSYMBOL Address4) or $(D_PSYMBOL Address6).
* that = The address to compare with.
*
* Returns: $(D_KEYWORD true) if this and $(D_PARAM that) addresses are
* representations of the same IP address, $(D_KEYWORD false)
* otherwise.
*/
bool opEquals(T)(T that) const
if (is(Unqual!T == Address4) || is(Unqual!T == Address6))
{
alias AddressType = Unqual!T;
if (this.address.peek!AddressType)
{
return this.address.get!AddressType == that;
}
return false;
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address4.loopback) == Address4.loopback);
assert(Address(Address6.loopback) == Address6.loopback);
assert(Address(Address4.loopback) != Address6.loopback);
}
/// ditto
bool opEquals(T)(T that) const
if (is(Unqual!T == Address))
{
return this.address == that.address;
}
///
@nogc nothrow pure @safe unittest
{
assert(Address(Address6.loopback) == Address(Address6.loopback));
assert(Address(Address4.loopback) != Address(Address6.loopback));
}
ref Address opAssign(T)(T that)
if (is(Unqual!T == Address4) || is(Unqual!T == Address6))
{
this.address = that;
return this;
}
///
@nogc nothrow pure @safe unittest
{
Address address = Address4.any;
address = Address4.loopback;
assert(address == Address4.loopback);
}
}
// Can assign another address
@nogc nothrow pure @safe unittest
{
Address actual = Address4.loopback;
Address expected = Address6.loopback;
actual = expected;
assert(actual == expected);
}

View File

@ -53,10 +53,10 @@ module tanya.network.socket;
import core.stdc.errno;
import core.time;
public import std.socket : SocketOption, SocketOptionLevel;
import std.traits;
import std.typecons;
import tanya.algorithm.comparison;
import tanya.bitmanip;
import tanya.memory;
import tanya.meta.trait;
import tanya.os.error;
/// Value returned by socket operations on error.

View File

@ -3,260 +3,228 @@
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Range adapters.
* Range adapters transform some data structures into ranges.
*
* A range adapter wraps another range and modifies the way, how the original
* range is iterated, or the order in which its elements are accessed.
*
* All adapters are lazy algorithms, they request the next element of the
* adapted range on demand.
*
* Copyright: Eugene Wissner 2018.
* Copyright: Eugene Wissner 2018-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/range/adapter.d,
* tanya/range/adapter.d)
*/
deprecated("Use tanya.algorithm.iteration instead")
module tanya.range.adapter;
import tanya.algorithm.mutation;
import tanya.math;
import tanya.range.primitive;
import tanya.functional;
import tanya.meta.trait;
import tanya.range;
private mixin template Take(R, bool exactly)
version (unittest)
{
private R source;
size_t length_;
static struct Container
{
void insertBack(const(char)[])
{
}
}
}
@disable this();
private mixin template InserterCtor()
{
private Container* container;
private this(R source, size_t length)
private this(ref Container container) @trusted
{
this.source = source;
static if (!exactly && hasLength!R)
{
this.length_ = min(source.length, length);
}
else
{
this.length_ = length;
}
}
@property auto ref front()
in
{
assert(!empty);
}
do
{
return this.source.front;
}
void popFront()
in
{
assert(!empty);
}
do
{
this.source.popFront();
--this.length_;
}
@property bool empty()
{
static if (exactly || isInfinite!R)
{
return length == 0;
}
else
{
return length == 0 || this.source.empty;
}
}
@property size_t length()
{
return this.length_;
}
static if (hasAssignableElements!R)
{
@property void front(ref ElementType!R value)
in
{
assert(!empty);
}
do
{
this.source.front = value;
}
@property void front(ElementType!R value)
in
{
assert(!empty);
}
do
{
this.source.front = move(value);
}
}
static if (isForwardRange!R)
{
typeof(this) save()
{
return typeof(this)(this.source.save(), length);
}
}
static if (isRandomAccessRange!R)
{
@property auto ref back()
in
{
assert(!empty);
}
do
{
return this.source[this.length - 1];
}
void popBack()
in
{
assert(!empty);
}
do
{
--this.length_;
}
auto ref opIndex(size_t i)
in
{
assert(i < length);
}
do
{
return this.source[i];
}
static if (hasAssignableElements!R)
{
@property void back(ref ElementType!R value)
in
{
assert(!empty);
}
do
{
this.source[length - 1] = value;
}
@property void back(ElementType!R value)
in
{
assert(!empty);
}
do
{
this.source[length - 1] = move(value);
}
void opIndexAssign(ref ElementType!R value, size_t i)
in
{
assert(i < length);
}
do
{
this.source[i] = value;
}
void opIndexAssign(ElementType!R value, size_t i)
in
{
assert(i < length);
}
do
{
this.source[i] = move(value);
}
}
}
static if (hasSlicing!R)
{
auto opSlice(size_t i, size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
do
{
return take(this.source[i .. j], length);
}
this.container = &container;
}
}
/**
* Takes $(D_PARAM n) elements from $(D_PARAM range).
* If $(D_PARAM container) is a container with `insertBack`-support,
* $(D_PSYMBOL backInserter) returns an output range that puts the elements
* into the container with `insertBack`.
*
* If $(D_PARAM range) doesn't have $(D_PARAM n) elements, the resulting range
* spans all elements of $(D_PARAM range).
* The resulting output range supports all types `insertBack` supports.
*
* $(D_PSYMBOL take) is particulary useful with infinite ranges. You can take
` $(B n) elements from such range and pass the result to an algorithm which
* expects a finit range.
* The range keeps a reference to the container passed to it, it doesn't use
* any other storage. So there is no method to get the written data out of the
* range - the container passed to $(D_PSYMBOL backInserter) contains that data
* and can be used directly after all operations on the output range are
* completed. It also means that the result range is not allowed to outlive its
* container.
*
* Params:
* R = Type of the adapted range.
* range = The range to take the elements from.
* n = The number of elements to take.
* Container = Container type.
* container = Container used as an output range.
*
* Returns: A range containing maximum $(D_PARAM n) first elements of
* $(D_PARAM range).
*
* See_Also: $(D_PSYMBOL takeExactly).
* Returns: `insertBack`-based output range.
*/
auto take(R)(R range, size_t n)
if (isInputRange!R)
auto backInserter(Container)(return scope ref Container container)
if (hasMember!(Container, "insertBack"))
{
struct Take
static struct Inserter
{
mixin .Take!(R, false);
void opCall(T)(auto ref T data)
{
this.container.insertBack(forward!data);
}
return Take(range, n);
mixin InserterCtor;
}
return Inserter(container);
}
///
@nogc nothrow pure @safe unittest
{
static struct Container
{
int element;
void insertBack(int element)
{
this.element = element;
}
}
Container container;
backInserter(container)(5);
assert(container.element == 5);
}
@nogc nothrow pure @safe unittest
{
auto func()()
{
Container container;
return backInserter(container);
}
static assert(!is(typeof(func!())));
}
@nogc nothrow pure @safe unittest
{
Container container;
static assert(isOutputRange!(typeof(backInserter(container)), string));
}
/**
* Takes exactly $(D_PARAM n) elements from $(D_PARAM range).
* If $(D_PARAM container) is a container with `insertFront`-support,
* $(D_PSYMBOL frontInserter) returns an output range that puts the elements
* into the container with `insertFront`.
*
* $(D_PARAM range) must have at least $(D_PARAM n) elements.
* The resulting output range supports all types `insertFront` supports.
*
* $(D_PSYMBOL takeExactly) is particulary useful with infinite ranges. You can
` take $(B n) elements from such range and pass the result to an algorithm
* which expects a finit range.
* The range keeps a reference to the container passed to it, it doesn't use
* any other storage. So there is no method to get the written data out of the
* range - the container passed to $(D_PSYMBOL frontInserter) contains that data
* and can be used directly after all operations on the output range are
* completed. It also means that the result range is not allowed to outlive its
* container.
*
* Params:
* R = Type of the adapted range.
* range = The range to take the elements from.
* n = The number of elements to take.
* Container = Container type.
* container = Container used as an output range.
*
* Returns: A range containing $(D_PARAM n) first elements of $(D_PARAM range).
*
* See_Also: $(D_PSYMBOL take).
* Returns: `insertFront`-based output range.
*/
auto takeExactly(R)(R range, size_t n)
if (isInputRange!R)
auto frontInserter(Container)(return scope ref Container container)
if (hasMember!(Container, "insertFront"))
{
struct TakeExactly
static struct Inserter
{
mixin Take!(R, true);
void opCall(T)(auto ref T data)
{
this.container.insertFront(forward!data);
}
return TakeExactly(range, n);
mixin InserterCtor;
}
return Inserter(container);
}
///
@nogc nothrow pure @safe unittest
{
static struct Container
{
int element;
void insertFront(int element)
{
this.element = element;
}
}
Container container;
frontInserter(container)(5);
assert(container.element == 5);
}
/**
* $(D_PSYMBOL arrayInserter) makes an output range out of an array.
*
* The returned output range accepts single values as well as input ranges that
* can be copied into the target array.
*
* Params:
* Array = Array type.
* array = Array.
*
* Returns: An output range writing into $(D_PARAM array).
*/
auto arrayInserter(Array)(return scope ref Array array)
if (isArray!Array)
{
static if (is(Array ArrayT : ArrayT[size], size_t size))
{
alias E = ArrayT;
}
else
{
alias E = ElementType!Array;
}
static struct ArrayInserter
{
private E[] data;
private this(ref Array data) @trusted
{
this.data = data[];
}
void opCall(T)(auto ref T data)
if (is(T : E))
in (!this.data.empty)
{
put(this.data, data);
}
void opCall(R)(auto ref R data)
if (isInputRange!R && isOutputRange!(E[], ElementType!R))
{
this.data = copy(data, this.data);
}
}
return ArrayInserter(array);
}
///
@nogc nothrow pure @safe unittest
{
int[1] array;
arrayInserter(array)(5);
assert(array[0] == 5);
}
///
@nogc nothrow pure @safe unittest
{
char[1] array;
alias Actual = typeof(arrayInserter(array));
static assert(isOutputRange!(Actual, char));
static assert(isOutputRange!(Actual, char[]));
}

View File

@ -54,7 +54,7 @@ module tanya.range.array;
*
* Precondition: $(D_INLINECODE array.length > 0).
*/
@property ref T front(T)(T[] array)
@property ref inout(T) front(T)(return scope inout(T)[] array)
in
{
assert(array.length > 0);
@ -94,7 +94,7 @@ do
*
* Precondition: $(D_INLINECODE array.length > 0).
*/
@property ref T back(T)(T[] array)
@property ref inout(T) back(T)(return scope inout(T)[] array)
in
{
assert(array.length > 0);
@ -133,7 +133,7 @@ do
*
* Precondition: $(D_INLINECODE array.length > 0).
*/
void popFront(T)(ref T[] array)
void popFront(T)(scope ref inout(T)[] array)
in
{
assert(array.length > 0);
@ -144,7 +144,7 @@ do
}
/// ditto
void popBack(T)(ref T[] array)
void popBack(T)(scope ref inout(T)[] array)
in
{
assert(array.length > 0);
@ -178,7 +178,7 @@ do
* Returns: $(D_KEYWORD true) if $(D_PARAM array) has no elements,
* $(D_KEYWORD false) otherwise.
*/
@property bool empty(T)(const T[] array)
@property bool empty(T)(scope const T[] array)
{
return array.length == 0;
}
@ -203,7 +203,7 @@ do
*
* Returns: A copy of the slice $(D_PARAM array).
*/
@property T[] save(T)(T[] array)
@property inout(T)[] save(T)(return scope inout(T)[] array)
{
return array;
}

View File

@ -5,7 +5,7 @@
/**
* This module defines primitives for working with ranges.
*
* Copyright: Eugene Wissner 2017-2018.
* Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -20,6 +20,19 @@ import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.array;
version (unittest)
{
import tanya.test.stub;
private struct AssertPostblit
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
}
/**
* Returns the element type of the range $(D_PARAM R).
*
@ -73,10 +86,7 @@ template ElementType(R)
*
* See_Also: $(D_PSYMBOL isInfinite).
*/
template hasLength(R)
{
enum bool hasLength = is(ReturnType!((R r) => r.length) == size_t);
}
enum bool hasLength(R) = is(ReturnType!((R r) => r.length) == size_t);
///
@nogc nothrow pure @safe unittest
@ -294,34 +304,6 @@ template hasSlicing(R)
static assert(hasSlicing!D);
}
version (unittest)
{
mixin template InputRangeStub()
{
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property bool empty() const @nogc nothrow pure @safe
{
return false;
}
void popFront() @nogc nothrow pure @safe
{
}
}
mixin template BidirectionalRangeStub()
{
@property int back() @nogc nothrow pure @safe
{
return 0;
}
void popBack() @nogc nothrow pure @safe
{
}
}
}
private template isDynamicArrayRange(R)
{
static if (is(R E : E[]))
@ -334,6 +316,26 @@ private template isDynamicArrayRange(R)
}
}
private struct Primitive(Candidate, string primitive)
{
auto ref returnType(Candidate candidate)
{
mixin("return candidate." ~ primitive ~ ";");
}
alias ReturnType = .ReturnType!returnType;
static assert(!is(ReturnType == void));
enum uint attributes = functionAttributes!returnType
& FunctionAttribute.ref_;
bool opEquals(That)(That) const
{
return is(ReturnType == That.ReturnType)
&& attributes == That.attributes;
}
}
/**
* Determines whether $(D_PARAM R) is an input range.
*
@ -353,11 +355,11 @@ private template isDynamicArrayRange(R)
*/
template isInputRange(R)
{
static if (is(ReturnType!((R r) => r.front()) U)
static if (is(Primitive!(R, "front()") U)
&& is(ReturnType!((R r) => r.empty) == bool)
&& is(typeof(R.popFront())))
{
enum bool isInputRange = !is(U == void);
enum bool isInputRange = true;
}
else
{
@ -373,10 +375,12 @@ template isInputRange(R)
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
@ -391,13 +395,8 @@ template isInputRange(R)
{
static struct Range1(T)
{
void popFront()
{
}
int front()
{
return 0;
}
mixin InputRangeStub;
T empty() const
{
return true;
@ -408,50 +407,56 @@ template isInputRange(R)
static struct Range2
{
mixin InputRangeStub;
int popFront() @nogc nothrow pure @safe
{
return 100;
}
int front() @nogc nothrow pure @safe
{
return 100;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(isInputRange!Range2);
static struct Range3
{
void popFront() @nogc nothrow pure @safe
{
}
mixin InputRangeStub;
void front() @nogc nothrow pure @safe
{
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(!isInputRange!Range3);
static struct Range4
{
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
mixin InputRangeStub;
enum bool empty = false;
}
static assert(isInputRange!Range4);
}
// Ranges with non-copyable elements can be input ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin InputRangeStub!NonCopyable;
}
static assert(isInputRange!R);
}
// Ranges with const non-copyable elements can be input ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin InputRangeStub!(const(NonCopyable));
}
static assert(isInputRange!R);
}
/**
* Determines whether $(D_PARAM R) is a forward range.
*
@ -489,14 +494,17 @@ template isForwardRange(R)
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
typeof(this) save() @nogc nothrow pure @safe
{
return this;
@ -515,6 +523,7 @@ template isForwardRange(R)
static struct Range2
{
mixin InputRangeStub;
Range1 save() @nogc nothrow pure @safe
{
return Range1();
@ -525,6 +534,7 @@ template isForwardRange(R)
static struct Range3
{
mixin InputRangeStub;
const(typeof(this)) save() const @nogc nothrow pure @safe
{
return this;
@ -553,11 +563,11 @@ template isForwardRange(R)
*/
template isBidirectionalRange(R)
{
static if (is(ReturnType!((R r) => r.back()) U)
static if (is(Primitive!(R, "back()") U)
&& is(typeof(R.popBack())))
{
enum bool isBidirectionalRange = isForwardRange!R
&& is(U == ReturnType!((R r) => r.front()));
&& (U() == Primitive!(R, "front()")());
}
else
{
@ -573,21 +583,26 @@ template isBidirectionalRange(R)
void popFront() @nogc nothrow pure @safe
{
}
void popBack() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property int back() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
Range save() @nogc nothrow pure @safe
{
return this;
@ -602,33 +617,33 @@ template isBidirectionalRange(R)
{
static struct Range(T, U)
{
void popFront() @nogc nothrow pure @safe
{
}
void popBack() @nogc nothrow pure @safe
{
}
mixin BidirectionalRangeStub;
@property T front() @nogc nothrow pure @safe
{
return T.init;
}
@property U back() @nogc nothrow pure @safe
{
return U.init;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
Range save() @nogc nothrow pure @safe
{
return this;
}
}
static assert(!isBidirectionalRange!(Range!(int, uint)));
static assert(!isBidirectionalRange!(Range!(int, const int)));
}
// Ranges with non-copyable elements can be bidirectional ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements
static struct R
{
mixin BidirectionalRangeStub!NonCopyable;
}
static assert(isBidirectionalRange!R);
}
/**
* Determines whether $(D_PARAM R) is a random-access range.
*
@ -654,11 +669,11 @@ template isBidirectionalRange(R)
*/
template isRandomAccessRange(R)
{
static if (is(ReturnType!((R r) => r.opIndex(size_t.init)) U))
static if (is(Primitive!(R, "opIndex(size_t.init)") U))
{
enum bool isRandomAccessRange = isInputRange!R
&& (hasLength!R || isInfinite!R)
&& is(U == ReturnType!((R r) => r.front()));
&& (U() == Primitive!(R, "front()")());
}
else
{
@ -674,29 +689,22 @@ template isRandomAccessRange(R)
void popFront() @nogc nothrow pure @safe
{
}
void popBack() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property int back() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
int opIndex(size_t) @nogc nothrow pure @safe
{
return 0;
}
size_t length() const @nogc nothrow pure @safe
{
return 0;
@ -711,15 +719,14 @@ template isRandomAccessRange(R)
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
enum bool empty = false;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{
return 0;
@ -732,76 +739,43 @@ template isRandomAccessRange(R)
{
static struct Range1
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{
return 0;
}
mixin RandomAccessRangeStub;
}
static assert(!isRandomAccessRange!Range1);
@Length
static struct Range2(Args...)
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(Args) @nogc nothrow pure @safe
{
return 0;
}
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(isRandomAccessRange!(Range2!size_t));
static assert(!isRandomAccessRange!(Range2!()));
static assert(!isRandomAccessRange!(Range2!(size_t, size_t)));
@Length
static struct Range3
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1, const size_t pos2 = 0)
@nogc nothrow pure @safe
{
return 0;
}
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(isRandomAccessRange!Range3);
static struct Range4
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
mixin RandomAccessRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1) @nogc nothrow pure @safe
{
return 0;
}
size_t opDollar() const @nogc nothrow pure @safe
{
return 0;
@ -810,19 +784,39 @@ template isRandomAccessRange(R)
static assert(!isRandomAccessRange!Range4);
}
// Ranges with non-copyable elements can be random-access ranges
@nogc nothrow pure @safe unittest
{
@WithLvalueElements @Infinite
static struct R
{
mixin RandomAccessRangeStub!NonCopyable;
}
static assert(isRandomAccessRange!R);
}
/**
* Puts $(D_PARAM e) into the $(D_PARAM range).
*
* $(D_PSYMBOL R) should be an output range for $(D_PARAM E).
*
* $(D_PARAM range) is advanced after putting an element into it if all of the
* following conditions are met:
* $(D_PSYMBOL R) should be an output range for $(D_PARAM E), i.e. at least one
* of the following conditions should met:
*
* $(OL
* $(LI $(D_PSYMBOL R) is an input range)
* $(LI $(D_PSYMBOL R) doesn't define a `put`-method)
* $(LI $(D_PARAM e) can be put into $(D_PARAM range) using
* $(D_INLINECODE range(e))
* $(LI $(D_PARAM e) can be assigned to $(D_INLINECODE range.front))
* )
* )
*
* The method to put $(D_PARAM e) into $(D_PARAM range) is chosen based on the
* order specified above.
*
* If $(D_PARAM E) is an input range and $(D_PARAM R) is an output range for
* its elements as well, use $(D_PSYMBOL tanya.algorithm.mutation.copy)
* instead.
*
* $(D_PARAM range) is advanced after putting an element into it if it is an
* input range that doesn't define a `put`-method.
*
* Params:
* R = Target range type.
@ -837,27 +831,19 @@ void put(R, E)(ref R range, auto ref E e)
static if (__traits(hasMember, R, "put")
&& is(typeof((R r, E e) => r.put(e))))
{
pragma(msg, "OutputRange.put()-primitive is deprecated. Define opCall() instead.");
range.put(e);
}
else static if (is(typeof((R r, E e) => r(e))))
{
range(e);
}
else static if (isInputRange!R
&& is(typeof((R r, E e) => r.front = e)))
{
range.front = e;
range.popFront();
}
else static if (is(typeof((R r, E e) => r(e))))
{
range(e);
}
else static if (isInputRange!E)
{
pragma(msg, "Putting an input range into an output range is "
~ "deprecated. Use tanya.algorithm.mutation.copy instead");
for (; !e.empty; e.popFront())
{
put(range, e.front);
}
}
else
{
static assert(false, R.stringof ~ " is not an output range for "
@ -875,23 +861,6 @@ void put(R, E)(ref R range, auto ref E e)
assert(actual == [2, 0]);
}
///
@nogc nothrow pure @safe unittest
{
static struct Put
{
int e;
void put(int e)
{
this.e = e;
}
}
Put p;
put(p, 2);
assert(p.e == 2);
}
///
@nogc nothrow pure @safe unittest
{
@ -923,36 +892,28 @@ void put(R, E)(ref R range, auto ref E e)
* $(TH Scenario)
* )
* $(TR
* $(TD r.put(e))
* $(TD $(D_PARAM R) defines `put` for $(D_PARAM E).)
* )
* $(TR
* $(TD r.front = e)
* $(TD $(D_PARAM R) is an input range, whose element type is
* $(D_PARAM E) and `front` is an lvalue.)
* )
* $(TR
* $(TD r(e))
* $(TD $(D_PARAM R) defines `opCall` for $(D_PARAM E).)
* )
* $(TR
* $(TD for (; !e.empty; e.popFront()) r.put(e.front) $(BR)
* for (; !e.empty; e.popFront(), r.popFront())
* r.front = e.front $(BR)
* for (; !e.empty; e.popFront()) r(e.front)
* )
* $(TD $(D_PARAM E) is input range, whose elements can be put into
* $(D_PARAM R) according to the rules described above in this table.
* )
* $(TD r.front = e)
* $(TD $(D_PARAM R) is an input range with assignable elements of type
* $(D_PARAM E).)
* )
* )
*
* Output ranges don't have element type (so $(D_PSYMBOL ElementType) returns
* $(D_KEYWORD void) when applied to an output range). It is because an output
* range can support puting differently typed elements into it.
*
* Params:
* R = The type to be tested.
* E = Element type should be tested for.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) is an output range for the
* elements of the type $(D_PARAM E), $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL put).
*/
template isOutputRange(R, E)
{
@ -962,6 +923,11 @@ template isOutputRange(R, E)
}
else static if (isInputRange!E)
{
pragma(msg, "Deprecation. An input range whose element type is "
~ "supported by the output range isn't considered itself to "
~ "be a source for such an output range. Don't rely on this "
~ "behavior and use tanya.algorithm.copy() to write one "
~ "range into another one.");
alias ET = ElementType!E;
enum bool isOutputRange = is(typeof((R r, ET e) => put(r, e)));
}
@ -976,7 +942,7 @@ template isOutputRange(R, E)
{
static struct R1
{
void put(int) @nogc nothrow pure @safe
void opCall(int) @nogc nothrow pure @safe
{
}
}
@ -985,13 +951,16 @@ template isOutputRange(R, E)
static struct R2
{
int value;
void popFront() @nogc nothrow pure @safe
{
}
ref int front() @nogc nothrow pure @safe
{
return value;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
@ -1004,28 +973,18 @@ template isOutputRange(R, E)
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(!isOutputRange!(R3, int));
static struct R4
{
void opCall(int) @nogc nothrow pure @safe
{
}
}
static assert(isOutputRange!(R4, int));
static assert(isOutputRange!(R1, R3));
static assert(isOutputRange!(R2, R3));
static assert(isOutputRange!(R4, R3));
}
/**
@ -1095,28 +1054,20 @@ template isInfinite(R)
@nogc nothrow pure @safe unittest
{
@Infinite
static struct StaticConstRange
{
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
mixin InputRangeStub;
static bool empty = false;
}
static assert(!isInfinite!StaticConstRange);
@Infinite
static struct TrueRange
{
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
mixin InputRangeStub;
static const bool empty = true;
}
static assert(!isInfinite!TrueRange);
@ -1346,15 +1297,12 @@ if (isBidirectionalRange!R)
@nogc nothrow pure @safe unittest
{
@Infinite
static struct InfiniteRange
{
mixin ForwardRangeStub;
private int i;
InfiniteRange save() @nogc nothrow pure @safe
{
return this;
}
void popFront() @nogc nothrow pure @safe
{
++this.i;
@ -1374,8 +1322,6 @@ if (isBidirectionalRange!R)
{
return this.i;
}
enum bool empty = false;
}
{
InfiniteRange range;
@ -1495,44 +1441,19 @@ if (isInputRange!R)
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1
{
Element element;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
mixin InputRangeStub!AssertPostblit;
}
static assert(is(typeof(moveFront(R1()))));
// Returns elements with a postblit constructor by value. moveFront fails.
@Infinite
static struct R2
{
enum bool empty = false;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
mixin InputRangeStub!AssertPostblit;
}
static assert(!is(typeof(moveFront(R2()))));
}
@ -1580,58 +1501,19 @@ if (isBidirectionalRange!R)
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1
{
Element element;
enum bool empty = false;
ref Element back() @nogc nothrow pure @safe
{
return element;
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R1 save() @nogc nothrow pure @safe
{
return this;
}
mixin BidirectionalRangeStub!AssertPostblit;
}
static assert(is(typeof(moveBack(R1()))));
// Returns elements with a postblit constructor by value. moveBack fails.
@Infinite
static struct R2
{
enum bool empty = false;
Element back() @nogc nothrow pure @safe
{
return Element();
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R2 save() @nogc nothrow pure @safe
{
return this;
}
mixin BidirectionalRangeStub!AssertPostblit;
}
static assert(!is(typeof(moveBack(R2()))));
}
@ -1678,54 +1560,19 @@ if (isRandomAccessRange!R)
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference.
@Infinite @WithLvalueElements
static struct R1
{
Element element;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
ref Element opIndex(size_t)
{
return element;
}
mixin RandomAccessRangeStub!AssertPostblit;
}
static assert(is(typeof(moveAt(R1(), 0))));
// Returns elements with a postblit constructor by value. moveAt fails.
@Infinite
static struct R2
{
enum bool empty = false;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
Element opIndex() @nogc nothrow pure @safe
{
return Element();
}
mixin RandomAccessRangeStub!AssertPostblit;
}
static assert(!is(typeof(moveAt(R2(), 0))));
}
@ -1826,7 +1673,7 @@ template hasMobileElements(R)
*/
template hasLvalueElements(R)
{
private alias refDg = (ref ElementType!R e) => e;
private alias refDg = (ref ElementType!R e) => &e;
static if (isRandomAccessRange!R)
{
@ -1884,6 +1731,12 @@ template hasLvalueElements(R)
static assert(hasLvalueElements!R2);
}
// Works with non-copyable elements
@nogc nothrow pure @safe unittest
{
static assert(hasLvalueElements!(NonCopyable[]));
}
/**
* Determines whether the elements of $(D_PARAM R) are assignable.
*
@ -2039,3 +1892,41 @@ template hasSwappableElements(R)
}
static assert(!hasSwappableElements!R2);
}
/**
* Determines whether `r1.front` and `r2.front` point to the same element.
*
* Params:
* r1 = First range.
* r2 = Second range.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) have the same
* head, $(D_KEYWORD false) otherwise.
*/
bool sameHead(Range)(Range r1, Range r2) @trusted
if (isInputRange!Range && hasLvalueElements!Range)
{
return &r1.front is &r2.front;
}
///
@nogc nothrow pure @safe unittest
{
const int[2] array;
auto r1 = array[];
auto r2 = array[];
assert(sameHead(r1, r2));
}
///
@nogc nothrow pure @safe unittest
{
const int[2] array;
auto r1 = array[];
auto r2 = array[1 .. $];
assert(!sameHead(r1, r2));
}

View File

@ -15,3 +15,4 @@
module tanya.test;
public import tanya.test.assertion;
public import tanya.test.stub;

373
source/tanya/test/stub.d Normal file
View File

@ -0,0 +1,373 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Range and generic type generators.
*
* Copyright: Eugene Wissner 2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/test/stub.d,
* tanya/test/stub.d)
*/
module tanya.test.stub;
/**
* Attribute signalizing that the generated range should contain the given
* number of elements.
*
* $(D_PSYMBOL Count) should be always specified with some value and not as a
* type, so $(D_INLINECODE Count(1)) instead just $(D_INLINECODE Count),
* otherwise you can just omit $(D_PSYMBOL Count) and it will default to 0.
*
* $(D_PSYMBOL Count) doesn't generate `.length` property - use
* $(D_PSYMBOL Length) for that.
*
* If neither $(D_PSYMBOL Length) nor $(D_PSYMBOL Infinite) is given,
* $(D_ILNINECODE Count(0)) is assumed.
*
* This attribute conflicts with $(D_PSYMBOL Infinite) and $(D_PSYMBOL Length).
*/
struct Count
{
/// Original range length.
size_t count = 0;
@disable this();
/**
* Constructs the attribute with the given length.
*
* Params:
* count = Original range length.
*/
this(size_t count) @nogc nothrow pure @safe
{
this.count = count;
}
}
/**
* Attribute signalizing that the generated range should be infinite.
*
* This attribute conflicts with $(D_PSYMBOL Count) and $(D_PSYMBOL Length).
*/
struct Infinite
{
}
/**
* Generates `.length` property for the range.
*
* The length of the range can be specified as a constructor argument,
* otherwise it is 0.
*
* This attribute conflicts with $(D_PSYMBOL Count) and $(D_PSYMBOL Infinite).
*/
struct Length
{
/// Original range length.
size_t length = 0;
}
/**
* Attribute signalizing that the generated range should return values by
* reference.
*
* This atribute affects the return values of `.front`, `.back` and `[]`.
*/
struct WithLvalueElements
{
}
/**
* Generates an input range.
*
* Params:
* E = Element type.
*/
mixin template InputRangeStub(E = int)
{
import tanya.meta.metafunction : Alias;
import tanya.meta.trait : evalUDA, getUDAs, hasUDA;
/*
* Aliases for the attribute lookups to access them faster
*/
private enum bool infinite = hasUDA!(typeof(this), Infinite);
private enum bool withLvalueElements = hasUDA!(typeof(this),
WithLvalueElements);
private alias Count = getUDAs!(typeof(this), .Count);
private alias Length = getUDAs!(typeof(this), .Length);
static if (Count.length != 0)
{
private enum size_t count = Count[0].count;
static assert (!infinite,
"Range cannot have count and be infinite at the same time");
static assert (Length.length == 0,
"Range cannot have count and length at the same time");
}
else static if (Length.length != 0)
{
private enum size_t count = evalUDA!(Length[0]).length;
static assert (!infinite,
"Range cannot have length and be infinite at the same time");
}
else static if (!infinite)
{
private enum size_t count = 0;
}
/*
* Member generation
*/
static if (infinite)
{
enum bool empty = false;
}
else
{
private size_t length_ = count;
@property bool empty() const @nogc nothrow pure @safe
{
return this.length_ == 0;
}
}
static if (withLvalueElements)
{
private E* element; // Pointer to enable range copying in save()
}
void popFront() @nogc nothrow pure @safe
in (!empty)
{
static if (!infinite)
{
--this.length_;
}
}
static if (withLvalueElements)
{
ref E front() @nogc nothrow pure @safe
in (!empty)
{
return *this.element;
}
}
else
{
E front() @nogc nothrow pure @safe
in (!empty)
{
return E.init;
}
}
static if (Length.length != 0)
{
size_t length() const @nogc nothrow pure @safe
{
return this.length_;
}
}
}
/**
* Generates a forward range.
*
* This mixin includes input range primitives as well, but can be combined with
* $(D_PSYMBOL RandomAccessRangeStub).
*
* Params:
* E = Element type.
*/
mixin template ForwardRangeStub(E = int)
{
static if (!is(typeof(this.InputRangeMixin) == void))
{
mixin InputRangeStub!E InputRangeMixin;
}
auto save() @nogc nothrow pure @safe
{
return this;
}
}
/**
* Generates a bidirectional range.
*
* This mixin includes forward range primitives as well, but can be combined with
* $(D_PSYMBOL RandomAccessRangeStub).
*
* Params:
* E = Element type.
*/
mixin template BidirectionalRangeStub(E = int)
{
mixin ForwardRangeStub!E;
void popBack() @nogc nothrow pure @safe
in (!empty)
{
static if (!infinite)
{
--this.length_;
}
}
static if (withLvalueElements)
{
ref E back() @nogc nothrow pure @safe
in (!empty)
{
return *this.element;
}
}
else
{
E back() @nogc nothrow pure @safe
in (!empty)
{
return E.init;
}
}
}
/**
* Generates a random-access range.
*
* This mixin includes input range primitives as well, but can be combined with
* $(D_PSYMBOL ForwardRangeStub) or $(D_PSYMBOL BidirectionalRangeStub).
*
* Note that a random-access range also requires $(D_PSYMBOL Length) or
* $(D_PARAM Infinite) by definition.
*
* Params:
* E = Element type.
*/
mixin template RandomAccessRangeStub(E = int)
{
static if (!is(typeof(this.InputRangeMixin) == void))
{
mixin InputRangeStub!E InputRangeMixin;
}
static if (withLvalueElements)
{
ref E opIndex(size_t) @nogc nothrow pure @safe
{
return *this.element;
}
}
else
{
E opIndex(size_t) @nogc nothrow pure @safe
{
return E.init;
}
}
}
/**
* Struct with a disabled postblit constructor.
*
* $(D_PSYMBOL NonCopyable) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*/
struct NonCopyable
{
@disable this(this);
}
/**
* Struct with an elaborate destructor.
*
* $(D_PSYMBOL WithDtor) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*
* When used as a standalone object the constructor of $(D_PSYMBOL WithDtor)
* accepts an additional `counter` argument, which is incremented by the
* destructor. $(D_PSYMBOL WithDtor) stores a pointer to the passed variable,
* so the variable can be investigated after the struct isn't available
* anymore.
*/
struct WithDtor
{
size_t* counter;
this(ref size_t counter) @nogc nothrow pure @trusted
{
this.counter = &counter;
}
~this() @nogc nothrow pure @safe
{
if (this.counter !is null)
{
++*this.counter;
}
}
}
/**
* Struct supporting hashing.
*
* $(D_PSYMBOL Hashable) can be used as an attribute for
* $(D_PSYMBOL StructStub) or as a standalone type.
*
* The constructor accepts an additional parameter, which is returned by the
* `toHash()`-function. `0U` is returned if no hash value is given.
*/
struct Hashable
{
size_t hash;
size_t toHash() const @nogc nothrow pure @safe
{
return this.hash;
}
}
/**
* Generates a $(D_KEYWORD struct) with common functionality.
*
* To specify the needed functionality use user-defined attributes on the
* $(D_KEYWORD struct) $(D_PSYMBOL StructStub) is mixed in.
*
* Supported attributes are: $(D_PSYMBOL NonCopyable), $(D_PSYMBOL Hashable),
* $(D_PSYMBOL WithDtor).
*/
mixin template StructStub()
{
import tanya.meta.trait : evalUDA, getUDAs, hasUDA;
static if (hasUDA!(typeof(this), NonCopyable))
{
@disable this(this);
}
private alias Hashable = getUDAs!(typeof(this), .Hashable);
static if (Hashable.length > 0)
{
size_t toHash() const @nogc nothrow pure @safe
{
return evalUDA!(Hashable[0]).hash;
}
}
static if (hasUDA!(typeof(this), WithDtor))
{
~this() @nogc nothrow pure @safe
{
}
}
}

View File

@ -8,7 +8,7 @@
* This module contains templates that allow to build new types from the
* available ones.
*
* Copyright: Eugene Wissner 2017-2018.
* Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
@ -18,9 +18,12 @@
module tanya.typecons;
import tanya.algorithm.mutation;
import tanya.conv;
import tanya.format;
import tanya.functional;
import tanya.meta.metafunction;
import tanya.meta.trait;
version (unittest) import tanya.test.stub;
/**
* $(D_PSYMBOL Tuple) can store two or more heterogeneous objects.
@ -35,6 +38,8 @@ import tanya.meta.trait;
*
* Params:
* Specs = Field types and names.
*
* See_Also: $(D_PSYMBOL tuple).
*/
template Tuple(Specs...)
{
@ -133,11 +138,50 @@ template Tuple(Specs...)
static assert(!is(Tuple!(int, "first", double, "second", char, "third")));
}
/**
* Creates a new $(D_PSYMBOL Tuple).
*
* Params:
* Names = Field names.
*
* See_Also: $(D_PSYMBOL Tuple).
*/
template tuple(Names...)
{
/**
* Creates a new $(D_PSYMBOL Tuple).
*
* Params:
* Args = Field types.
* args = Field values.
*
* Returns: Newly created $(D_PSYMBOL Tuple).
*/
auto tuple(Args...)(auto ref Args args)
if (Args.length >= Names.length && isTypeTuple!Args)
{
alias Zipped = ZipWith!(AliasSeq, Pack!Args, Pack!Names);
alias Nameless = Args[Names.length .. $];
return Tuple!(Zipped, Nameless)(forward!args);
}
}
///
@nogc nothrow pure @safe unittest
{
auto t = tuple!("one", "two")(20, 5);
assert(t.one == 20);
assert(t.two == 5);
}
/**
* $(D_PSYMBOL Option) is a type that contains an optional value.
*
* Params:
* T = Type of the encapsulated value.
*
* See_Also: $(D_PSYMBOL option).
*/
struct Option(T)
{
@ -184,11 +228,15 @@ struct Option(T)
* Precondition: `!isNothing`.
*/
@property ref inout(T) get() inout
in
in (!isNothing, "Option is nothing")
{
assert(!isNothing, "Option is nothing");
return this.value;
}
do
/// ditto
deprecated("Call Option.get explicitly instead of relying on alias this")
@property ref inout(T) get_() inout
in (!isNothing, "Option is nothing")
{
return this.value;
}
@ -324,8 +372,15 @@ struct Option(T)
ref typeof(this) opAssign(U)(ref U that)
if (is(U == Option))
{
this.value = that;
this.isNothing_ = that.isNothing;
if (that.isNothing)
{
reset();
}
else
{
this.value = that.get;
this.isNothing_ = false;
}
return this;
}
@ -338,7 +393,25 @@ struct Option(T)
return this;
}
alias get this;
version (D_Ddoc)
{
/**
* If $(D_PARAM T) has a `toHash()` method, $(D_PSYMBOL Option) defines
* `toHash()` which returns `T.toHash()` if it is set or 0 otherwise.
*
* Returns: Hash value.
*/
size_t toHash() const;
}
else static if (is(typeof(T.init.toHash()) == size_t))
{
size_t toHash() const
{
return isNothing ? 0U : this.value.toHash();
}
}
alias get_ this;
}
///
@ -394,29 +467,24 @@ struct Option(T)
// Moving
@nogc nothrow pure @safe unittest
{
static struct NotCopyable
{
@disable this(this);
}
static assert(is(typeof(Option!NotCopyable(NotCopyable()))));
static assert(is(typeof(Option!NonCopyable(NonCopyable()))));
// The value cannot be returned by reference because the default value
// isn't passed by reference
static assert(!is(typeof(Option!DisabledPostblit().or(NotCopyable()))));
static assert(!is(typeof(Option!DisabledPostblit().or(NonCopyable()))));
{
NotCopyable notCopyable;
static assert(is(typeof(Option!NotCopyable().or(notCopyable))));
NonCopyable notCopyable;
static assert(is(typeof(Option!NonCopyable().or(notCopyable))));
}
{
Option!NotCopyable option;
Option!NonCopyable option;
assert(option.isNothing);
option = NotCopyable();
option = NonCopyable();
assert(!option.isNothing);
}
{
Option!NotCopyable option;
Option!NonCopyable option;
assert(option.isNothing);
option = Option!NotCopyable(NotCopyable());
option = Option!NonCopyable(NonCopyable());
assert(!option.isNothing);
}
}
@ -447,8 +515,420 @@ struct Option(T)
// Returns default value
@nogc nothrow pure @safe unittest
{
{
int i = 5;
assert(((ref e) => e)(Option!int().or(i)) == 5);
}
// Implements toHash() for nothing
@nogc nothrow pure @safe unittest
{
alias OptionT = Option!Hashable;
assert(OptionT().toHash() == 0U);
assert(OptionT(Hashable(1U)).toHash() == 1U);
}
// Can assign Option that is nothing
@nogc nothrow pure @safe unittest
{
auto option1 = Option!int(5);
Option!int option2;
option1 = option2;
assert(option1.isNothing);
}
/**
* Creates a new $(D_PSYMBOL Option).
*
* Params:
* T = Option type.
* value = Initial value.
*
* See_Also: $(D_PSYMBOL Option).
*/
Option!T option(T)(auto ref T value)
{
return Option!T(forward!value);
}
/// ditto
Option!T option(T)()
{
return Option!T();
}
///
@nogc nothrow pure @safe unittest
{
assert(option!int().isNothing);
assert(option(5) == 5);
}
/**
* Type that can hold one of the types listed as its template parameters.
*
* $(D_PSYMBOL Variant) is a type similar to $(D_KEYWORD union), but
* $(D_PSYMBOL Variant) keeps track of the actually used type and throws an
* assertion error when trying to access an invalid type at runtime.
*
* Params:
* Specs = Types this $(D_SPYBMOL Variant) can hold.
*/
template Variant(Specs...)
if (isTypeTuple!Specs && NoDuplicates!Specs.length == Specs.length)
{
union AlignedUnion(Args...)
{
static if (Args.length > 0)
{
Args[0] value;
}
static if (Args.length > 1)
{
AlignedUnion!(Args[1 .. $]) rest;
}
}
private struct VariantAccessorInfo
{
string accessor;
ptrdiff_t tag;
}
template accessor(T, Union)
{
enum VariantAccessorInfo info = accessorImpl!(T, Union, 1);
enum accessor = VariantAccessorInfo("this.values" ~ info.accessor, info.tag);
}
template accessorImpl(T, Union, size_t tag)
{
static if (is(T == typeof(Union.value)))
{
enum accessorImpl = VariantAccessorInfo(".value", tag);
}
else
{
enum VariantAccessorInfo info = accessorImpl!(T, typeof(Union.rest), tag + 1);
enum accessorImpl = VariantAccessorInfo(".rest" ~ info.accessor, info.tag);
}
}
struct Variant
{
/// Types can be present in this $(D_PSYMBOL Variant).
alias Types = Specs;
private ptrdiff_t tag = -1;
private AlignedUnion!Types values;
/**
* Constructs this $(D_PSYMBOL Variant) with one of the types supported
* in it.
*
* Params:
* T = Type of the initial value.
* value = Initial value.
*/
this(T)(ref T value)
if (canFind!(T, Types))
{
copyAssign!T(value);
}
/// ditto
this(T)(T value)
if (canFind!(T, Types))
{
moveAssign!T(value);
}
~this()
{
reset();
}
this(this)
{
alias pred(U) = hasElaborateCopyConstructor!(U.Seq[1]);
static foreach (Type; Filter!(pred, Enumerate!Types))
{
if (this.tag == Type.Seq[0])
{
get!(Type.Seq[1]).__postblit();
}
}
}
/**
* Tells whether this $(D_PSYMBOL Variant) is initialized.
*
* Returns: $(D_KEYWORD true) if this $(D_PSYMBOL Variant) contains a
* value, $(D_KEYWORD false) otherwise.
*/
bool hasValue() const
{
return this.tag != -1;
}
/**
* Tells whether this $(D_PSYMBOL Variant) holds currently a value of
* type $(D_PARAM T).
*
* Params:
* T = Examined type.
*
* Returns: $(D_KEYWORD true) if this $(D_PSYMBOL Variant) currently
* contains a value of type $(D_PARAM T), $(D_KEYWORD false)
* otherwise.
*/
bool peek(T)() const
if (canFind!(T, Types))
{
return this.tag == staticIndexOf!(T, Types);
}
/**
* Returns the underlying value, assuming it is of the type $(D_PARAM T).
*
* Params:
* T = Type of the value should be returned.
*
* Returns: The underyling value.
*
* Precondition: The $(D_PSYMBOL Variant) has a value.
*
* See_Also: $(D_PSYMBOL peek), $(D_PSYMBOL hasValue).
*/
ref inout(T) get(T)() inout
if (canFind!(T, Types))
in (this.tag == staticIndexOf!(T, Types), "Variant isn't initialized")
{
mixin("return " ~ accessor!(T, AlignedUnion!Types).accessor ~ ";");
}
/**
* Reassigns the value.
*
* Params:
* T = Type of the new value
* that = New value.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(T)(T that)
if (canFind!(T, Types))
{
reset();
return moveAssign!T(that);
}
/// ditto
ref typeof(this) opAssign(T)(ref T that)
if (canFind!(T, Types))
{
reset();
return copyAssign!T(that);
}
private ref typeof(this) moveAssign(T)(ref T that) @trusted
{
this.tag = staticIndexOf!(T, Types);
enum string accessorMixin = accessor!(T, AlignedUnion!Types).accessor;
moveEmplace(that, mixin(accessorMixin));
return this;
}
private ref typeof(this) copyAssign(T)(ref T that)
{
this.tag = staticIndexOf!(T, Types);
enum string accessorMixin = accessor!(T, AlignedUnion!Types).accessor;
emplace!T((() @trusted => (&mixin(accessorMixin))[0 .. 1])(), that);
return this;
}
private void reset()
{
alias pred(U) = hasElaborateDestructor!(U.Seq[1]);
static foreach (Type; Filter!(pred, Enumerate!Types))
{
if (this.tag == Type.Seq[0])
{
destroy(get!(Type.Seq[1]));
}
}
}
/**
* Returns $(D_PSYMBOL TypeInfo) corresponding to the current type.
*
* If this $(D_PSYMBOL Variant) isn't initialized, returns
* $(D_KEYWORD null).
*
* Returns: $(D_PSYMBOL TypeInfo) of the current type.
*/
@property TypeInfo type()
{
static foreach (i, Type; Types)
{
if (this.tag == i)
{
return typeid(Type);
}
}
return null;
}
/**
* Compares this $(D_PSYMBOL Variant) with another one with the same
* specification for equality.
*
* $(UL
* $(LI If both hold values of the same type, these values are
* compared.)
* $(LI If they hold values of different types, then the
* $(D_PSYMBOL Variant)s aren't equal.)
* $(LI If only one of them is initialized but another one not, they
* aren't equal.)
* $(LI If neither of them is initialized, they are equal.)
* )
*
* Params:
* that = The $(D_PSYMBOL Variant) to compare with.
*
* Returns: $(D_KEYWORD true) if this $(D_PSYMBOL Variant) is equal to
* $(D_PARAM that), $(D_KEYWORD false) otherwise.
*/
bool opEquals()(auto ref inout Variant that) inout
{
if (this.tag != that.tag)
{
return false;
}
static foreach (i, Type; Types)
{
if (this.tag == i)
{
return get!Type == that.get!Type;
}
}
return true;
}
}
}
///
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant = 5;
assert(variant.peek!int);
assert(variant.get!int == 5);
variant = 5.4;
assert(!variant.peek!int);
assert(variant.get!double == 5.4);
}
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant;
variant = 5;
assert(variant.peek!int);
}
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant;
variant = 5.0;
assert(!variant.peek!int);
}
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant = 5;
assert(variant.get!int == 5);
}
@nogc nothrow pure @safe unittest
{
static assert(is(Variant!(int, float)));
static assert(is(Variant!int));
}
@nogc nothrow pure @safe unittest
{
static struct WithDestructorAndCopy
{
this(this) @nogc nothrow pure @safe
{
}
~this() @nogc nothrow pure @safe
{
}
}
static assert(is(Variant!WithDestructorAndCopy));
}
// Equality compares the underlying objects
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant1 = 5;
Variant!(int, double) variant2 = 5;
assert(variant1 == variant2);
}
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant1 = 5;
Variant!(int, double) variant2 = 6;
assert(variant1 != variant2);
}
// Differently typed variants aren't equal
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant1 = 5;
Variant!(int, double) variant2 = 5.0;
assert(variant1 != variant2);
}
// Uninitialized variants are equal
@nogc nothrow pure @safe unittest
{
Variant!(int, double) variant1, variant2;
assert(variant1 == variant2);
}
// Calls postblit constructor of the active type
@nogc nothrow pure @safe unittest
{
static struct S
{
bool called;
this(this)
{
this.called = true;
}
}
Variant!(int, S) variant1 = S();
auto variant2 = variant1;
assert(variant2.get!S.called);
}
// Variant.type is null if the Variant doesn't have a value
@nogc nothrow pure @safe unittest
{
Variant!(int, uint) variant;
assert(variant.type is null);
}
// Variant can contain only distinct types
@nogc nothrow pure @safe unittest
{
static assert(!is(Variant!(int, int)));
}