Implement slicing for the vector

This commit is contained in:
Eugen Wissner 2016-12-02 10:29:30 +01:00
parent b78ecdf4c5
commit dd3becf6b7

View File

@ -10,22 +10,12 @@
*/
module tanya.container.vector;
import std.algorithm.comparison;
import std.traits;
import tanya.memory;
/**
* One dimensional array. It allocates automatically if needed.
*
* If you assign a value:
* ---
* auto v = make!(Vector!int)(theAllocator);
* int value = 5;
*
* v[1000] = value;
*
* dispose(theAllocator, v);
* ---
* it will allocate not only for one, but for 1000 elements. So this
* implementation is more suitable for sequential data with random access.
* One dimensional array.
*
* Params:
* T = Content type.
@ -33,33 +23,241 @@ import tanya.memory;
class Vector(T)
{
/**
* Creates a new $(D_PSYMBOL Vector).
*
* Params:
* length = Initial length.
* allocator = The allocator should be used for the element
* allocations.
* Defines the container's primary range.
*/
this(size_t length, IAllocator allocator = theAllocator)
struct Range(V)
{
this.allocator = allocator;
vector = makeArray!T(allocator, length);
}
private V[1] data;
/// Ditto.
this(IAllocator allocator = theAllocator)
{
this(0, allocator);
private @property ref inout(V) outer() inout
{
return data[0];
}
private size_t start, end;
invariant
{
assert(start <= end);
}
private alias ElementType = typeof(data[0].vector[0]);
private this(V data, in size_t a, in size_t b)
{
this.data = data;
start = a;
end = b;
}
@property Range save()
{
return this;
}
@property bool empty() const
{
return start >= end;
}
@property size_t length() const
{
return end - start;
}
alias opDollar = length;
@property ref inout(ElementType) front() inout
in
{
assert(!empty);
}
body
{
return outer[start];
}
@property ref inout(ElementType) back() inout
in
{
assert(!empty);
}
body
{
return outer[end - 1];
}
void popFront()
in
{
assert(!empty);
}
body
{
++start;
}
void popBack()
in
{
assert(!empty);
}
body
{
--end;
}
ref inout(ElementType) opIndex(in size_t i) inout
in
{
assert(start + i < end);
}
body
{
return outer[start + i];
}
Range opIndex()
{
return typeof(return)(outer, start, end);
}
Range opSlice(in size_t i, in size_t j)
in
{
assert(i <= j);
assert(start + j <= end);
}
body
{
return typeof(return)(outer, start + i, start + j);
}
Range!(const(V)) opIndex() const
{
return typeof(return)(outer, start, end);
}
Range!(const(V)) opSlice(in size_t i, in size_t j) const
in
{
assert(i <= j);
assert(start + j <= end);
}
body
{
return typeof(return)(outer, start + i, start + j);
}
static if (isMutable!V)
{
Range opIndexAssign(in ElementType value)
in
{
assert(end <= outer.length);
}
body
{
return outer[start .. end] = value;
}
Range opSliceAssign(in ElementType value, in size_t i, in size_t j)
in
{
assert(start + j <= end);
}
body
{
return outer[start + i .. start + j] = value;
}
Range opSliceAssign(in Range!Vector value, in size_t i, in size_t j)
in
{
assert(length == value.length);
}
body
{
return outer[start + i .. start + j] = value;
}
Range opSliceAssign(in T[] value, in size_t i, in size_t j)
in
{
assert(j - i == value.length);
}
body
{
return outer[start + i .. start + j] = value;
}
}
}
/**
* Removes all elements from the vector.
* Creates an empty $(D_PSYMBOL Vector).
*
* Params:
* allocator = The allocator should be used for the element
* allocations.
*/
this(IAllocator allocator = theAllocator)
{
this.allocator = allocator;
}
/**
* Creates a new $(D_PSYMBOL Vector).
*
* Params:
* U = Variadic template for the constructor parameters.
* params = Values to initialize the array with. The last parameter can
* be an allocator, if not, $(D_PSYMBOL theAllocator) is used.
*/
this(U...)(U params)
{
static if (isImplicitlyConvertible!(typeof(params[$ - 1]), IAllocator))
{
allocator = params[$ - 1];
auto values = params[0 .. $ - 1];
}
else
{
allocator = theAllocator;
alias values = params;
}
resizeArray!T(allocator, vector, values.length);
foreach (i, v; values)
{
vector[i] = v;
}
}
/**
* Destroys this $(D_PSYMBOL Vector).
*/
~this()
{
dispose(allocator, vector);
}
/**
* Removes all elements.
*/
void clear()
{
resizeArray!T(allocator, vector, 0);
}
///
unittest
{
auto v = theAllocator.make!(Vector!int)(18, 20, 15);
v.clear();
assert(v.length == 0);
}
/**
* Returns: Vector length.
*/
@ -68,95 +266,134 @@ class Vector(T)
return vector.length;
}
/// Ditto.
size_t opDollar() const
{
return length;
}
/**
* Expans/shrinks the vector.
* Expands/shrinks the vector.
*
* Params:
* length = New length.
*/
@property void length(size_t length)
@property void length(in size_t length)
{
resizeArray!T(allocator, vector, length);
}
///
unittest
{
auto v = make!(Vector!int)(theAllocator);
///
unittest
{
auto v = theAllocator.make!(Vector!int);
v.length = 5;
assert(v.length == 5);
v.length = 5;
assert(v.length == 5);
v.length = 7;
assert(v.length == 7);
v.length = 7;
assert(v.length == 7);
v.length = 0;
assert(v.length == 0);
dispose(theAllocator, v);
}
v.length = 0;
assert(v.length == 0);
}
/**
* Returns: $(D_KEYWORD true) if the vector is empty.
*/
@property bool empty() const
{
return length == 0;
}
static if (isFinalizable!T)
{
/**
* Removes an elements from the vector.
*
* Params:
* pos = Element index.
*/
void remove(size_t pos)
{
auto el = vector[pos];
dispose(allocator, el);
}
return vector.length == 0;
}
/**
* Assigns a value. Allocates if needed.
* Removes $(D_PARAM howMany) elements from the vector.
*
* This method doesn't fail if it could not remove $(D_PARAM howMany)
* elements. Instead, if $(D_PARAM howMany) is greater than the vector
* length, all elements are removed.
*
* Params:
* value = Value.
* howMany = How many elements should be removed.
*
* Returns: Assigned value.
* Returns: The number of elements removed
*/
T opIndexAssign(T value, size_t pos)
size_t removeBack(in size_t howMany)
{
if (pos >= length)
immutable toRemove = min(howMany, length);
static if (hasElaborateDestructor!T)
{
resizeArray!T(allocator, vector, pos + 1);
foreach (ref e; vector[$ - toRemove ..$])
{
allocator.dispose(e);
}
}
return vector[pos] = value;
length = length - toRemove;
return toRemove;
}
///
unittest
{
auto v = make!(Vector!int)(theAllocator);
int[2] values = [5, 15];
auto v = theAllocator.make!(Vector!int)(5, 18, 17);
assert(v.length == 0);
v[1] = values[0];
assert(v.length == 2);
v[3] = values[0];
assert(v.length == 4);
v[4] = values[1];
assert(v.length == 5);
assert(v.removeBack(0) == 0);
assert(v.removeBack(2) == 2);
assert(v.removeBack(3) == 1);
assert(v.removeBack(3) == 0);
dispose(theAllocator, v);
theAllocator.dispose(v);
}
/**
* Returns: The value on index $(D_PARAM pos).
* Assigns a value to the element with the index $(D_PARAM pos).
*
* Params:
* value = Value.
*
* Returns: Assigned value.
*
* Precondition: $(D_INLINECODE length > pos)
*/
ref T opIndex(in size_t pos)
T opIndexAssign(in T value, in size_t pos)
in
{
assert(length > pos);
}
body
{
return vector[pos] = value;
}
/// Ditto.
Range!Vector opIndexAssign(in T value)
{
vector[0..$] = value;
return opIndex();
}
///
unittest
{
auto v1 = theAllocator.make!(Vector!int)(12, 1, 7);
v1[] = 3;
assert(v1[0] == 3);
assert(v1[1] == 3);
assert(v1[2] == 3);
theAllocator.dispose(v1);
}
/**
* Returns: The value on index $(D_PARAM pos).
*
* Precondition: $(D_INLINECODE length > pos)
*/
ref inout(T) opIndex(in size_t pos) inout
in
{
assert(length > pos);
@ -169,19 +406,55 @@ class Vector(T)
///
unittest
{
auto v = make!(Vector!int)(theAllocator);
int[2] values = [5, 15];
auto v = theAllocator.make!(Vector!int)(6, 123, 34, 5);
v[1] = values[0];
assert(v[1] is values[0]);
v[3] = values[0];
assert(v[3] is values[0]);
v[4] = values[1];
assert(v[4] is values[1]);
v[0] = values[1];
assert(v[0] is values[1]);
assert(v[0] == 6);
assert(v[1] == 123);
assert(v[2] == 34);
assert(v[3] == 5);
dispose(theAllocator, v);
theAllocator.dispose(v);
}
/**
* Comparison for equality.
*
* Params:
* o = The vector to compare with.
*
* Returns: $(D_KEYWORD true) if the vectors are equal, $(D_KEYWORD false)
* otherwise.
*/
override bool opEquals(Object o)
{
auto v = cast(Vector) o;
return v is null ? super.opEquals(o) : vector == v.vector;
}
///
unittest
{
auto v1 = theAllocator.make!(Vector!int);
auto v2 = theAllocator.make!(Vector!int);
assert(v1 == v2);
v1.length = 1;
v2.length = 2;
assert(v1 != v2);
v1.length = 2;
v1[0] = v2[0] = 2;
v1[1] = 3;
v2[1] = 4;
assert(v1 != v2);
v2[1] = 3;
assert(v1 == v2);
theAllocator.dispose(v1);
theAllocator.dispose(v2);
}
/**
@ -190,7 +463,7 @@ class Vector(T)
* Params:
* dg = $(D_KEYWORD foreach) body.
*/
int opApply(int delegate(ref T) dg)
int opApply(scope int delegate(ref T) dg)
{
int result;
@ -207,7 +480,7 @@ class Vector(T)
}
/// Ditto.
int opApply(int delegate(ref size_t i, ref T) dg)
int opApply(scope int delegate(ref size_t i, ref T) dg)
{
int result;
@ -226,183 +499,217 @@ class Vector(T)
///
unittest
{
auto v = make!(Vector!int)(theAllocator, 1);
int[3] values = [5, 15, 8];
auto v = theAllocator.make!(Vector!int)(5, 15, 8);
v[0] = values[0];
v[1] = values[1];
v[2] = values[2];
int i;
foreach (e; v)
size_t i;
foreach (j, ref e; v)
{
assert(i != 0 || e is values[0]);
assert(i != 1 || e is values[1]);
assert(i != 2 || e is values[2]);
++i;
i = j;
}
assert(i == 2);
foreach (j, e; v)
{
assert(j != 0 || e is values[0]);
assert(j != 1 || e is values[1]);
assert(j != 2 || e is values[2]);
assert(j != 0 || e == 5);
assert(j != 1 || e == 15);
assert(j != 2 || e == 8);
}
dispose(theAllocator, v);
}
/**
* Sets the first element. Allocates if the vector is empty.
*
* Params:
* x = New element.
*/
@property void front(ref T x)
{
this[0] = x;
theAllocator.dispose(v);
}
/**
* Returns: The first element.
*/
*
* Precondition: $(D_INLINECODE length > 0)
*/
@property ref inout(T) front() inout
in
in
{
assert(!empty);
assert(vector.length > 0);
}
body
{
return vector[0];
}
///
unittest
{
auto v = make!(Vector!int)(theAllocator, 1);
int[2] values = [5, 15];
v.front = values[0];
assert(v.front == 5);
v.front = values[1];
assert(v.front == 15);
dispose(theAllocator, v);
}
/**
* Move position to the next element.
*
* Returns: $(D_KEYWORD this).
*/
typeof(this) popFront()
in
{
assert(!empty);
}
body
{
vector[0 .. $ - 1] = vector[1..$];
resizeArray(allocator, vector, length - 1);
return this;
}
///
unittest
{
auto v = make!(Vector!int)(theAllocator, 1);
int[2] values = [5, 15];
auto v = theAllocator.make!(Vector!int)(5);
v[0] = values[0];
v[1] = values[1];
assert(v.front is values[0]);
assert(v.length == 2);
v.popFront();
assert(v.front is values[1]);
assert(v.length == 1);
v.popFront();
assert(v.empty);
assert(v.front == 5);
dispose(theAllocator, v);
}
v.length = 2;
v[1] = 15;
assert(v.front == 5);
/**
* Sets the last element. Allocates if the vector is empty.
*
* Params:
* x = New element.
*/
@property void back(ref T x)
{
vector[empty ? 0 : $ - 1] = x;
theAllocator.dispose(v);
}
/**
* Returns: The last element.
*/
*
* Precondition: $(D_INLINECODE length > 0)
*/
@property ref inout(T) back() inout
in
in
{
assert(!empty);
assert(vector.length > 0);
}
body
{
return vector[$ - 1];
}
///
unittest
{
auto v = make!(Vector!int)(theAllocator, 1);
int[2] values = [5, 15];
///
unittest
{
auto v = theAllocator.make!(Vector!int)(5);
v.back = values[0];
assert(v.back == 5);
assert(v.back == 5);
v.back = values[1];
assert(v.back == 15);
v.length = 2;
v[1] = 15;
assert(v.back == 15);
dispose(theAllocator, v);
}
theAllocator.dispose(v);
}
/**
* Move position to the previous element.
*
* Returns: $(D_KEYWORD this).
* Returns: A range that iterates over elements of the container, in
* forward order.
*/
typeof(this) popBack()
Range!Vector opIndex()
{
return typeof(return)(this, 0, length);
}
/// Ditto.
Range!(const Vector) opIndex() const
{
return typeof(return)(this, 0, length);
}
/// Ditto.
Range!(immutable Vector) opIndex() immutable
{
return typeof(return)(this, 0, length);
}
/**
* Params:
* i = Slice start.
* j = Slice end.
*
* Returns: A range that iterates over elements of the container from
* index $(D_PARAM i) up to (excluding) index $(D_PARAM j).
*
* Precondition: $(D_INLINECODE i <= j && j <= length)
*/
Range!Vector opSlice(in size_t i, in size_t j)
in
{
assert(!empty);
assert(i <= j);
assert(j <= length);
}
body
{
resizeArray(allocator, vector, length - 1);
return this;
return typeof(return)(this, i, j);
}
/// Ditto.
Range!(const Vector) opSlice(in size_t i, in size_t j) const
in
{
assert(i <= j);
assert(j <= length);
}
body
{
return typeof(return)(this, i, j);
}
/// Ditto.
Range!(immutable Vector) opSlice(in size_t i, in size_t j) immutable
in
{
assert(i <= j);
assert(j <= length);
}
body
{
return typeof(return)(this, i, j);
}
/**
* Slicing assignment.
*
* Params:
* value = New value.
* i = Slice start.
* j = Slice end.
*
* Returns: Assigned value.
*
* Precondition: $(D_INLINECODE i <= j && j <= length);
* The lenghts of the ranges and slices match.
*/
Range!Vector opSliceAssign(in T value, in size_t i, in size_t j)
in
{
assert(i <= j);
assert(j <= length);
}
body
{
vector[i .. j] = value;
return opSlice(i, j);
}
/// Ditto.
Range!Vector opSliceAssign(in Range!Vector value, in size_t i, in size_t j)
in
{
assert(j - i == value.length);
}
body
{
vector[i .. j] = value.outer.vector[value.start .. value.end];
return opSlice(i, j);
}
/// Ditto.
Range!Vector opSliceAssign(in T[] value, in size_t i, in size_t j)
in
{
assert(j - i == value.length);
}
body
{
vector[i .. j] = value;
return opSlice(i, j);
}
///
unittest
{
auto v = make!(Vector!int)(theAllocator, 1);
int[2] values = [5, 15];
auto v1 = theAllocator.make!(Vector!int)(3, 3, 3);
auto v2 = theAllocator.make!(Vector!int)(1, 2);
v[0] = values[0];
v[1] = values[1];
assert(v.back is values[1]);
assert(v.length == 2);
v.popBack();
assert(v.back is values[0]);
assert(v.length == 1);
v.popBack();
assert(v.empty);
v1[0..2] = 286;
assert(v1[0] == 286);
assert(v1[1] == 286);
assert(v1[2] == 3);
dispose(theAllocator, v);
v2[0..$] = v1[1..3];
assert(v2[0] == 286);
assert(v2[1] == 3);
theAllocator.dispose(v2);
theAllocator.dispose(v1);
}
/// Container.
protected T[] vector;
private T[] vector;
private IAllocator allocator;
}
@ -410,7 +717,9 @@ class Vector(T)
///
unittest
{
auto v = make!(Vector!int)(theAllocator);
auto v = theAllocator.make!(Vector!int)(5, 15, 8);
dispose(theAllocator, v);
assert(v.front == 5);
assert(v[1] == 15);
assert(v.back == 8);
}