math: Add floating point support to abs

This commit is contained in:
Eugen Wissner 2017-09-13 06:43:49 +02:00
parent 3705cf387e
commit 3e9ca359da
5 changed files with 206 additions and 32 deletions

View File

@ -4,6 +4,7 @@ rule gas
rule archive
command = ar rcs $out $in
build abs.o: gas x64/linux/math/abs.S
build syscall.o: gas x64/linux/syscall.S
build tanya.a: archive syscall.o
build tanya.a: archive syscall.o abs.o

35
arch/x64/linux/math/abs.S Normal file
View File

@ -0,0 +1,35 @@
.text
// fabsf.
.globl _D5tanya4math8nbtheory10__T3absTfZ3absFNaNbNiNffZf
.type _D5tanya4math8nbtheory10__T3absTfZ3absFNaNbNiNffZf, @function
_D5tanya4math8nbtheory10__T3absTfZ3absFNaNbNiNffZf:
mov $0x7fffffff, %eax
movq %rax, %xmm1
andpd %xmm1, %xmm0
ret
// fabs.
.globl _D5tanya4math8nbtheory10__T3absTdZ3absFNaNbNiNfdZd
.type _D5tanya4math8nbtheory10__T3absTdZ3absFNaNbNiNfdZd, @function
_D5tanya4math8nbtheory10__T3absTdZ3absFNaNbNiNfdZd:
mov $0x7fffffffffffffff, %rax
movq %rax, %xmm1
andpd %xmm1, %xmm0
ret
// fabsl.
.globl _D5tanya4math8nbtheory10__T3absTeZ3absFNaNbNiNfeZe
.type _D5tanya4math8nbtheory10__T3absTeZ3absFNaNbNiNfeZe, @function
// Load the parameter from the stack onto FP stack, execute 'fabs' instruction
// The result is returned in ST0.
_D5tanya4math8nbtheory10__T3absTeZ3absFNaNbNiNfeZe:
fldt 0x8(%rsp)
fabs
ret

View File

@ -18,7 +18,9 @@
{
"name": "native",
"targetType": "library",
"platforms": ["linux-x86_64"]
"platforms": ["linux-x86_64"],
"preBuildCommands": ["ninja -C arch"],
"lflags": ["arch/tanya.a"]
}
]
}

View File

@ -0,0 +1,165 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Number theory.
*
* Copyright: Eugene Wissner 2017.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/math/nbtheory.d,
* tanya/math/nbtheory.d)
*/
module tanya.math.nbtheory;
import tanya.math.mp;
import tanya.meta.trait;
/**
* Floating-point number precisions according to IEEE-754.
*/
enum IEEEPrecision : ubyte
{
/// Single precision: 64-bit.
single = 4,
/// Single precision: 64-bit.
double_ = 8,
/// Extended precision: 80-bit.
extended = 10,
}
/**
* Tests the precision of floating-point type $(D_PARAM F).
*
* For $(D_KEYWORD float), $(D_PSYMBOL ieeePrecision) always evaluates to
* $(D_INLINECODE IEEEPrecision.single); for $(D_KEYWORD double) - to
* $(D_INLINECODE IEEEPrecision.double). It returns different values only
* for $(D_KEYWORD real), since $(D_KEYWORD real) is a platform-dependent type.
*
* If $(D_PARAM F) is a $(D_KEYWORD real) and the target platform isn't
* currently supported, static assertion error will be raised (you can use
* $(D_INLINECODE is(typeof(ieeePrecision!F))) for testing the platform support
* without a compilation error).
*
* Params:
* F = Type to be tested.
*
* Returns: Precision according to IEEE-754.
*
* See_Also: $(D_PSYMBOL IEEEPrecision).
*/
template ieeePrecision(F)
if (isFloatingPoint!F)
{
static if (F.sizeof == float.sizeof)
{
enum IEEEPrecision ieeePrecision = IEEEPrecision.single;
}
else static if (F.sizeof == double.sizeof)
{
enum IEEEPrecision ieeePrecision = IEEEPrecision.double_;
}
else version (X86)
{
enum IEEEPrecision ieeePrecision = IEEEPrecision.extended;
}
else version (X86_64)
{
enum IEEEPrecision ieeePrecision = IEEEPrecision.extended;
}
else
{
static assert(false, "Unsupported IEEE 754 precision");
}
}
/**
* Calculates the absolute value of a number.
*
* Params:
* I = Value type.
* x = Value.
*
* Returns: Absolute value of $(D_PARAM x).
*/
I abs(I)(I x)
if (isIntegral!I)
{
static if (isSigned!I)
{
return x >= 0 ? x : -x;
}
else
{
return x;
}
}
///
pure nothrow @safe @nogc unittest
{
int i = -1;
assert(i.abs == 1);
static assert(is(typeof(i.abs) == int));
uint u = 1;
assert(u.abs == 1);
static assert(is(typeof(u.abs) == uint));
}
version (D_Ddoc)
{
/// ditto
I abs(I)(I x)
if (isFloatingPoint!I);
}
else version (TanyaPhobos)
{
import core.math;
I abs(I)(I x)
if (isFloatingPoint!I)
{
return fabs(cast(real) x);
}
}
else
{
extern I abs(I)(I number) pure nothrow @safe @nogc
if (isFloatingPoint!I);
}
///
pure nothrow @safe @nogc unittest
{
float f = -1.64;
assert(f.abs == 1.64F);
static assert(is(typeof(f.abs) == float));
double d = -1.64;
assert(d.abs == 1.64);
static assert(is(typeof(d.abs) == double));
real r = -1.64;
assert(r.abs == 1.64L);
static assert(is(typeof(r.abs) == real));
}
/// ditto
I abs(I : Integer)(const auto ref I x)
{
auto result = Integer(x, x.allocator);
result.sign = Sign.positive;
return result;
}
/// ditto
I abs(I : Integer)(I x)
{
x.sign = Sign.positive;
return x;
}

View File

@ -15,6 +15,7 @@
module tanya.math;
public import tanya.math.mp;
public import tanya.math.nbtheory;
public import tanya.math.random;
import tanya.meta.trait;
@ -197,33 +198,3 @@ private pure nothrow @safe @nogc unittest
assert(899809363.isPseudoprime);
assert(982451653.isPseudoprime);
}
/**
* Calculates the absolute value of a number.
*
* Params:
* I = Value type.
* x = Value.
*
* Returns: Absolute value of $(D_PARAM x).
*/
I abs(I : Integer)(const auto ref I x)
{
auto result = Integer(x, x.allocator);
result.sign = Sign.positive;
return result;
}
/// Ditto.
I abs(I : Integer)(I x)
{
x.sign = Sign.positive;
return x;
}
/// Ditto.
I abs(I)(const I x)
if (isIntegral!I)
{
return x >= 0 ? x : -x;
}