math: Add floating point support to abs
This commit is contained in:
165
source/tanya/math/nbtheory.d
Normal file
165
source/tanya/math/nbtheory.d
Normal file
@ -0,0 +1,165 @@
|
||||
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
/**
|
||||
* Number theory.
|
||||
*
|
||||
* Copyright: Eugene Wissner 2017.
|
||||
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
|
||||
* Mozilla Public License, v. 2.0).
|
||||
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
|
||||
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/math/nbtheory.d,
|
||||
* tanya/math/nbtheory.d)
|
||||
*/
|
||||
module tanya.math.nbtheory;
|
||||
|
||||
import tanya.math.mp;
|
||||
import tanya.meta.trait;
|
||||
|
||||
/**
|
||||
* Floating-point number precisions according to IEEE-754.
|
||||
*/
|
||||
enum IEEEPrecision : ubyte
|
||||
{
|
||||
/// Single precision: 64-bit.
|
||||
single = 4,
|
||||
|
||||
/// Single precision: 64-bit.
|
||||
double_ = 8,
|
||||
|
||||
/// Extended precision: 80-bit.
|
||||
extended = 10,
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests the precision of floating-point type $(D_PARAM F).
|
||||
*
|
||||
* For $(D_KEYWORD float), $(D_PSYMBOL ieeePrecision) always evaluates to
|
||||
* $(D_INLINECODE IEEEPrecision.single); for $(D_KEYWORD double) - to
|
||||
* $(D_INLINECODE IEEEPrecision.double). It returns different values only
|
||||
* for $(D_KEYWORD real), since $(D_KEYWORD real) is a platform-dependent type.
|
||||
*
|
||||
* If $(D_PARAM F) is a $(D_KEYWORD real) and the target platform isn't
|
||||
* currently supported, static assertion error will be raised (you can use
|
||||
* $(D_INLINECODE is(typeof(ieeePrecision!F))) for testing the platform support
|
||||
* without a compilation error).
|
||||
*
|
||||
* Params:
|
||||
* F = Type to be tested.
|
||||
*
|
||||
* Returns: Precision according to IEEE-754.
|
||||
*
|
||||
* See_Also: $(D_PSYMBOL IEEEPrecision).
|
||||
*/
|
||||
template ieeePrecision(F)
|
||||
if (isFloatingPoint!F)
|
||||
{
|
||||
static if (F.sizeof == float.sizeof)
|
||||
{
|
||||
enum IEEEPrecision ieeePrecision = IEEEPrecision.single;
|
||||
}
|
||||
else static if (F.sizeof == double.sizeof)
|
||||
{
|
||||
enum IEEEPrecision ieeePrecision = IEEEPrecision.double_;
|
||||
}
|
||||
else version (X86)
|
||||
{
|
||||
enum IEEEPrecision ieeePrecision = IEEEPrecision.extended;
|
||||
}
|
||||
else version (X86_64)
|
||||
{
|
||||
enum IEEEPrecision ieeePrecision = IEEEPrecision.extended;
|
||||
}
|
||||
else
|
||||
{
|
||||
static assert(false, "Unsupported IEEE 754 precision");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the absolute value of a number.
|
||||
*
|
||||
* Params:
|
||||
* I = Value type.
|
||||
* x = Value.
|
||||
*
|
||||
* Returns: Absolute value of $(D_PARAM x).
|
||||
*/
|
||||
I abs(I)(I x)
|
||||
if (isIntegral!I)
|
||||
{
|
||||
static if (isSigned!I)
|
||||
{
|
||||
return x >= 0 ? x : -x;
|
||||
}
|
||||
else
|
||||
{
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
pure nothrow @safe @nogc unittest
|
||||
{
|
||||
int i = -1;
|
||||
assert(i.abs == 1);
|
||||
static assert(is(typeof(i.abs) == int));
|
||||
|
||||
uint u = 1;
|
||||
assert(u.abs == 1);
|
||||
static assert(is(typeof(u.abs) == uint));
|
||||
}
|
||||
|
||||
version (D_Ddoc)
|
||||
{
|
||||
/// ditto
|
||||
I abs(I)(I x)
|
||||
if (isFloatingPoint!I);
|
||||
}
|
||||
else version (TanyaPhobos)
|
||||
{
|
||||
import core.math;
|
||||
|
||||
I abs(I)(I x)
|
||||
if (isFloatingPoint!I)
|
||||
{
|
||||
return fabs(cast(real) x);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
extern I abs(I)(I number) pure nothrow @safe @nogc
|
||||
if (isFloatingPoint!I);
|
||||
}
|
||||
|
||||
///
|
||||
pure nothrow @safe @nogc unittest
|
||||
{
|
||||
float f = -1.64;
|
||||
assert(f.abs == 1.64F);
|
||||
static assert(is(typeof(f.abs) == float));
|
||||
|
||||
double d = -1.64;
|
||||
assert(d.abs == 1.64);
|
||||
static assert(is(typeof(d.abs) == double));
|
||||
|
||||
real r = -1.64;
|
||||
assert(r.abs == 1.64L);
|
||||
static assert(is(typeof(r.abs) == real));
|
||||
}
|
||||
|
||||
/// ditto
|
||||
I abs(I : Integer)(const auto ref I x)
|
||||
{
|
||||
auto result = Integer(x, x.allocator);
|
||||
result.sign = Sign.positive;
|
||||
return result;
|
||||
}
|
||||
|
||||
/// ditto
|
||||
I abs(I : Integer)(I x)
|
||||
{
|
||||
x.sign = Sign.positive;
|
||||
return x;
|
||||
}
|
@ -15,6 +15,7 @@
|
||||
module tanya.math;
|
||||
|
||||
public import tanya.math.mp;
|
||||
public import tanya.math.nbtheory;
|
||||
public import tanya.math.random;
|
||||
import tanya.meta.trait;
|
||||
|
||||
@ -197,33 +198,3 @@ private pure nothrow @safe @nogc unittest
|
||||
assert(899809363.isPseudoprime);
|
||||
assert(982451653.isPseudoprime);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the absolute value of a number.
|
||||
*
|
||||
* Params:
|
||||
* I = Value type.
|
||||
* x = Value.
|
||||
*
|
||||
* Returns: Absolute value of $(D_PARAM x).
|
||||
*/
|
||||
I abs(I : Integer)(const auto ref I x)
|
||||
{
|
||||
auto result = Integer(x, x.allocator);
|
||||
result.sign = Sign.positive;
|
||||
return result;
|
||||
}
|
||||
|
||||
/// Ditto.
|
||||
I abs(I : Integer)(I x)
|
||||
{
|
||||
x.sign = Sign.positive;
|
||||
return x;
|
||||
}
|
||||
|
||||
/// Ditto.
|
||||
I abs(I)(const I x)
|
||||
if (isIntegral!I)
|
||||
{
|
||||
return x >= 0 ? x : -x;
|
||||
}
|
||||
|
Reference in New Issue
Block a user