Separate non-documentation tests from the code

This commit is contained in:
2019-03-18 13:03:52 +01:00
parent 5ab99cf887
commit 484cb13317
43 changed files with 1020 additions and 989 deletions

22
middle/dub.json Normal file
View File

@ -0,0 +1,22 @@
{
"name": "middle",
"description": "Runtime, middle-level utilities",
"targetType": "library",
"dependencies": {
"tanya:meta": "*",
"tanya:os": "*",
"tanya:sys": "*"
},
"dependencies-linux": {
"mir-linux-kernel": "~>1.0.0"
},
"sourcePaths": [
"."
],
"importPaths": [
"."
]
}

View File

@ -0,0 +1,81 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* This module contains the interface for implementing custom allocators.
*
* Allocators are classes encapsulating memory allocation strategy. This allows
* to decouple memory management from the algorithms and the data.
*
* Copyright: Eugene Wissner 2016-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/middle/tanya/memory/allocator.d,
* tanya/memory/allocator.d)
*/
module tanya.memory.allocator;
/**
* Abstract class implementing a basic allocator.
*/
interface Allocator
{
/**
* Returns: Alignment offered.
*/
@property uint alignment() const shared pure nothrow @safe @nogc;
/**
* Allocates $(D_PARAM size) bytes of memory.
*
* Params:
* size = Amount of memory to allocate.
*
* Returns: Pointer to the new allocated memory.
*/
void[] allocate(size_t size) shared pure nothrow @nogc;
/**
* Deallocates a memory block.
*
* Params:
* p = A pointer to the memory block to be freed.
*
* Returns: Whether the deallocation was successful.
*/
bool deallocate(void[] p) shared pure nothrow @nogc;
/**
* Increases or decreases the size of a memory block.
*
* Params:
* p = A pointer to the memory block.
* size = Size of the reallocated block.
*
* Returns: Pointer to the allocated memory.
*/
bool reallocate(ref void[] p, size_t size) shared pure nothrow @nogc;
/**
* Reallocates a memory block in place if possible or returns
* $(D_KEYWORD false). This function cannot be used to allocate or
* deallocate memory, so if $(D_PARAM p) is $(D_KEYWORD null) or
* $(D_PARAM size) is `0`, it should return $(D_KEYWORD false).
*
* Params:
* p = A pointer to the memory block.
* size = Size of the reallocated block.
*
* Returns: $(D_KEYWORD true) if successful, $(D_KEYWORD false) otherwise.
*/
bool reallocateInPlace(ref void[] p, size_t size)
shared pure nothrow @nogc;
}
package template GetPureInstance(T : Allocator)
{
alias GetPureInstance = shared(T) function()
pure nothrow @nogc;
}

View File

@ -0,0 +1,815 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Lifetime management functions, types and related exceptions.
*
* Copyright: Eugene Wissner 2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/middle/tanya/memory/lifetime.d,
* tanya/memory/lifetime.d)
*/
module tanya.memory.lifetime;
import tanya.memory : defaultAllocator;
import tanya.memory.allocator;
import tanya.meta.metafunction;
import tanya.meta.trait;
/**
* Error thrown if memory allocation fails.
*/
final class OutOfMemoryError : Error
{
/**
* Constructs new error.
*
* Params:
* msg = The message for the exception.
* file = The file where the exception occurred.
* line = The line number where the exception occurred.
* next = The previous exception in the chain of exceptions, if any.
*/
this(string msg = "Out of memory",
string file = __FILE__,
size_t line = __LINE__,
Throwable next = null) @nogc nothrow pure @safe
{
super(msg, file, line, next);
}
/// ditto
this(string msg,
Throwable next,
string file = __FILE__,
size_t line = __LINE__) @nogc nothrow pure @safe
{
super(msg, file, line, next);
}
}
/**
* Allocates $(D_PSYMBOL OutOfMemoryError) in a static storage and throws it.
*
* Params:
* msg = Custom error message.
*
* Throws: $(D_PSYMBOL OutOfMemoryError).
*/
void onOutOfMemoryError(string msg = "Out of memory")
@nogc nothrow pure @trusted
{
static ubyte[stateSize!OutOfMemoryError] memory;
alias PureType = OutOfMemoryError function(string) @nogc nothrow pure;
throw (cast(PureType) () => emplace!OutOfMemoryError(memory))(msg);
}
// From druntime
extern (C)
private void _d_monitordelete(Object h, bool det) @nogc nothrow pure;
/*
* Internal function used to create, resize or destroy a dynamic array. It
* may throw $(D_PSYMBOL OutOfMemoryError). The new
* allocated part of the array isn't initialized. This function can be trusted
* only in the data structures that can ensure that the array is
* allocated/rellocated/deallocated with the same allocator.
*
* Params:
* T = Element type of the array being created.
* allocator = The allocator used for getting memory.
* array = A reference to the array being changed.
* length = New array length.
*
* Returns: $(D_PARAM array).
*/
package(tanya) T[] resize(T)(shared Allocator allocator,
auto ref T[] array,
const size_t length) @trusted
{
if (length == 0)
{
if (allocator.deallocate(array))
{
return null;
}
else
{
onOutOfMemoryError();
}
}
void[] buf = array;
if (!allocator.reallocate(buf, length * T.sizeof))
{
onOutOfMemoryError();
}
// Casting from void[] is unsafe, but we know we cast to the original type.
array = cast(T[]) buf;
return array;
}
/*
* Destroys the object.
* Returns the memory should be freed.
*/
package(tanya.memory) void[] finalize(T)(ref T* p)
{
if (p is null)
{
return null;
}
static if (hasElaborateDestructor!T)
{
destroy(*p);
}
return (cast(void*) p)[0 .. T.sizeof];
}
package(tanya.memory) void[] finalize(T)(ref T p)
if (isPolymorphicType!T)
{
if (p is null)
{
return null;
}
static if (is(T == interface))
{
version(Windows)
{
import core.sys.windows.unknwn : IUnknown;
static assert(!is(T : IUnknown), "COM interfaces can't be destroyed in "
~ __PRETTY_FUNCTION__);
}
auto ob = cast(Object) p;
}
else
{
alias ob = p;
}
auto ptr = cast(void*) ob;
auto support = ptr[0 .. typeid(ob).initializer.length];
auto ppv = cast(void**) ptr;
if (!*ppv)
{
return null;
}
auto pc = cast(ClassInfo*) *ppv;
scope (exit)
{
*ppv = null;
}
auto c = *pc;
do
{
// Assume the destructor is @nogc. Leave it nothrow since the destructor
// shouldn't throw and if it does, it is an error anyway.
if (c.destructor)
{
alias DtorType = void function(Object) pure nothrow @safe @nogc;
(cast(DtorType) c.destructor)(ob);
}
}
while ((c = c.base) !is null);
if (ppv[1]) // if monitor is not null
{
_d_monitordelete(cast(Object) ptr, true);
}
return support;
}
package(tanya.memory) void[] finalize(T)(ref T[] p)
{
destroyAllImpl!(T[], T)(p);
return p;
}
package(tanya) void destroyAllImpl(R, E)(R p)
{
static if (hasElaborateDestructor!E)
{
foreach (ref e; p)
{
destroy(e);
}
}
}
/**
* Destroys and deallocates $(D_PARAM p) of type $(D_PARAM T).
* It is assumed the respective entities had been allocated with the same
* allocator.
*
* Params:
* T = Type of $(D_PARAM p).
* allocator = Allocator the $(D_PARAM p) was allocated with.
* p = Object or array to be destroyed.
*/
void dispose(T)(shared Allocator allocator, auto ref T p)
{
() @trusted { allocator.deallocate(finalize(p)); }();
p = null;
}
/**
* Constructs a new class instance of type $(D_PARAM T) using $(D_PARAM args)
* as the parameter list for the constructor of $(D_PARAM T).
*
* Params:
* T = Class type.
* A = Types of the arguments to the constructor of $(D_PARAM T).
* allocator = Allocator.
* args = Constructor arguments of $(D_PARAM T).
*
* Returns: Newly created $(D_PSYMBOL T).
*
* Precondition: $(D_INLINECODE allocator !is null)
*/
T make(T, A...)(shared Allocator allocator, auto ref A args)
if (is(T == class))
in (allocator !is null)
{
auto mem = (() @trusted => allocator.allocate(stateSize!T))();
if (mem is null)
{
onOutOfMemoryError();
}
scope (failure)
{
() @trusted { allocator.deallocate(mem); }();
}
return emplace!T(mem[0 .. stateSize!T], args);
}
/**
* Constructs a value object of type $(D_PARAM T) using $(D_PARAM args)
* as the parameter list for the constructor of $(D_PARAM T) and returns a
* pointer to the new object.
*
* Params:
* T = Object type.
* A = Types of the arguments to the constructor of $(D_PARAM T).
* allocator = Allocator.
* args = Constructor arguments of $(D_PARAM T).
*
* Returns: Pointer to the created object.
*
* Precondition: $(D_INLINECODE allocator !is null)
*/
T* make(T, A...)(shared Allocator allocator, auto ref A args)
if (!isPolymorphicType!T && !isAssociativeArray!T && !isArray!T)
in (allocator !is null)
{
auto mem = (() @trusted => allocator.allocate(stateSize!T))();
if (mem is null)
{
onOutOfMemoryError();
}
scope (failure)
{
() @trusted { allocator.deallocate(mem); }();
}
return emplace!T(mem[0 .. stateSize!T], args);
}
///
@nogc nothrow pure @safe unittest
{
int* i = defaultAllocator.make!int(5);
assert(*i == 5);
defaultAllocator.dispose(i);
}
/**
* Constructs a new array with $(D_PARAM n) elements.
*
* Params:
* T = Array type.
* E = Array element type.
* allocator = Allocator.
* n = Array size.
*
* Returns: Newly created array.
*
* Precondition: $(D_INLINECODE allocator !is null
* && n <= size_t.max / E.sizeof)
*/
T make(T : E[], E)(shared Allocator allocator, size_t n)
in (allocator !is null)
in (n <= size_t.max / E.sizeof)
{
auto ret = allocator.resize!E(null, n);
static if (hasElaborateDestructor!E)
{
for (auto range = ret; range.length != 0; range = range[1 .. $])
{
emplace!E(cast(void[]) range[0 .. 1], E.init);
}
}
else
{
ret[] = E.init;
}
return ret;
}
///
@nogc nothrow pure @safe unittest
{
int[] i = defaultAllocator.make!(int[])(2);
assert(i.length == 2);
assert(i[0] == int.init && i[1] == int.init);
defaultAllocator.dispose(i);
}
/**
* Constructs a new object of type $(D_PARAM T) in $(D_PARAM memory) with the
* given arguments.
*
* If $(D_PARAM T) is a $(D_KEYWORD class), emplace returns a class reference
* of type $(D_PARAM T), otherwise a pointer to the constructed object is
* returned.
*
* If $(D_PARAM T) is a nested class inside another class, $(D_PARAM outer)
* should be an instance of the outer class.
*
* $(D_PARAM args) are arguments for the constructor of $(D_PARAM T). If
* $(D_PARAM T) isn't an aggregate type and doesn't have a constructor,
* $(D_PARAM memory) can be initialized to `args[0]` if `Args.length == 1`,
* `Args[0]` should be implicitly convertible to $(D_PARAM T) then.
*
* Params:
* T = Constructed type.
* U = Type of the outer class if $(D_PARAM T) is a nested class.
* Args = Types of the constructor arguments if $(D_PARAM T) has a constructor
* or the type of the initial value.
* outer = Outer class instance if $(D_PARAM T) is a nested class.
* args = Constructor arguments if $(D_PARAM T) has a constructor or the
* initial value.
*
* Returns: New instance of type $(D_PARAM T) constructed in $(D_PARAM memory).
*
* Precondition: `memory.length == stateSize!T`.
* Postcondition: $(D_PARAM memory) and the result point to the same memory.
*/
T emplace(T, U, Args...)(void[] memory, U outer, auto ref Args args)
if (!isAbstractClass!T && isInnerClass!T && is(typeof(T.outer) == U))
in (memory.length >= stateSize!T)
out (result; memory.ptr is (() @trusted => cast(void*) result)())
{
import tanya.memory.op : copy;
copy(typeid(T).initializer, memory);
auto result = (() @trusted => cast(T) memory.ptr)();
result.outer = outer;
static if (is(typeof(result.__ctor(args))))
{
result.__ctor(args);
}
return result;
}
/// ditto
T emplace(T, Args...)(void[] memory, auto ref Args args)
if (is(T == class) && !isAbstractClass!T && !isInnerClass!T)
in (memory.length == stateSize!T)
out (result; memory.ptr is (() @trusted => cast(void*) result)())
{
import tanya.memory.op : copy;
copy(typeid(T).initializer, memory);
auto result = (() @trusted => cast(T) memory.ptr)();
static if (is(typeof(result.__ctor(args))))
{
result.__ctor(args);
}
return result;
}
///
@nogc nothrow pure @safe unittest
{
class C
{
int i = 5;
class Inner
{
int i;
this(int param) pure nothrow @safe @nogc
{
this.i = param;
}
}
}
ubyte[stateSize!C] memory1;
ubyte[stateSize!(C.Inner)] memory2;
auto c = emplace!C(memory1);
assert(c.i == 5);
auto inner = emplace!(C.Inner)(memory2, c, 8);
assert(c.i == 5);
assert(inner.i == 8);
assert(inner.outer is c);
}
/// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isAggregateType!T && (Args.length <= 1))
in (memory.length >= T.sizeof)
out (result; memory.ptr is result)
{
auto result = (() @trusted => cast(T*) memory.ptr)();
static if (Args.length == 1)
{
*result = T(args[0]);
}
else
{
*result = T.init;
}
return result;
}
private void initializeOne(T)(ref void[] memory, ref T* result) @trusted
{
import tanya.memory.op : copy, fill;
static if (!hasElaborateAssign!T && isAssignable!T)
{
*result = T.init;
}
else static if (__VERSION__ >= 2083 // __traits(isZeroInit) available.
&& __traits(isZeroInit, T))
{
memory.ptr[0 .. T.sizeof].fill!0;
}
else
{
static immutable T init = T.init;
copy((&init)[0 .. 1], memory);
}
}
/// ditto
T* emplace(T, Args...)(void[] memory, auto ref Args args)
if (!isPolymorphicType!T && isAggregateType!T)
in (memory.length >= T.sizeof)
out (result; memory.ptr is result)
{
auto result = (() @trusted => cast(T*) memory.ptr)();
static if (Args.length == 0)
{
static assert(is(typeof({ static T t; })),
"Default constructor is disabled");
initializeOne(memory, result);
}
else static if (is(typeof(result.__ctor(args))))
{
initializeOne(memory, result);
result.__ctor(args);
}
else static if (Args.length == 1 && is(typeof({ T t = args[0]; })))
{
import tanya.memory.op : copy;
((ref arg) @trusted =>
copy((cast(void*) &arg)[0 .. T.sizeof], memory))(args[0]);
static if (hasElaborateCopyConstructor!T)
{
result.__postblit();
}
}
else static if (is(typeof({ T t = T(args); })))
{
auto init = T(args);
(() @trusted => moveEmplace(init, *result))();
}
else
{
static assert(false,
"Unable to construct value with the given arguments");
}
return result;
}
///
@nogc nothrow pure @safe unittest
{
ubyte[4] memory;
auto i = emplace!int(memory);
static assert(is(typeof(i) == int*));
assert(*i == 0);
i = emplace!int(memory, 5);
assert(*i == 5);
static struct S
{
int i;
@disable this();
@disable this(this);
this(int i) @nogc nothrow pure @safe
{
this.i = i;
}
}
auto s = emplace!S(memory, 8);
static assert(is(typeof(s) == S*));
assert(s.i == 8);
}
private void deinitialize(bool zero, T)(ref T value)
{
static if (is(T == U[S], U, size_t S))
{
foreach (ref e; value)
{
deinitialize!zero(e);
}
}
else
{
import tanya.memory.op : copy, fill;
static if (isNested!T)
{
// Don't override the context pointer.
enum size_t size = T.sizeof - (void*).sizeof;
}
else
{
enum size_t size = T.sizeof;
}
static if (zero)
{
fill!0((cast(void*) &value)[0 .. size]);
}
else
{
copy(typeid(T).initializer()[0 .. size], (&value)[0 .. 1]);
}
}
}
/**
* Moves $(D_PARAM source) into $(D_PARAM target) assuming that
* $(D_PARAM target) isn't initialized.
*
* Moving the $(D_PARAM source) copies it into the $(D_PARAM target) and places
* the $(D_PARAM source) into a valid but unspecified state, which means that
* after moving $(D_PARAM source) can be destroyed or assigned a new value, but
* accessing it yields an unspecified value. No postblits or destructors are
* called. If the $(D_PARAM target) should be destroyed before, use
* $(D_PSYMBOL move).
*
* $(D_PARAM source) and $(D_PARAM target) must be different objects.
*
* Params:
* T = Object type.
* source = Source object.
* target = Target object.
*
* See_Also: $(D_PSYMBOL move),
* $(D_PSYMBOL hasElaborateCopyConstructor),
* $(D_PSYMBOL hasElaborateDestructor).
*
* Precondition: `&source !is &target`.
*/
void moveEmplace(T)(ref T source, ref T target) @system
in
{
assert(&source !is &target, "Source and target must be different");
}
do
{
static if (is(T == struct) || isStaticArray!T)
{
import tanya.memory.op : copy;
copy((&source)[0 .. 1], (&target)[0 .. 1]);
static if (hasElaborateCopyConstructor!T || hasElaborateDestructor!T)
{
static if (__VERSION__ >= 2083) // __traits(isZeroInit) available.
{
deinitialize!(__traits(isZeroInit, T))(source);
}
else
{
if (typeid(T).initializer().ptr is null)
{
deinitialize!true(source);
}
else
{
deinitialize!false(source);
}
}
}
}
else
{
target = source;
}
}
///
@nogc nothrow pure @system unittest
{
static struct S
{
int member = 5;
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
S source, target = void;
moveEmplace(source, target);
assert(target.member == 5);
int x1 = 5, x2;
moveEmplace(x1, x2);
assert(x2 == 5);
}
/**
* Moves $(D_PARAM source) into $(D_PARAM target) assuming that
* $(D_PARAM target) isn't initialized.
*
* Moving the $(D_PARAM source) copies it into the $(D_PARAM target) and places
* the $(D_PARAM source) into a valid but unspecified state, which means that
* after moving $(D_PARAM source) can be destroyed or assigned a new value, but
* accessing it yields an unspecified value. $(D_PARAM target) is destroyed before
* the new value is assigned. If $(D_PARAM target) isn't initialized and
* therefore shouldn't be destroyed, $(D_PSYMBOL moveEmplace) can be used.
*
* If $(D_PARAM target) isn't specified, $(D_PSYMBOL move) returns the source
* as rvalue without calling its copy constructor or destructor.
*
* $(D_PARAM source) and $(D_PARAM target) are the same object,
* $(D_PSYMBOL move) does nothing.
*
* Params:
* T = Object type.
* source = Source object.
* target = Target object.
*
* See_Also: $(D_PSYMBOL moveEmplace).
*/
void move(T)(ref T source, ref T target)
{
if ((() @trusted => &source is &target)())
{
return;
}
static if (hasElaborateDestructor!T)
{
target.__xdtor();
}
(() @trusted => moveEmplace(source, target))();
}
/// ditto
T move(T)(ref T source) @trusted
{
static if (hasElaborateCopyConstructor!T || hasElaborateDestructor!T)
{
T target = void;
moveEmplace(source, target);
return target;
}
else
{
return source;
}
}
///
@nogc nothrow pure @safe unittest
{
static struct S
{
int member = 5;
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
S source, target = void;
move(source, target);
assert(target.member == 5);
assert(move(target).member == 5);
int x1 = 5, x2;
move(x1, x2);
assert(x2 == 5);
assert(move(x2) == 5);
}
/**
* Exchanges the values of $(D_PARAM a) and $(D_PARAM b).
*
* $(D_PSYMBOL swap) moves the contents of $(D_PARAM a) and $(D_PARAM b)
* without calling its postblits or destructors.
*
* Params:
* a = The first object.
* b = The second object.
*/
void swap(T)(ref T a, ref T b) @trusted
{
T tmp = void;
moveEmplace(a, tmp);
moveEmplace(b, a);
moveEmplace(tmp, b);
}
///
@nogc nothrow pure @safe unittest
{
int a = 3, b = 5;
swap(a, b);
assert(a == 5);
assert(b == 3);
}
/**
* Forwards its argument list preserving $(D_KEYWORD ref) and $(D_KEYWORD out)
* storage classes.
*
* $(D_PSYMBOL forward) accepts a list of variables or literals. It returns an
* argument list of the same length that can be for example passed to a
* function accepting the arguments of this type.
*
* Params:
* args = Argument list.
*
* Returns: $(D_PARAM args) with their original storage classes.
*/
template forward(args...)
{
static if (args.length == 0)
{
alias forward = AliasSeq!();
}
else static if (__traits(isRef, args[0]) || __traits(isOut, args[0]))
{
static if (args.length == 1)
{
alias forward = args[0];
}
else
{
alias forward = AliasSeq!(args[0], forward!(args[1 .. $]));
}
}
else
{
@property auto forwardOne()
{
return move(args[0]);
}
static if (args.length == 1)
{
alias forward = forwardOne;
}
else
{
alias forward = AliasSeq!(forwardOne, forward!(args[1 .. $]));
}
}
}
///
@nogc nothrow pure @safe unittest
{
static assert(is(typeof((int i) { int v = forward!i; })));
static assert(is(typeof((ref int i) { int v = forward!i; })));
static assert(is(typeof({
void f(int i, ref int j, out int k)
{
f(forward!(i, j, k));
}
})));
}

View File

@ -0,0 +1,218 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Allocator based on $(D_PSYMBOL malloc), $(D_PSYMBOL realloc) and
* $(D_PSYMBOL free).
*
* Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/middle/tanya/memory/mallocator.d,
* tanya/memory/mallocator.d)
*/
module tanya.memory.mallocator;
version (TanyaNative)
{
}
else:
import core.stdc.stdlib;
import tanya.memory.allocator;
/**
* Wrapper for $(D_PSYMBOL malloc)/$(D_PSYMBOL realloc)/$(D_PSYMBOL free) from
* the C standard library.
*/
final class Mallocator : Allocator
{
private alias MallocType = extern (C) void* function(size_t)
@nogc nothrow pure @system;
private alias FreeType = extern (C) void function(void*)
@nogc nothrow pure @system;
private alias ReallocType = extern (C) void* function(void*, size_t)
@nogc nothrow pure @system;
/**
* Allocates $(D_PARAM size) bytes of memory.
*
* Params:
* size = Amount of memory to allocate.
*
* Returns: The pointer to the new allocated memory.
*/
void[] allocate(size_t size) @nogc nothrow pure shared @system
{
if (size == 0)
{
return null;
}
auto p = (cast(MallocType) &malloc)(size + psize);
return p is null ? null : p[psize .. psize + size];
}
///
@nogc nothrow pure @system unittest
{
auto p = Mallocator.instance.allocate(20);
assert(p.length == 20);
Mallocator.instance.deallocate(p);
p = Mallocator.instance.allocate(0);
assert(p.length == 0);
}
/**
* Deallocates a memory block.
*
* Params:
* p = A pointer to the memory block to be freed.
*
* Returns: Whether the deallocation was successful.
*/
bool deallocate(void[] p) @nogc nothrow pure shared @system
{
if (p !is null)
{
(cast(FreeType) &free)(p.ptr - psize);
}
return true;
}
///
@nogc nothrow pure @system unittest
{
void[] p;
assert(Mallocator.instance.deallocate(p));
p = Mallocator.instance.allocate(10);
assert(Mallocator.instance.deallocate(p));
}
/**
* Reallocating in place isn't supported.
*
* Params:
* p = A pointer to the memory block.
* size = Size of the reallocated block.
*
* Returns: $(D_KEYWORD false).
*/
bool reallocateInPlace(ref void[] p, size_t size)
@nogc nothrow pure shared @system
{
cast(void) size;
return false;
}
///
@nogc nothrow pure @system unittest
{
void[] p;
assert(!Mallocator.instance.reallocateInPlace(p, 8));
}
/**
* Increases or decreases the size of a memory block.
*
* Params:
* p = A pointer to the memory block.
* size = Size of the reallocated block.
*
* Returns: Whether the reallocation was successful.
*/
bool reallocate(ref void[] p, size_t size)
@nogc nothrow pure shared @system
{
if (size == 0)
{
if (deallocate(p))
{
p = null;
return true;
}
}
else if (p is null)
{
p = allocate(size);
return p is null ? false : true;
}
else
{
auto r = (cast(ReallocType) &realloc)(p.ptr - psize, size + psize);
if (r !is null)
{
p = r[psize .. psize + size];
return true;
}
}
return false;
}
///
@nogc nothrow pure @system unittest
{
void[] p;
assert(Mallocator.instance.reallocate(p, 20));
assert(p.length == 20);
assert(Mallocator.instance.reallocate(p, 30));
assert(p.length == 30);
assert(Mallocator.instance.reallocate(p, 10));
assert(p.length == 10);
assert(Mallocator.instance.reallocate(p, 0));
assert(p is null);
}
/**
* Returns: The alignment offered.
*/
@property uint alignment() const @nogc nothrow pure @safe shared
{
return (void*).alignof;
}
static private shared(Mallocator) instantiate() @nogc nothrow @system
{
if (instance_ is null)
{
const size = __traits(classInstanceSize, Mallocator) + psize;
void* p = malloc(size);
if (p !is null)
{
p[psize .. size] = typeid(Mallocator).initializer[];
instance_ = cast(shared Mallocator) p[psize .. size].ptr;
}
}
return instance_;
}
/**
* Static allocator instance and initializer.
*
* Returns: The global $(D_PSYMBOL Allocator) instance.
*/
static @property shared(Mallocator) instance() @nogc nothrow pure @system
{
return (cast(GetPureInstance!Mallocator) &instantiate)();
}
///
@nogc nothrow pure @system unittest
{
assert(instance is instance);
}
private enum ushort psize = 8;
private shared static Mallocator instance_;
}

View File

@ -0,0 +1,503 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Native allocator.
*
* Copyright: Eugene Wissner 2016-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/middle/tanya/memory/mmappool.d,
* tanya/memory/mmappool.d)
*/
module tanya.memory.mmappool;
version (TanyaNative):
import mir.linux._asm.unistd;
import tanya.memory.allocator;
import tanya.memory.op;
import tanya.os.error;
import tanya.sys.linux.syscall;
import tanya.sys.posix.mman;
private void* mapMemory(const size_t length) @nogc nothrow pure @system
{
auto p = syscall_(0,
length,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0,
NR_mmap);
return p == -ErrorCode.noMemory ? null : cast(void*) p;
}
private bool unmapMemory(shared void* addr, const size_t length)
@nogc nothrow pure @system
{
return syscall_(cast(ptrdiff_t) addr, length, NR_munmap) == 0;
}
/*
* This allocator allocates memory in regions (multiple of 64 KB for example).
* Each region is then splitted in blocks. So it doesn't request the memory
* from the operating system on each call, but only if there are no large
* enough free blocks in the available regions.
* Deallocation works in the same way. Deallocation doesn't immediately
* gives the memory back to the operating system, but marks the appropriate
* block as free and only if all blocks in the region are free, the complete
* region is deallocated.
*
* <pre>
* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* | | | | | || | | |
* | |prev <----------- | || | | |
* | R | B | | B | || R | B | |
* | E | L | | L | next E | L | |
* | G | O | DATA | O | FREE ---> G | O | DATA |
* | I | C | | C | <--- I | C | |
* | O | K | | K | prev O | K | |
* | N | -----------> next| || N | | |
* | | | | | || | | |
* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* </pre>
*/
final class MmapPool : Allocator
{
version (none)
{
@nogc nothrow pure @system invariant
{
for (auto r = &head; *r !is null; r = &((*r).next))
{
auto block = cast(Block) (cast(void*) *r + RegionEntry.sizeof);
do
{
assert(block.prev is null || block.prev.next is block);
assert(block.next is null || block.next.prev is block);
assert(block.region is *r);
}
while ((block = block.next) !is null);
}
}
}
/*
* Allocates $(D_PARAM size) bytes of memory.
*
* Params:
* size = Amount of memory to allocate.
*
* Returns: Pointer to the new allocated memory.
*/
void[] allocate(size_t size) @nogc nothrow pure shared @system
{
if (size == 0)
{
return null;
}
const dataSize = addAlignment(size);
if (dataSize < size)
{
return null;
}
void* data = findBlock(dataSize);
if (data is null)
{
data = initializeRegion(dataSize);
}
return data is null ? null : data[0 .. size];
}
/*
* Search for a block large enough to keep $(D_PARAM size) and split it
* into two blocks if the block is too large.
*
* Params:
* size = Minimum size the block should have (aligned).
*
* Returns: Data the block points to or $(D_KEYWORD null).
*/
private void* findBlock(const ref size_t size)
@nogc nothrow pure shared @system
{
Block block1;
RegionLoop: for (auto r = head; r !is null; r = r.next)
{
block1 = cast(Block) (cast(void*) r + RegionEntry.sizeof);
do
{
if (block1.free && block1.size >= size)
{
break RegionLoop;
}
}
while ((block1 = block1.next) !is null);
}
if (block1 is null)
{
return null;
}
else if (block1.size >= size + alignment_ + BlockEntry.sizeof)
{ // Split the block if needed
Block block2 = cast(Block) (cast(void*) block1 + BlockEntry.sizeof + size);
block2.prev = block1;
block2.next = block1.next;
block2.free = true;
block2.size = block1.size - BlockEntry.sizeof - size;
block2.region = block1.region;
if (block1.next !is null)
{
block1.next.prev = block2;
}
block1.next = block2;
block1.size = size;
}
block1.free = false;
block1.region.blocks = block1.region.blocks + 1;
return cast(void*) block1 + BlockEntry.sizeof;
}
// Merge block with the next one.
private void mergeNext(Block block) const @nogc nothrow pure @safe shared
{
block.size = block.size + BlockEntry.sizeof + block.next.size;
if (block.next.next !is null)
{
block.next.next.prev = block;
}
block.next = block.next.next;
}
/*
* Deallocates a memory block.
*
* Params:
* p = A pointer to the memory block to be freed.
*
* Returns: Whether the deallocation was successful.
*/
bool deallocate(void[] p) @nogc nothrow pure shared @system
{
if (p.ptr is null)
{
return true;
}
Block block = cast(Block) (p.ptr - BlockEntry.sizeof);
if (block.region.blocks <= 1)
{
if (block.region.prev !is null)
{
block.region.prev.next = block.region.next;
}
else // Replace the list head. It is being deallocated
{
head = block.region.next;
}
if (block.region.next !is null)
{
block.region.next.prev = block.region.prev;
}
return unmapMemory(block.region, block.region.size);
}
// Merge blocks if neigbours are free.
if (block.next !is null && block.next.free)
{
mergeNext(block);
}
if (block.prev !is null && block.prev.free)
{
block.prev.size = block.prev.size + BlockEntry.sizeof + block.size;
if (block.next !is null)
{
block.next.prev = block.prev;
}
block.prev.next = block.next;
}
else
{
block.free = true;
}
block.region.blocks = block.region.blocks - 1;
return true;
}
/*
* Reallocates a memory block in place if possible or returns
* $(D_KEYWORD false). This function cannot be used to allocate or
* deallocate memory, so if $(D_PARAM p) is $(D_KEYWORD null) or
* $(D_PARAM size) is `0`, it should return $(D_KEYWORD false).
*
* Params:
* p = A pointer to the memory block.
* size = Size of the reallocated block.
*
* Returns: $(D_KEYWORD true) if successful, $(D_KEYWORD false) otherwise.
*/
bool reallocateInPlace(ref void[] p, size_t size)
@nogc nothrow pure shared @system
{
if (p is null || size == 0)
{
return false;
}
if (size <= p.length)
{
// Leave the block as is.
p = p.ptr[0 .. size];
return true;
}
Block block1 = cast(Block) (p.ptr - BlockEntry.sizeof);
if (block1.size >= size)
{
// Enough space in the current block.
p = p.ptr[0 .. size];
return true;
}
const dataSize = addAlignment(size);
const pAlignment = addAlignment(p.length);
assert(pAlignment >= p.length, "Invalid memory chunk length");
const delta = dataSize - pAlignment;
if (block1.next is null
|| !block1.next.free
|| dataSize < size
|| block1.next.size + BlockEntry.sizeof < delta)
{
/* - It is the last block in the region
* - The next block isn't free
* - The next block is too small
* - Requested size is too large
*/
return false;
}
if (block1.next.size >= delta + alignment_)
{
// Move size from block2 to block1.
block1.next.size = block1.next.size - delta;
block1.size = block1.size + delta;
auto block2 = cast(Block) (p.ptr + dataSize);
if (block1.next.next !is null)
{
block1.next.next.prev = block2;
}
copyBackward((cast(void*) block1.next)[0 .. BlockEntry.sizeof],
(cast(void*) block2)[0 .. BlockEntry.sizeof]);
block1.next = block2;
}
else
{
// The next block has enough space, but is too small for further
// allocations. Merge it with the current block.
mergeNext(block1);
}
p = p.ptr[0 .. size];
return true;
}
/*
* Increases or decreases the size of a memory block.
*
* Params:
* p = A pointer to the memory block.
* size = Size of the reallocated block.
*
* Returns: Whether the reallocation was successful.
*/
bool reallocate(ref void[] p, size_t size)
@nogc nothrow pure shared @system
{
if (size == 0)
{
if (deallocate(p))
{
p = null;
return true;
}
return false;
}
else if (reallocateInPlace(p, size))
{
return true;
}
// Can't reallocate in place, allocate a new block,
// copy and delete the previous one.
void[] reallocP = allocate(size);
if (reallocP is null)
{
return false;
}
if (p !is null)
{
copy(p[0 .. p.length < size ? p.length : size], reallocP);
deallocate(p);
}
p = reallocP;
return true;
}
static private shared(MmapPool) instantiate() @nogc nothrow @system
{
if (instance_ is null)
{
const instanceSize = addAlignment(__traits(classInstanceSize,
MmapPool));
Region head; // Will become soon our region list head
void* data = initializeRegion(instanceSize, head);
if (data !is null)
{
copy(typeid(MmapPool).initializer, data[0 .. instanceSize]);
instance_ = cast(shared MmapPool) data;
instance_.head = head;
}
}
return instance_;
}
/*
* Static allocator instance and initializer.
*
* Returns: Global $(D_PSYMBOL MmapPool) instance.
*/
static @property shared(MmapPool) instance() @nogc nothrow pure @system
{
return (cast(GetPureInstance!MmapPool) &instantiate)();
}
/*
* Initializes a region for one element.
*
* Params:
* size = Aligned size of the first data block in the region.
* head = Region list head.
*
* Returns: A pointer to the data.
*/
private static void* initializeRegion(const size_t size, ref Region head)
@nogc nothrow pure @system
{
const regionSize = calculateRegionSize(size);
if (regionSize < size)
{
return null;
}
void* p = mapMemory(regionSize);
if (p is null)
{
return null;
}
Region region = cast(Region) p;
region.blocks = 1;
region.size = regionSize;
// Set the pointer to the head of the region list
if (head !is null)
{
head.prev = region;
}
region.next = head;
region.prev = null;
head = region;
// Initialize the data block
void* memoryPointer = p + RegionEntry.sizeof;
Block block1 = cast(Block) memoryPointer;
block1.size = size;
block1.free = false;
// It is what we want to return
void* data = memoryPointer + BlockEntry.sizeof;
// Free block after data
memoryPointer = data + size;
Block block2 = cast(Block) memoryPointer;
block1.prev = block2.next = null;
block1.next = block2;
block2.prev = block1;
block2.size = regionSize - size - RegionEntry.sizeof - BlockEntry.sizeof * 2;
block2.free = true;
block1.region = block2.region = region;
return data;
}
private void* initializeRegion(const size_t size)
@nogc nothrow pure shared @system
{
return initializeRegion(size, this.head);
}
/*
* Params:
* x = Space to be aligned.
*
* Returns: Aligned size of $(D_PARAM x).
*/
private static size_t addAlignment(const size_t x) @nogc nothrow pure @safe
{
return (x - 1) / alignment_ * alignment_ + alignment_;
}
/*
* Params:
* x = Required space.
*
* Returns: Minimum region size (a multiple of $(D_PSYMBOL pageSize)).
*/
private static size_t calculateRegionSize(ref const size_t x)
@nogc nothrow pure @safe
{
return (x + RegionEntry.sizeof + BlockEntry.sizeof * 2)
/ pageSize * pageSize + pageSize;
}
/*
* Returns: Alignment offered.
*/
@property uint alignment() const @nogc nothrow pure @safe shared
{
return alignment_;
}
private enum uint alignment_ = 8;
private shared static MmapPool instance_;
// Page size.
enum size_t pageSize = 65536;
private shared struct RegionEntry
{
Region prev;
Region next;
uint blocks;
size_t size;
}
private alias Region = shared RegionEntry*;
private shared Region head;
private shared struct BlockEntry
{
Block prev;
Block next;
Region region;
size_t size;
bool free;
}
private alias Block = shared BlockEntry*;
}

375
middle/tanya/memory/op.d Normal file
View File

@ -0,0 +1,375 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Set of operations on memory blocks.
*
* Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/middle/tanya/memory/op.d,
* tanya/memory/op.d)
*/
module tanya.memory.op;
version (TanyaNative)
{
extern private void fillMemory(void[], size_t) pure nothrow @system @nogc;
extern private void copyMemory(const void[], void[])
pure nothrow @system @nogc;
extern private void moveMemory(const void[], void[])
pure nothrow @system @nogc;
extern private bool equalMemory(const void[], const void[])
pure nothrow @system @nogc;
}
else
{
import core.stdc.string;
}
private enum alignMask = size_t.sizeof - 1;
/**
* Copies $(D_PARAM source) into $(D_PARAM target).
*
* $(D_PARAM source) and $(D_PARAM target) shall not overlap so that
* $(D_PARAM source) points ahead of $(D_PARAM target).
*
* $(D_PARAM target) shall have enough space for $(D_INLINECODE source.length)
* elements.
*
* Params:
* source = Memory to copy from.
* target = Destination memory.
*
* See_Also: $(D_PSYMBOL copyBackward).
*
* Precondition: $(D_INLINECODE source.length <= target.length).
*/
void copy(const void[] source, void[] target) @nogc nothrow pure @trusted
in
{
assert(source.length <= target.length);
assert(source.length == 0 || source.ptr !is null);
assert(target.length == 0 || target.ptr !is null);
}
do
{
version (TanyaNative)
{
copyMemory(source, target);
}
else
{
memcpy(target.ptr, source.ptr, source.length);
}
}
///
@nogc nothrow pure @safe unittest
{
ubyte[9] source = [1, 2, 3, 4, 5, 6, 7, 8, 9];
ubyte[9] target;
source.copy(target);
assert(equal(source, target));
}
/*
* size_t value each of which bytes is set to `Byte`.
*/
private template filledBytes(ubyte Byte, ubyte I = 0)
{
static if (I == size_t.sizeof)
{
enum size_t filledBytes = Byte;
}
else
{
enum size_t filledBytes = (filledBytes!(Byte, I + 1) << 8) | Byte;
}
}
/**
* Fills $(D_PARAM memory) with the single byte $(D_PARAM c).
*
* Param:
* c = The value to fill $(D_PARAM memory) with.
* memory = Memory block.
*/
void fill(ubyte c = 0)(void[] memory) @trusted
in
{
assert(memory.length == 0 || memory.ptr !is null);
}
do
{
version (TanyaNative)
{
fillMemory(memory, filledBytes!c);
}
else
{
memset(memory.ptr, c, memory.length);
}
}
///
@nogc nothrow pure @safe unittest
{
ubyte[9] memory = [1, 2, 3, 4, 5, 6, 7, 8, 9];
memory.fill!0();
foreach (ubyte v; memory)
{
assert(v == 0);
}
}
/**
* Copies starting from the end of $(D_PARAM source) into the end of
* $(D_PARAM target).
*
* $(D_PSYMBOL copyBackward) copies the elements in reverse order, but the
* order of elements in the $(D_PARAM target) is exactly the same as in the
* $(D_PARAM source).
*
* $(D_PARAM source) and $(D_PARAM target) shall not overlap so that
* $(D_PARAM target) points ahead of $(D_PARAM source).
*
* $(D_PARAM target) shall have enough space for $(D_INLINECODE source.length)
* elements.
*
* Params:
* source = Memory to copy from.
* target = Destination memory.
*
* See_Also: $(D_PSYMBOL copy).
*
* Precondition: $(D_INLINECODE source.length <= target.length).
*/
void copyBackward(const void[] source, void[] target) @nogc nothrow pure @trusted
in
{
assert(source.length <= target.length);
assert(source.length == 0 || source.ptr !is null);
assert(target.length == 0 || target.ptr !is null);
}
do
{
version (TanyaNative)
{
moveMemory(source, target);
}
else
{
memmove(target.ptr, source.ptr, source.length);
}
}
///
@nogc nothrow pure @safe unittest
{
ubyte[6] mem = [ 'a', 'a', 'b', 'b', 'c', 'c' ];
ubyte[6] expected = [ 'a', 'a', 'a', 'a', 'b', 'b' ];
copyBackward(mem[0 .. 4], mem[2 .. $]);
assert(equal(expected, mem));
}
/**
* Finds the first occurrence of $(D_PARAM needle) in $(D_PARAM haystack) if
* any.
*
* Params:
* haystack = Memory block.
* needle = A byte.
*
* Returns: The subrange of $(D_PARAM haystack) whose first element is the
* first occurrence of $(D_PARAM needle). If $(D_PARAM needle)
* couldn't be found, an empty `inout void[]` is returned.
*/
inout(void[]) find(return inout void[] haystack, ubyte needle)
@nogc nothrow pure @trusted
in
{
assert(haystack.length == 0 || haystack.ptr !is null);
}
do
{
auto length = haystack.length;
const size_t needleWord = size_t.max * needle;
enum size_t highBits = filledBytes!(0x01, 0);
enum size_t mask = filledBytes!(0x80, 0);
// Align
auto bytes = cast(inout(ubyte)*) haystack;
while (length > 0 && ((cast(size_t) bytes) & 3) != 0)
{
if (*bytes == needle)
{
return bytes[0 .. length];
}
++bytes;
--length;
}
// Check if some of the words has the needle
auto words = cast(inout(size_t)*) bytes;
while (length >= size_t.sizeof)
{
if ((((*words ^ needleWord) - highBits) & (~*words) & mask) != 0)
{
break;
}
++words;
length -= size_t.sizeof;
}
// Find the exact needle position in the word
bytes = cast(inout(ubyte)*) words;
while (length > 0)
{
if (*bytes == needle)
{
return bytes[0 .. length];
}
++bytes;
--length;
}
return haystack[$ .. $];
}
///
@nogc nothrow pure @safe unittest
{
const ubyte[9] haystack = ['a', 'b', 'c', 'd', 'e', 'f', 'b', 'g', 'h'];
assert(equal(find(haystack, 'a'), haystack[]));
assert(equal(find(haystack, 'b'), haystack[1 .. $]));
assert(equal(find(haystack, 'c'), haystack[2 .. $]));
assert(equal(find(haystack, 'd'), haystack[3 .. $]));
assert(equal(find(haystack, 'e'), haystack[4 .. $]));
assert(equal(find(haystack, 'f'), haystack[5 .. $]));
assert(equal(find(haystack, 'h'), haystack[8 .. $]));
assert(find(haystack, 'i').length == 0);
assert(find(null, 'a').length == 0);
}
/**
* Looks for `\0` in the $(D_PARAM haystack) and returns the part of the
* $(D_PARAM haystack) ahead of it.
*
* Returns $(D_KEYWORD null) if $(D_PARAM haystack) doesn't contain a null
* character.
*
* Params:
* haystack = Memory block.
*
* Returns: The subrange that spans all bytes before the null character or
* $(D_KEYWORD null) if the $(D_PARAM haystack) doesn't contain any.
*/
inout(char[]) findNullTerminated(return inout char[] haystack)
@nogc nothrow pure @trusted
in
{
assert(haystack.length == 0 || haystack.ptr !is null);
}
do
{
auto length = haystack.length;
enum size_t highBits = filledBytes!(0x01, 0);
enum size_t mask = filledBytes!(0x80, 0);
// Align
auto bytes = cast(inout(ubyte)*) haystack;
while (length > 0 && ((cast(size_t) bytes) & 3) != 0)
{
if (*bytes == '\0')
{
return haystack[0 .. haystack.length - length];
}
++bytes;
--length;
}
// Check if some of the words contains 0
auto words = cast(inout(size_t)*) bytes;
while (length >= size_t.sizeof)
{
if (((*words - highBits) & (~*words) & mask) != 0)
{
break;
}
++words;
length -= size_t.sizeof;
}
// Find the exact 0 position in the word
bytes = cast(inout(ubyte)*) words;
while (length > 0)
{
if (*bytes == '\0')
{
return haystack[0 .. haystack.length - length];
}
++bytes;
--length;
}
return null;
}
///
@nogc nothrow pure @safe unittest
{
assert(equal(findNullTerminated("abcdef\0gh"), "abcdef"));
assert(equal(findNullTerminated("\0garbage"), ""));
assert(equal(findNullTerminated("\0"), ""));
assert(equal(findNullTerminated("cstring\0"), "cstring"));
assert(findNullTerminated(null) is null);
assert(findNullTerminated("abcdef") is null);
}
/**
* Compares two memory areas $(D_PARAM r1) and $(D_PARAM r2) for equality.
*
* Params:
* r1 = First memory block.
* r2 = Second memory block.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM r1) and $(D_PARAM r2) are equal,
* $(D_KEYWORD false) otherwise.
*/
bool equal(const void[] r1, const void[] r2) @nogc nothrow pure @trusted
in
{
assert(r1.length == 0 || r1.ptr !is null);
assert(r2.length == 0 || r2.ptr !is null);
}
do
{
version (TanyaNative)
{
return equalMemory(r1, r2);
}
else
{
return r1.length == r2.length
&& memcmp(r1.ptr, r2.ptr, r1.length) == 0;
}
}
///
@nogc nothrow pure @safe unittest
{
assert(equal("asdf", "asdf"));
assert(!equal("asd", "asdf"));
assert(!equal("asdf", "asd"));
assert(!equal("asdf", "qwer"));
}

View File

@ -0,0 +1,132 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Dynamic memory management.
*
* Copyright: Eugene Wissner 2016-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/middle/tanya/memory/package.d,
* tanya/memory/package.d)
*/
module tanya.memory;
public import tanya.memory.allocator;
public import tanya.memory.lifetime;
import tanya.meta.trait;
deprecated("Use tanya.meta.trait.stateSize instead")
public import tanya.meta.trait : stateSize;
/**
* The mixin generates common methods for classes and structs using
* allocators. It provides a protected member, constructor and a read-only property,
* that checks if an allocator was already set and sets it to the default
* one, if not (useful for structs which don't have a default constructor).
*/
mixin template DefaultAllocator()
{
/// Allocator.
protected shared Allocator allocator_;
/**
* Params:
* allocator = The allocator should be used.
*
* Precondition: $(D_INLINECODE allocator_ !is null)
*/
this(shared Allocator allocator) @nogc nothrow pure @safe
in (allocator !is null)
{
this.allocator_ = allocator;
}
/**
* This property checks if the allocator was set in the constructor
* and sets it to the default one, if not.
*
* Returns: Used allocator.
*
* Postcondition: $(D_INLINECODE allocator !is null)
*/
@property shared(Allocator) allocator() @nogc nothrow pure @safe
out (allocator; allocator !is null)
{
if (allocator_ is null)
{
allocator_ = defaultAllocator;
}
return allocator_;
}
/// ditto
@property shared(Allocator) allocator() const @nogc nothrow pure @trusted
out (allocator; allocator !is null)
{
if (allocator_ is null)
{
return defaultAllocator;
}
return cast(shared Allocator) allocator_;
}
}
shared Allocator allocator;
private shared(Allocator) getAllocatorInstance() @nogc nothrow
{
if (allocator is null)
{
version (TanyaNative)
{
import tanya.memory.mmappool;
defaultAllocator = MmapPool.instance;
}
else
{
import tanya.memory.mallocator;
defaultAllocator = Mallocator.instance;
}
}
return allocator;
}
/**
* Returns: Default allocator.
*
* Postcondition: $(D_INLINECODE allocator !is null).
*/
@property shared(Allocator) defaultAllocator() @nogc nothrow pure @trusted
out (allocator; allocator !is null)
{
return (cast(GetPureInstance!Allocator) &getAllocatorInstance)();
}
/**
* Sets the default allocator.
*
* Params:
* allocator = $(D_PSYMBOL Allocator) instance.
*
* Precondition: $(D_INLINECODE allocator !is null).
*/
@property void defaultAllocator(shared(Allocator) allocator) @nogc nothrow @safe
in (allocator !is null)
{
.allocator = allocator;
}
/**
* Params:
* size = Raw size.
* alignment = Alignment.
*
* Returns: Aligned size.
*/
size_t alignedSize(const size_t size, const size_t alignment = 8)
pure nothrow @safe @nogc
{
return (size - 1) / alignment * alignment + alignment;
}

View File

@ -0,0 +1,634 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Smart pointers.
*
* A smart pointer is an object that wraps a raw pointer or a reference
* (class, dynamic array) to manage its lifetime.
*
* This module provides two kinds of lifetime management strategies:
* $(UL
* $(LI Reference counting)
* $(LI Unique ownership)
* )
*
* Copyright: Eugene Wissner 2016-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/middle/tanya/memory/smartref.d,
* tanya/memory/smartref.d)
*/
module tanya.memory.smartref;
import tanya.memory;
import tanya.meta.trait;
private template Payload(T)
{
static if (isPolymorphicType!T || isDynamicArray!T)
{
alias Payload = T;
}
else
{
alias Payload = T*;
}
}
private final class RefCountedStore(T)
{
T payload;
size_t counter = 1;
size_t opUnary(string op)()
if (op == "--" || op == "++")
in (this.counter > 0)
{
mixin("return " ~ op ~ "counter;");
}
int opCmp(const size_t counter)
{
if (this.counter > counter)
{
return 1;
}
else if (this.counter < counter)
{
return -1;
}
else
{
return 0;
}
}
}
private void separateDeleter(T)(RefCountedStore!T storage,
shared Allocator allocator)
{
allocator.dispose(storage.payload);
allocator.dispose(storage);
}
private void unifiedDeleter(T)(RefCountedStore!T storage,
shared Allocator allocator)
{
auto ptr1 = finalize(storage);
auto ptr2 = finalize(storage.payload);
allocator.deallocate(ptr1.ptr[0 .. ptr1.length + ptr2.length]);
}
/**
* Reference-counted object containing a $(D_PARAM T) value as payload.
* $(D_PSYMBOL RefCounted) keeps track of all references of an object, and
* when the reference count goes down to zero, frees the underlying store.
*
* Params:
* T = Type of the reference-counted value.
*/
struct RefCounted(T)
{
private alias Storage = RefCountedStore!(Payload!T);
private Storage storage;
private void function(Storage storage,
shared Allocator allocator) @nogc deleter;
invariant
{
assert(this.storage is null || this.allocator_ !is null);
assert(this.storage is null || this.deleter !is null);
}
/**
* Takes ownership over $(D_PARAM value), setting the counter to 1.
* $(D_PARAM value) may be a pointer, an object or a dynamic array.
*
* Params:
* value = Value whose ownership is taken over.
* allocator = Allocator used to destroy the $(D_PARAM value) and to
* allocate/deallocate internal storage.
*
* Precondition: $(D_INLINECODE allocator !is null)
*/
this(Payload!T value, shared Allocator allocator = defaultAllocator)
{
this(allocator);
this.storage = allocator.make!Storage();
this.deleter = &separateDeleter!(Payload!T);
this.storage.payload = value;
}
/// ditto
this(shared Allocator allocator)
in (allocator !is null)
{
this.allocator_ = allocator;
}
/**
* Increases the reference counter by one.
*/
this(this)
{
if (count != 0)
{
++this.storage;
}
}
/**
* Decreases the reference counter by one.
*
* If the counter reaches 0, destroys the owned object.
*/
~this()
{
if (this.storage !is null && !(this.storage > 0 && --this.storage))
{
deleter(this.storage, allocator);
}
}
/**
* Takes ownership over $(D_PARAM rhs). Initializes this
* $(D_PSYMBOL RefCounted) if needed.
*
* If it is the last reference of the previously owned object,
* it will be destroyed.
*
* To reset $(D_PSYMBOL RefCounted) assign $(D_KEYWORD null).
*
* If the allocator wasn't set before, $(D_PSYMBOL defaultAllocator) will
* be used. If you need a different allocator, create a new
* $(D_PSYMBOL RefCounted) and assign it.
*
* Params:
* rhs = New object.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(Payload!T rhs)
{
if (this.storage is null)
{
this.storage = allocator.make!Storage();
this.deleter = &separateDeleter!(Payload!T);
}
else if (this.storage > 1)
{
--this.storage;
this.storage = allocator.make!Storage();
this.deleter = &separateDeleter!(Payload!T);
}
else
{
finalize(this.storage.payload);
this.storage.payload = Payload!T.init;
}
this.storage.payload = rhs;
return this;
}
/// ditto
ref typeof(this) opAssign(typeof(null))
{
if (this.storage is null)
{
return this;
}
else if (this.storage > 1)
{
--this.storage;
}
else
{
deleter(this.storage, allocator);
}
this.storage = null;
return this;
}
/// ditto
ref typeof(this) opAssign(typeof(this) rhs)
{
swap(this.allocator_, rhs.allocator_);
swap(this.storage, rhs.storage);
swap(this.deleter, rhs.deleter);
return this;
}
/**
* Returns: Reference to the owned object.
*
* Precondition: $(D_INLINECODE cound > 0).
*/
inout(Payload!T) get() inout
in (count > 0, "Attempted to access an uninitialized reference")
{
return this.storage.payload;
}
version (D_Ddoc)
{
/**
* Dereferences the pointer. It is defined only for pointers, not for
* reference types like classes, that can be accessed directly.
*
* Params:
* op = Operation.
*
* Returns: Reference to the pointed value.
*/
ref inout(T) opUnary(string op)() inout
if (op == "*");
}
else static if (isPointer!(Payload!T))
{
ref inout(T) opUnary(string op)() inout
if (op == "*")
{
return *this.storage.payload;
}
}
/**
* Returns: Whether this $(D_PSYMBOL RefCounted) already has an internal
* storage.
*/
@property bool isInitialized() const
{
return this.storage !is null;
}
/**
* Returns: The number of $(D_PSYMBOL RefCounted) instances that share
* ownership over the same pointer (including $(D_KEYWORD this)).
* If this $(D_PSYMBOL RefCounted) isn't initialized, returns `0`.
*/
@property size_t count() const
{
return this.storage is null ? 0 : this.storage.counter;
}
mixin DefaultAllocator;
alias get this;
}
///
@nogc @system unittest
{
auto rc = RefCounted!int(defaultAllocator.make!int(5), defaultAllocator);
auto val = rc.get();
*val = 8;
assert(*rc.get == 8);
val = null;
assert(rc.get !is null);
assert(*rc.get == 8);
*rc = 9;
assert(*rc.get == 9);
}
/**
* Constructs a new object of type $(D_PARAM T) and wraps it in a
* $(D_PSYMBOL RefCounted) using $(D_PARAM args) as the parameter list for
* the constructor of $(D_PARAM T).
*
* This function is more efficient than the using of $(D_PSYMBOL RefCounted)
* directly, since it allocates only ones (the internal storage and the
* object).
*
* Params:
* T = Type of the constructed object.
* A = Types of the arguments to the constructor of $(D_PARAM T).
* allocator = Allocator.
* args = Constructor arguments of $(D_PARAM T).
*
* Returns: Newly created $(D_PSYMBOL RefCounted!T).
*
* Precondition: $(D_INLINECODE allocator !is null)
*/
RefCounted!T refCounted(T, A...)(shared Allocator allocator, auto ref A args)
if (!is(T == interface) && !isAbstractClass!T
&& !isAssociativeArray!T && !isArray!T)
in (allocator !is null)
{
auto rc = typeof(return)(allocator);
const storageSize = alignedSize(stateSize!(RefCounted!T.Storage));
const size = alignedSize(stateSize!T + storageSize);
auto mem = (() @trusted => allocator.allocate(size))();
if (mem is null)
{
onOutOfMemoryError();
}
scope (failure)
{
() @trusted { allocator.deallocate(mem); }();
}
rc.storage = emplace!(RefCounted!T.Storage)(mem[0 .. storageSize]);
rc.storage.payload = emplace!T(mem[storageSize .. $], args);
rc.deleter = &unifiedDeleter!(Payload!T);
return rc;
}
/**
* Constructs a new array with $(D_PARAM size) elements and wraps it in a
* $(D_PSYMBOL RefCounted).
*
* Params:
* T = Array type.
* E = Array element type.
* size = Array size.
* allocator = Allocator.
*
* Returns: Newly created $(D_PSYMBOL RefCounted!T).
*
* Precondition: $(D_INLINECODE allocator !is null
* && size <= size_t.max / E.sizeof)
*/
RefCounted!T refCounted(T : E[], E)(shared Allocator allocator, size_t size)
@trusted
in (allocator !is null)
in (size <= size_t.max / E.sizeof)
{
return RefCounted!T(allocator.make!T(size), allocator);
}
///
@nogc @system unittest
{
auto rc = defaultAllocator.refCounted!int(5);
assert(rc.count == 1);
void func(RefCounted!int param) @nogc
{
if (param.count == 2)
{
func(param);
}
else
{
assert(param.count == 3);
}
}
func(rc);
assert(rc.count == 1);
}
/**
* $(D_PSYMBOL Unique) stores an object that gets destroyed at the end of its scope.
*
* Params:
* T = Value type.
*/
struct Unique(T)
{
private Payload!T payload;
invariant
{
assert(payload is null || allocator_ !is null);
}
/**
* Takes ownership over $(D_PARAM value), setting the counter to 1.
* $(D_PARAM value) may be a pointer, an object or a dynamic array.
*
* Params:
* value = Value whose ownership is taken over.
* allocator = Allocator used to destroy the $(D_PARAM value) and to
* allocate/deallocate internal storage.
*
* Precondition: $(D_INLINECODE allocator !is null)
*/
this(Payload!T value, shared Allocator allocator = defaultAllocator)
{
this(allocator);
this.payload = value;
}
/// ditto
this(shared Allocator allocator)
in (allocator !is null)
{
this.allocator_ = allocator;
}
/**
* $(D_PSYMBOL Unique) is noncopyable.
*/
@disable this(this);
/**
* Destroys the owned object.
*/
~this()
{
allocator.dispose(this.payload);
}
/**
* Initialized this $(D_PARAM Unique) and takes ownership over
* $(D_PARAM rhs).
*
* To reset $(D_PSYMBOL Unique) assign $(D_KEYWORD null).
*
* If the allocator wasn't set before, $(D_PSYMBOL defaultAllocator) will
* be used. If you need a different allocator, create a new
* $(D_PSYMBOL Unique) and assign it.
*
* Params:
* rhs = New object.
*
* Returns: $(D_KEYWORD this).
*/
ref typeof(this) opAssign(Payload!T rhs)
{
allocator.dispose(this.payload);
this.payload = rhs;
return this;
}
/// ditto
ref typeof(this) opAssign(typeof(null))
{
allocator.dispose(this.payload);
return this;
}
/// ditto
ref typeof(this) opAssign(typeof(this) rhs)
{
swap(this.allocator_, rhs.allocator_);
swap(this.payload, rhs.payload);
return this;
}
///
@nogc nothrow pure @system unittest
{
auto rc = defaultAllocator.unique!int(5);
rc = defaultAllocator.make!int(7);
assert(*rc == 7);
}
/**
* Returns: Reference to the owned object.
*/
inout(Payload!T) get() inout
{
return this.payload;
}
version (D_Ddoc)
{
/**
* Dereferences the pointer. It is defined only for pointers, not for
* reference types like classes, that can be accessed directly.
*
* Params:
* op = Operation.
*
* Returns: Reference to the pointed value.
*/
ref inout(T) opUnary(string op)() inout
if (op == "*");
}
else static if (isPointer!(Payload!T))
{
ref inout(T) opUnary(string op)() inout
if (op == "*")
{
return *this.payload;
}
}
/**
* Returns: Whether this $(D_PSYMBOL Unique) holds some value.
*/
@property bool isInitialized() const
{
return this.payload !is null;
}
///
@nogc nothrow pure @system unittest
{
Unique!int u;
assert(!u.isInitialized);
}
/**
* Sets the internal pointer to $(D_KEYWORD). The allocator isn't changed.
*
* Returns: Reference to the owned object.
*/
Payload!T release()
{
auto payload = this.payload;
this.payload = null;
return payload;
}
///
@nogc nothrow pure @system unittest
{
auto u = defaultAllocator.unique!int(5);
assert(u.isInitialized);
auto i = u.release();
assert(*i == 5);
assert(!u.isInitialized);
}
mixin DefaultAllocator;
alias get this;
}
///
@nogc nothrow pure @system unittest
{
auto p = defaultAllocator.make!int(5);
auto s = Unique!int(p, defaultAllocator);
assert(*s == 5);
}
///
@nogc nothrow @system unittest
{
static bool destroyed;
static struct F
{
~this() @nogc nothrow @safe
{
destroyed = true;
}
}
{
auto s = Unique!F(defaultAllocator.make!F(), defaultAllocator);
}
assert(destroyed);
}
/**
* Constructs a new object of type $(D_PARAM T) and wraps it in a
* $(D_PSYMBOL Unique) using $(D_PARAM args) as the parameter list for
* the constructor of $(D_PARAM T).
*
* Params:
* T = Type of the constructed object.
* A = Types of the arguments to the constructor of $(D_PARAM T).
* allocator = Allocator.
* args = Constructor arguments of $(D_PARAM T).
*
* Returns: Newly created $(D_PSYMBOL Unique!T).
*
* Precondition: $(D_INLINECODE allocator !is null)
*/
Unique!T unique(T, A...)(shared Allocator allocator, auto ref A args)
if (!is(T == interface) && !isAbstractClass!T
&& !isAssociativeArray!T && !isArray!T)
in (allocator !is null)
{
auto payload = allocator.make!(T, A)(args);
return Unique!T(payload, allocator);
}
/**
* Constructs a new array with $(D_PARAM size) elements and wraps it in a
* $(D_PSYMBOL Unique).
*
* Params:
* T = Array type.
* E = Array element type.
* size = Array size.
* allocator = Allocator.
*
* Returns: Newly created $(D_PSYMBOL Unique!T).
*
* Precondition: $(D_INLINECODE allocator !is null
* && size <= size_t.max / E.sizeof)
*/
Unique!T unique(T : E[], E)(shared Allocator allocator, size_t size)
@trusted
in (allocator !is null)
in (size <= size_t.max / E.sizeof)
{
auto payload = allocator.resize!E(null, size);
return Unique!T(payload, allocator);
}