Compare commits

...

18 Commits

Author SHA1 Message Date
Eugen Wissner aef6030a8e Release 0.8.0.0 2020-06-20 05:48:25 +02:00
Eugen Wissner 91bd2d0d81 Fix list input coercion 2020-06-19 10:53:41 +02:00
Eugen Wissner 882276a845 Coerce result
Fixes #45.
2020-06-13 07:20:19 +02:00
Eugen Wissner e8c54810f8 Merge selection sets 2020-06-12 07:58:08 +02:00
Eugen Wissner c37b9c88b1 Skip unknown fields 2020-06-10 11:42:00 +02:00
Eugen Wissner fdb1268213 Add custom Eq instances to the types 2020-06-09 10:02:34 +02:00
Eugen Wissner 377c87045e Add description to the enum type values 2020-06-07 06:16:45 +02:00
Eugen Wissner 4c9264c12c Coerce argument values properly
Fixes #44.
2020-06-06 21:22:11 +02:00
Eugen Wissner 93a0403288 Resolve abstract types
Objects that can be a part of an union or interface should return
__typename as string.
2020-06-03 07:20:38 +02:00
Eugen Wissner d12577ae71 Define resolvers on type fields
Returning resolvers from other resolvers isn't supported anymore. Since
we have a type system now, we define the resolvers in the object type
fields and pass an object with the previous result to them.
2020-05-29 13:53:51 +02:00
Eugen Wissner c06d0b8e95 Add Union and Interface type definitions 2020-05-26 11:13:55 +02:00
Eugen Wissner 61dbe6c728 Split input/output types and values into 2 modules 2020-05-25 07:41:21 +02:00
Eugen Wissner eb90a4091c Check point 2020-05-24 13:51:00 +02:00
Eugen Wissner 7cd4821718 Don't fail on invalid fragments and variables 2020-05-23 21:49:57 +02:00
Eugen Wissner 26cc53ce06 Reject variables as default values 2020-05-22 10:11:48 +02:00
Eugen Wissner c3ecfece03 Coerce variable values 2020-05-21 10:20:59 +02:00
Eugen Wissner a5c44f30fa Add basic output object type support 2020-05-14 22:16:56 +02:00
Eugen Wissner 4c19c88e98 Accept resolvers given by the user as is 2020-05-13 16:21:48 +02:00
32 changed files with 2180 additions and 671 deletions

View File

@ -6,7 +6,59 @@ The format is based on
and this project adheres to
[Haskell Package Versioning Policy](https://pvp.haskell.org/).
## [Unreleased]
## [0.8.0.0] - 2020-06-20
### Fixed
- The parser rejects variables when parsing defaultValue (DefaultValue). The
specification defines default values as `Value` with `const` parameter and
constants cannot be variables. `AST.Document.ConstValue` was added,
`AST.Document.ObjectField` was modified.
- AST transformation should never fail.
* Arguments and fields with a missing variable as value should be left out.
* Invalid (recusrive or non-existing) fragments should be skipped.
- Argument value coercion.
- Variable value coercion.
- Result coercion.
- The executor should skip the fields missing in the object type and not fail.
- Merging subselections.
### Changed
- `Schema.Resolver` was moved to `Type.Out`, it is a field and resolver function
pair.
- `AST.Core.Value` was moved into `Type.Definition`. These values are used only
in the execution and type system, it is not a part of the parsing tree.
- `Type` module is superseded by `Type.Out`. This module contains now only
exports from other module that complete `Type.In` and `Type.Out` exports.
- `Error.CollectErrsT` contains the new `Resolution` data structure.
`Resolution` represents the state used by the executor. It contains all types
defined in the schema and collects the thrown errors.
### Added
- `Type.Definition` contains base type system definition, e.g. Enums and
Scalars.
- `Type.Schema` describes a schema. Both public functions that execute queries
accept a `Schema` now instead of a `HashMap`. The execution fails if the root
operation doesn't match the root Query type in the schema.
- `Type.In` and `Type.Out` contain definitions for input and output types.
- `Execute.Coerce` defines a typeclass responsible for input, variable value
coercion. It decouples us a bit from JSON since any format can be used to pass
query variables. Execution functions accept (`HashMap Name a`) instead of
`Subs`, where a is an instance of `VariableValue`.
### Removed
- `Schema.scalar`, `Schema.wrappedScalar`. They accepted everything can be
converted to JSON and JSON is not suitable as an internal representation for
GraphQL. E.g. GraphQL distinguishes between Floats and Integers.
- `Schema.wrappedObject`, `Schema.object`, `Schema.resolversToMap`. There is no
need in special functions to construct field resolvers anymore, resolvers are
normal functions attached to the fields in the schema representation.
- `Schema.resolve` is superseded by `Execute.Execution`.
- `Error.runAppendErrs` isn't used anywhere.
- `AST.Core`: `Document`, `Directive`, `Field`, `Fragment`, `Selection`, `Alias`
`TypeCondition` were modified, moved into `Execute.Transform.Document` and
made private. These types describe intermediate representation used by the
executor internally. Moving was required to avoid cyclic dependencies between
the executor and type system.
- `AST.Core` doesn't reexports anything.
## [0.7.0.0] - 2020-05-11
### Fixed
@ -20,7 +72,7 @@ and this project adheres to
- `Trans.argument`.
- Schema extension parser.
- Contributing guidelines.
- `Schema.resolversToMap` (intended for to be used internally).
- `Schema.resolversToMap` (intended to be used internally).
### Changed
- Rename `AST.Definition` into `AST.Document.ExecutableDefinition`.
@ -215,7 +267,7 @@ and this project adheres to
### Added
- Data types for the GraphQL language.
[Unreleased]: https://github.com/caraus-ecms/graphql/compare/v0.6.1.0...HEAD
[0.8.0.0]: https://github.com/caraus-ecms/graphql/compare/v0.7.0.0...v0.8.0.0
[0.7.0.0]: https://github.com/caraus-ecms/graphql/compare/v0.6.1.0...v0.7.0.0
[0.6.1.0]: https://github.com/caraus-ecms/graphql/compare/v0.6.0.0...v0.6.1.0
[0.6.0.0]: https://github.com/caraus-ecms/graphql/compare/v0.5.1.0...v0.6.0.0

View File

@ -17,14 +17,15 @@ Since this file is a literate haskell file, we start by importing some dependenc
> import Control.Monad.IO.Class (liftIO)
> import Data.Aeson (encode)
> import Data.ByteString.Lazy.Char8 (putStrLn)
> import Data.HashMap.Strict (HashMap)
> import qualified Data.HashMap.Strict as HashMap
> import Data.List.NonEmpty (NonEmpty(..))
> import Data.Text (Text)
> import qualified Data.Text as Text
> import Data.Time (getCurrentTime)
>
> import Language.GraphQL
> import qualified Language.GraphQL.Schema as Schema
> import Language.GraphQL.Trans
> import Language.GraphQL.Type
> import qualified Language.GraphQL.Type.Out as Out
>
> import Prelude hiding (putStrLn)
@ -35,11 +36,19 @@ example from [graphql.js](https://github.com/graphql/graphql-js).
First we build a GraphQL schema.
> schema1 :: HashMap Text (NonEmpty (Schema.Resolver IO))
> schema1 = HashMap.singleton "Query" $ hello :| []
> schema1 :: Schema IO
> schema1 = Schema queryType Nothing
>
> hello :: Schema.Resolver IO
> hello = Schema.scalar "hello" (return ("it's me" :: Text))
> queryType :: ObjectType IO
> queryType = ObjectType "Query" Nothing []
> $ HashMap.singleton "hello"
> $ Out.Resolver helloField hello
>
> helloField :: Field IO
> helloField = Field Nothing (Out.NamedScalarType string) mempty
>
> hello :: ActionT IO Value
> hello = pure $ String "it's me"
This defines a simple schema with one type and one field, that resolves to a fixed value.
@ -52,7 +61,7 @@ Next we define our query.
To run the query, we call the `graphql` with the schema and the query.
> main1 :: IO ()
> main1 = putStrLn =<< encode <$> graphql schema1 query1
> main1 = graphql schema1 query1 >>= putStrLn . encode
This runs the query by fetching the one field defined,
returning
@ -65,13 +74,21 @@ returning
For this example, we're going to be using time.
> schema2 :: HashMap Text (NonEmpty (Schema.Resolver IO))
> schema2 = HashMap.singleton "Query" $ time :| []
> schema2 :: Schema IO
> schema2 = Schema queryType2 Nothing
>
> time :: Schema.Resolver IO
> time = Schema.scalar "time" $ do
> queryType2 :: ObjectType IO
> queryType2 = ObjectType "Query" Nothing []
> $ HashMap.singleton "time"
> $ Out.Resolver timeField time
>
> timeField :: Field IO
> timeField = Field Nothing (Out.NamedScalarType string) mempty
>
> time :: ActionT IO Value
> time = do
> t <- liftIO getCurrentTime
> return $ show t
> pure $ String $ Text.pack $ show t
This defines a simple schema with one type and one field,
which resolves to the current time.
@ -82,7 +99,7 @@ Next we define our query.
> query2 = "{ time }"
>
> main2 :: IO ()
> main2 = putStrLn =<< encode <$> graphql schema2 query2
> main2 = graphql schema2 query2 >>= putStrLn . encode
This runs the query, returning the current time
@ -124,14 +141,20 @@ This will fail
Now that we have two resolvers, we can define a schema which uses them both.
> schema3 :: HashMap Text (NonEmpty (Schema.Resolver IO))
> schema3 = HashMap.singleton "Query" $ hello :| [time]
> schema3 :: Schema IO
> schema3 = Schema queryType3 Nothing
>
> queryType3 :: ObjectType IO
> queryType3 = ObjectType "Query" Nothing [] $ HashMap.fromList
> [ ("hello", Out.Resolver helloField hello)
> , ("time", Out.Resolver timeField time)
> ]
>
> query3 :: Text
> query3 = "query timeAndHello { time hello }"
>
> main3 :: IO ()
> main3 = putStrLn =<< encode <$> graphql schema3 query3
> main3 = graphql schema3 query3 >>= putStrLn . encode
This queries for both time and hello, returning

View File

@ -1,5 +1,5 @@
name: graphql
version: 0.7.0.0
version: 0.8.0.0
synopsis: Haskell GraphQL implementation
description:
This package provides a rudimentary parser for the
@ -31,15 +31,20 @@ dependencies:
- containers
- megaparsec
- parser-combinators
- scientific
- text
- transformers
- unordered-containers
- vector
library:
source-dirs: src
other-modules:
- Language.GraphQL.Execute.Execution
- Language.GraphQL.Execute.Transform
- Language.GraphQL.Type.Definition
- Language.GraphQL.Type.Directive
- Language.GraphQL.Type.Schema
tests:
tasty:

View File

@ -5,29 +5,30 @@ module Language.GraphQL
) where
import qualified Data.Aeson as Aeson
import Data.List.NonEmpty (NonEmpty)
import Data.HashMap.Strict (HashMap)
import Data.Text (Text)
import Language.GraphQL.AST.Document
import Language.GraphQL.AST.Parser
import Language.GraphQL.Error
import Language.GraphQL.Execute
import Language.GraphQL.AST.Parser
import qualified Language.GraphQL.Schema as Schema
import Language.GraphQL.Execute.Coerce
import Language.GraphQL.Type.Schema
import Text.Megaparsec (parse)
-- | If the text parses correctly as a @GraphQL@ query the query is
-- executed using the given 'Schema.Resolver's.
-- executed using the given 'Schema'.
graphql :: Monad m
=> HashMap Text (NonEmpty (Schema.Resolver m)) -- ^ Resolvers.
=> Schema m -- ^ Resolvers.
-> Text -- ^ Text representing a @GraphQL@ request document.
-> m Aeson.Value -- ^ Response.
graphql = flip graphqlSubs mempty
graphql = flip graphqlSubs (mempty :: Aeson.Object)
-- | If the text parses correctly as a @GraphQL@ query the substitution is
-- applied to the query and the query is then executed using to the given
-- 'Schema.Resolver's.
graphqlSubs :: Monad m
=> HashMap Text (NonEmpty (Schema.Resolver m)) -- ^ Resolvers.
-> Schema.Subs -- ^ Variable substitution function.
-- 'Schema'.
graphqlSubs :: (Monad m, VariableValue a)
=> Schema m -- ^ Resolvers.
-> HashMap Name a -- ^ Variable substitution function.
-> Text -- ^ Text representing a @GraphQL@ request document.
-> m Aeson.Value -- ^ Response.
graphqlSubs schema f

View File

@ -1,41 +1,11 @@
-- | This is the AST meant to be executed.
module Language.GraphQL.AST.Core
( Alias
, Arguments(..)
, Directive(..)
, Document
, Field(..)
, Fragment(..)
, Name
, Operation(..)
, Selection(..)
, TypeCondition
, Value(..)
( Arguments(..)
) where
import Data.Int (Int32)
import Data.HashMap.Strict (HashMap)
import Data.List.NonEmpty (NonEmpty)
import Data.Sequence (Seq)
import Data.String (IsString(..))
import Data.Text (Text)
import Language.GraphQL.AST (Alias, Name, TypeCondition)
-- | GraphQL document is a non-empty list of operations.
type Document = NonEmpty Operation
-- | GraphQL has 3 operation types: queries, mutations and subscribtions.
--
-- Currently only queries and mutations are supported.
data Operation
= Query (Maybe Text) (Seq Selection)
| Mutation (Maybe Text) (Seq Selection)
deriving (Eq, Show)
-- | Single GraphQL field.
data Field
= Field (Maybe Alias) Name Arguments (Seq Selection)
deriving (Eq, Show)
import Language.GraphQL.AST (Name)
import Language.GraphQL.Type.Definition
-- | Argument list.
newtype Arguments = Arguments (HashMap Name Value)
@ -47,32 +17,3 @@ instance Semigroup Arguments where
instance Monoid Arguments where
mempty = Arguments mempty
-- | Directive.
data Directive = Directive Name Arguments
deriving (Eq, Show)
-- | Represents fragments and inline fragments.
data Fragment
= Fragment TypeCondition (Seq Selection)
deriving (Eq, Show)
-- | Single selection element.
data Selection
= SelectionFragment Fragment
| SelectionField Field
deriving (Eq, Show)
-- | Represents accordingly typed GraphQL values.
data Value
= Int Int32
| Float Double -- ^ GraphQL Float is double precision
| String Text
| Boolean Bool
| Null
| Enum Name
| List [Value]
| Object (HashMap Name Value)
deriving (Eq, Show)
instance IsString Value where
fromString = String . fromString

View File

@ -8,6 +8,7 @@ module Language.GraphQL.AST.Document
( Alias
, Argument(..)
, ArgumentsDefinition(..)
, ConstValue(..)
, Definition(..)
, Description(..)
, Directive(..)
@ -197,7 +198,7 @@ type TypeCondition = Name
-- ** Input Values
-- | Input value.
-- | Input value (literal or variable).
data Value
= Variable Name
| Int Int32
@ -207,18 +208,46 @@ data Value
| Null
| Enum Name
| List [Value]
| Object [ObjectField]
| Object [ObjectField Value]
deriving (Eq, Show)
-- | Constant input value.
data ConstValue
= ConstInt Int32
| ConstFloat Double
| ConstString Text
| ConstBoolean Bool
| ConstNull
| ConstEnum Name
| ConstList [ConstValue]
| ConstObject [ObjectField ConstValue]
deriving (Eq, Show)
-- | Key-value pair.
--
-- A list of 'ObjectField's represents a GraphQL object type.
data ObjectField = ObjectField Name Value deriving (Eq, Show)
-- A list of 'ObjectField's represents a GraphQL object type.
data ObjectField a = ObjectField Name a
deriving (Eq, Show)
-- ** Variables
-- | Variable definition.
data VariableDefinition = VariableDefinition Name Type (Maybe Value)
--
-- Each operation can include a list of variables:
--
-- @
-- query (protagonist: String = "Zarathustra") {
-- getAuthor(protagonist: $protagonist)
-- }
-- @
--
-- This query defines an optional variable @protagonist@ of type @String@,
-- its default value is "Zarathustra". If no default value is defined and no
-- value is provided, a variable can still be @null@ if its type is nullable.
--
-- Variables are usually passed along with the query, but not in the query
-- itself. They make queries reusable.
data VariableDefinition = VariableDefinition Name Type (Maybe ConstValue)
deriving (Eq, Show)
-- ** Type References
@ -445,7 +474,7 @@ instance Monoid ArgumentsDefinition where
--
-- The input type "Point2D" contains two value definitions: "x" and "y".
data InputValueDefinition
= InputValueDefinition Description Name Type (Maybe Value) [Directive]
= InputValueDefinition Description Name Type (Maybe ConstValue) [Directive]
deriving (Eq, Show)
-- ** Unions

View File

@ -24,7 +24,6 @@ import Data.Text.Lazy.Builder (Builder)
import qualified Data.Text.Lazy.Builder as Builder
import Data.Text.Lazy.Builder.Int (decimal, hexadecimal)
import Data.Text.Lazy.Builder.RealFloat (realFloat)
import qualified Language.GraphQL.AST as Full
import Language.GraphQL.AST.Document
-- | Instructs the encoder whether the GraphQL document should be minified or
@ -53,32 +52,32 @@ document formatter defs
executableDefinition (ExecutableDefinition x) acc = definition formatter x : acc
executableDefinition _ acc = acc
-- | Converts a t'Full.ExecutableDefinition' into a string.
-- | Converts a t'ExecutableDefinition' into a string.
definition :: Formatter -> ExecutableDefinition -> Lazy.Text
definition formatter x
| Pretty _ <- formatter = Lazy.Text.snoc (encodeDefinition x) '\n'
| Minified <- formatter = encodeDefinition x
where
encodeDefinition (Full.DefinitionOperation operation)
encodeDefinition (DefinitionOperation operation)
= operationDefinition formatter operation
encodeDefinition (Full.DefinitionFragment fragment)
encodeDefinition (DefinitionFragment fragment)
= fragmentDefinition formatter fragment
-- | Converts a 'Full.OperationDefinition into a string.
operationDefinition :: Formatter -> Full.OperationDefinition -> Lazy.Text
operationDefinition formatter (Full.SelectionSet sels)
-- | Converts a 'OperationDefinition into a string.
operationDefinition :: Formatter -> OperationDefinition -> Lazy.Text
operationDefinition formatter (SelectionSet sels)
= selectionSet formatter sels
operationDefinition formatter (Full.OperationDefinition Full.Query name vars dirs sels)
operationDefinition formatter (OperationDefinition Query name vars dirs sels)
= "query " <> node formatter name vars dirs sels
operationDefinition formatter (Full.OperationDefinition Full.Mutation name vars dirs sels)
operationDefinition formatter (OperationDefinition Mutation name vars dirs sels)
= "mutation " <> node formatter name vars dirs sels
-- | Converts a Full.Query or Full.Mutation into a string.
-- | Converts a Query or Mutation into a string.
node :: Formatter ->
Maybe Full.Name ->
[Full.VariableDefinition] ->
[Full.Directive] ->
Full.SelectionSet ->
Maybe Name ->
[VariableDefinition] ->
[Directive] ->
SelectionSet ->
Lazy.Text
node formatter name vars dirs sels
= Lazy.Text.fromStrict (fold name)
@ -87,31 +86,31 @@ node formatter name vars dirs sels
<> eitherFormat formatter " " mempty
<> selectionSet formatter sels
variableDefinitions :: Formatter -> [Full.VariableDefinition] -> Lazy.Text
variableDefinitions :: Formatter -> [VariableDefinition] -> Lazy.Text
variableDefinitions formatter
= parensCommas formatter $ variableDefinition formatter
variableDefinition :: Formatter -> Full.VariableDefinition -> Lazy.Text
variableDefinition formatter (Full.VariableDefinition var ty dv)
variableDefinition :: Formatter -> VariableDefinition -> Lazy.Text
variableDefinition formatter (VariableDefinition var ty defaultValue')
= variable var
<> eitherFormat formatter ": " ":"
<> type' ty
<> maybe mempty (defaultValue formatter) dv
<> maybe mempty (defaultValue formatter) defaultValue'
defaultValue :: Formatter -> Full.Value -> Lazy.Text
defaultValue :: Formatter -> ConstValue -> Lazy.Text
defaultValue formatter val
= eitherFormat formatter " = " "="
<> value formatter val
<> value formatter (fromConstValue val)
variable :: Full.Name -> Lazy.Text
variable :: Name -> Lazy.Text
variable var = "$" <> Lazy.Text.fromStrict var
selectionSet :: Formatter -> Full.SelectionSet -> Lazy.Text
selectionSet :: Formatter -> SelectionSet -> Lazy.Text
selectionSet formatter
= bracesList formatter (selection formatter)
. NonEmpty.toList
selectionSetOpt :: Formatter -> Full.SelectionSetOpt -> Lazy.Text
selectionSetOpt :: Formatter -> SelectionSetOpt -> Lazy.Text
selectionSetOpt formatter = bracesList formatter $ selection formatter
indentSymbol :: Lazy.Text
@ -120,14 +119,14 @@ indentSymbol = " "
indent :: (Integral a) => a -> Lazy.Text
indent indentation = Lazy.Text.replicate (fromIntegral indentation) indentSymbol
selection :: Formatter -> Full.Selection -> Lazy.Text
selection :: Formatter -> Selection -> Lazy.Text
selection formatter = Lazy.Text.append indent' . encodeSelection
where
encodeSelection (Full.Field alias name args directives' selections) =
encodeSelection (Field alias name args directives' selections) =
field incrementIndent alias name args directives' selections
encodeSelection (Full.InlineFragment typeCondition directives' selections) =
encodeSelection (InlineFragment typeCondition directives' selections) =
inlineFragment incrementIndent typeCondition directives' selections
encodeSelection (Full.FragmentSpread name directives') =
encodeSelection (FragmentSpread name directives') =
fragmentSpread incrementIndent name directives'
incrementIndent
| Pretty indentation <- formatter = Pretty $ indentation + 1
@ -139,13 +138,13 @@ selection formatter = Lazy.Text.append indent' . encodeSelection
colon :: Formatter -> Lazy.Text
colon formatter = eitherFormat formatter ": " ":"
-- | Converts Full.Field into a string
-- | Converts Field into a string
field :: Formatter ->
Maybe Full.Name ->
Full.Name ->
[Full.Argument] ->
[Full.Directive] ->
[Full.Selection] ->
Maybe Name ->
Name ->
[Argument] ->
[Directive] ->
[Selection] ->
Lazy.Text
field formatter alias name args dirs set
= optempty prependAlias (fold alias)
@ -158,27 +157,27 @@ field formatter alias name args dirs set
selectionSetOpt' = (eitherFormat formatter " " "" <>)
. selectionSetOpt formatter
arguments :: Formatter -> [Full.Argument] -> Lazy.Text
arguments :: Formatter -> [Argument] -> Lazy.Text
arguments formatter = parensCommas formatter $ argument formatter
argument :: Formatter -> Full.Argument -> Lazy.Text
argument formatter (Full.Argument name value')
argument :: Formatter -> Argument -> Lazy.Text
argument formatter (Argument name value')
= Lazy.Text.fromStrict name
<> colon formatter
<> value formatter value'
-- * Fragments
fragmentSpread :: Formatter -> Full.Name -> [Full.Directive] -> Lazy.Text
fragmentSpread :: Formatter -> Name -> [Directive] -> Lazy.Text
fragmentSpread formatter name directives'
= "..." <> Lazy.Text.fromStrict name
<> optempty (directives formatter) directives'
inlineFragment ::
Formatter ->
Maybe Full.TypeCondition ->
[Full.Directive] ->
Full.SelectionSet ->
Maybe TypeCondition ->
[Directive] ->
SelectionSet ->
Lazy.Text
inlineFragment formatter tc dirs sels = "... on "
<> Lazy.Text.fromStrict (fold tc)
@ -186,8 +185,8 @@ inlineFragment formatter tc dirs sels = "... on "
<> eitherFormat formatter " " mempty
<> selectionSet formatter sels
fragmentDefinition :: Formatter -> Full.FragmentDefinition -> Lazy.Text
fragmentDefinition formatter (Full.FragmentDefinition name tc dirs sels)
fragmentDefinition :: Formatter -> FragmentDefinition -> Lazy.Text
fragmentDefinition formatter (FragmentDefinition name tc dirs sels)
= "fragment " <> Lazy.Text.fromStrict name
<> " on " <> Lazy.Text.fromStrict tc
<> optempty (directives formatter) dirs
@ -196,26 +195,39 @@ fragmentDefinition formatter (Full.FragmentDefinition name tc dirs sels)
-- * Miscellaneous
-- | Converts a 'Full.Directive' into a string.
directive :: Formatter -> Full.Directive -> Lazy.Text
directive formatter (Full.Directive name args)
-- | Converts a 'Directive' into a string.
directive :: Formatter -> Directive -> Lazy.Text
directive formatter (Directive name args)
= "@" <> Lazy.Text.fromStrict name <> optempty (arguments formatter) args
directives :: Formatter -> [Full.Directive] -> Lazy.Text
directives :: Formatter -> [Directive] -> Lazy.Text
directives Minified = spaces (directive Minified)
directives formatter = Lazy.Text.cons ' ' . spaces (directive formatter)
-- | Converts a 'Full.Value' into a string.
value :: Formatter -> Full.Value -> Lazy.Text
value _ (Full.Variable x) = variable x
value _ (Full.Int x) = Builder.toLazyText $ decimal x
value _ (Full.Float x) = Builder.toLazyText $ realFloat x
value _ (Full.Boolean x) = booleanValue x
value _ Full.Null = "null"
value formatter (Full.String string) = stringValue formatter string
value _ (Full.Enum x) = Lazy.Text.fromStrict x
value formatter (Full.List x) = listValue formatter x
value formatter (Full.Object x) = objectValue formatter x
-- | Converts a 'Value' into a string.
value :: Formatter -> Value -> Lazy.Text
value _ (Variable x) = variable x
value _ (Int x) = Builder.toLazyText $ decimal x
value _ (Float x) = Builder.toLazyText $ realFloat x
value _ (Boolean x) = booleanValue x
value _ Null = "null"
value formatter (String string) = stringValue formatter string
value _ (Enum x) = Lazy.Text.fromStrict x
value formatter (List x) = listValue formatter x
value formatter (Object x) = objectValue formatter x
fromConstValue :: ConstValue -> Value
fromConstValue (ConstInt x) = Int x
fromConstValue (ConstFloat x) = Float x
fromConstValue (ConstBoolean x) = Boolean x
fromConstValue ConstNull = Null
fromConstValue (ConstString string) = String string
fromConstValue (ConstEnum x) = Enum x
fromConstValue (ConstList x) = List $ fromConstValue <$> x
fromConstValue (ConstObject x) = Object $ fromConstObjectField <$> x
where
fromConstObjectField (ObjectField key value') =
ObjectField key $ fromConstValue value'
booleanValue :: Bool -> Lazy.Text
booleanValue True = "true"
@ -271,10 +283,10 @@ escape char'
where
unicode prefix = mappend (Builder.fromString prefix) . (hexadecimal . ord)
listValue :: Formatter -> [Full.Value] -> Lazy.Text
listValue :: Formatter -> [Value] -> Lazy.Text
listValue formatter = bracketsCommas formatter $ value formatter
objectValue :: Formatter -> [Full.ObjectField] -> Lazy.Text
objectValue :: Formatter -> [ObjectField Value] -> Lazy.Text
objectValue formatter = intercalate $ objectField formatter
where
intercalate f
@ -282,22 +294,22 @@ objectValue formatter = intercalate $ objectField formatter
. Lazy.Text.intercalate (eitherFormat formatter ", " ",")
. fmap f
objectField :: Formatter -> Full.ObjectField -> Lazy.Text
objectField formatter (Full.ObjectField name value') =
objectField :: Formatter -> ObjectField Value -> Lazy.Text
objectField formatter (ObjectField name value') =
Lazy.Text.fromStrict name <> colon formatter <> value formatter value'
-- | Converts a 'Full.Type' a type into a string.
type' :: Full.Type -> Lazy.Text
type' (Full.TypeNamed x) = Lazy.Text.fromStrict x
type' (Full.TypeList x) = listType x
type' (Full.TypeNonNull x) = nonNullType x
-- | Converts a 'Type' a type into a string.
type' :: Type -> Lazy.Text
type' (TypeNamed x) = Lazy.Text.fromStrict x
type' (TypeList x) = listType x
type' (TypeNonNull x) = nonNullType x
listType :: Full.Type -> Lazy.Text
listType :: Type -> Lazy.Text
listType x = brackets (type' x)
nonNullType :: Full.NonNullType -> Lazy.Text
nonNullType (Full.NonNullTypeNamed x) = Lazy.Text.fromStrict x <> "!"
nonNullType (Full.NonNullTypeList x) = listType x <> "!"
nonNullType :: NonNullType -> Lazy.Text
nonNullType (NonNullTypeNamed x) = Lazy.Text.fromStrict x <> "!"
nonNullType (NonNullTypeList x) = listType x <> "!"
-- * Internal

View File

@ -403,32 +403,38 @@ typeCondition = symbol "on" *> name
value :: Parser Value
value = Variable <$> variable
<|> Float <$> try float
<|> Int <$> integer
<|> Boolean <$> booleanValue
<|> Null <$ symbol "null"
<|> String <$> blockString
<|> String <$> string
<|> Enum <$> try enumValue
<|> List <$> listValue
<|> Object <$> objectValue
<|> Float <$> try float
<|> Int <$> integer
<|> Boolean <$> booleanValue
<|> Null <$ symbol "null"
<|> String <$> blockString
<|> String <$> string
<|> Enum <$> try enumValue
<|> List <$> brackets (some value)
<|> Object <$> braces (some $ objectField value)
<?> "value error!"
where
booleanValue :: Parser Bool
booleanValue = True <$ symbol "true"
<|> False <$ symbol "false"
listValue :: Parser [Value]
listValue = brackets $ some value
constValue :: Parser ConstValue
constValue = ConstFloat <$> try float
<|> ConstInt <$> integer
<|> ConstBoolean <$> booleanValue
<|> ConstNull <$ symbol "null"
<|> ConstString <$> blockString
<|> ConstString <$> string
<|> ConstEnum <$> try enumValue
<|> ConstList <$> brackets (some constValue)
<|> ConstObject <$> braces (some $ objectField constValue)
<?> "value error!"
objectValue :: Parser [ObjectField]
objectValue = braces $ some objectField
booleanValue :: Parser Bool
booleanValue = True <$ symbol "true"
<|> False <$ symbol "false"
enumValue :: Parser Name
enumValue = but (symbol "true") *> but (symbol "false") *> but (symbol "null") *> name
objectField :: Parser ObjectField
objectField = ObjectField <$> name <* colon <*> value
objectField :: Parser a -> Parser (ObjectField a)
objectField valueParser = ObjectField <$> name <* colon <*> valueParser
-- * Variables
@ -446,8 +452,8 @@ variableDefinition = VariableDefinition
variable :: Parser Name
variable = dollar *> name
defaultValue :: Parser (Maybe Value)
defaultValue = optional (equals *> value) <?> "DefaultValue"
defaultValue :: Parser (Maybe ConstValue)
defaultValue = optional (equals *> constValue) <?> "DefaultValue"
-- * Input Types

View File

@ -5,21 +5,20 @@
module Language.GraphQL.Error
( parseError
, CollectErrsT
, Resolution(..)
, addErr
, addErrMsg
, runCollectErrs
, runAppendErrs
, singleError
) where
import Control.Monad.Trans.State (StateT, modify, runStateT)
import qualified Data.Aeson as Aeson
import Data.HashMap.Strict (HashMap)
import Data.Text (Text)
import Data.Void (Void)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.State ( StateT
, modify
, runStateT
)
import Language.GraphQL.AST.Document (Name)
import Language.GraphQL.Type.Schema
import Text.Megaparsec
( ParseErrorBundle(..)
, PosState(..)
@ -30,6 +29,12 @@ import Text.Megaparsec
, unPos
)
-- | Executor context.
data Resolution m = Resolution
{ errors :: [Aeson.Value]
, types :: HashMap Name (Type m)
}
-- | Wraps a parse error into a list of errors.
parseError :: Applicative f => ParseErrorBundle Text Void -> f Aeson.Value
parseError ParseErrorBundle{..} =
@ -46,11 +51,13 @@ parseError ParseErrorBundle{..} =
in (errorObject x sourcePosition : result, newState)
-- | A wrapper to pass error messages around.
type CollectErrsT m = StateT [Aeson.Value] m
type CollectErrsT m = StateT (Resolution m) m
-- | Adds an error to the list of errors.
addErr :: Monad m => Aeson.Value -> CollectErrsT m ()
addErr v = modify (v :)
addErr v = modify appender
where
appender resolution@Resolution{..} = resolution{ errors = v : errors }
makeErrorMessage :: Text -> Aeson.Value
makeErrorMessage s = Aeson.object [("message", Aeson.toJSON s)]
@ -66,23 +73,17 @@ singleError message = Aeson.object
addErrMsg :: Monad m => Text -> CollectErrsT m ()
addErrMsg = addErr . makeErrorMessage
-- | Appends the given list of errors to the current list of errors.
appendErrs :: Monad m => [Aeson.Value] -> CollectErrsT m ()
appendErrs errs = modify (errs ++)
-- | Runs the given query computation, but collects the errors into an error
-- list, which is then sent back with the data.
runCollectErrs :: Monad m => CollectErrsT m Aeson.Value -> m Aeson.Value
runCollectErrs res = do
(dat, errs) <- runStateT res []
if null errs
runCollectErrs :: Monad m
=> HashMap Name (Type m)
-> CollectErrsT m Aeson.Value
-> m Aeson.Value
runCollectErrs types' res = do
(dat, Resolution{..}) <- runStateT res $ Resolution{ errors = [], types = types' }
if null errors
then return $ Aeson.object [("data", dat)]
else return $ Aeson.object [("data", dat), ("errors", Aeson.toJSON $ reverse errs)]
-- | Runs the given computation, collecting the errors and appending them
-- to the previous list of errors.
runAppendErrs :: Monad m => CollectErrsT m a -> CollectErrsT m a
runAppendErrs f = do
(v, errs) <- lift $ runStateT f []
appendErrs errs
return v
else return $ Aeson.object
[ ("data", dat)
, ("errors", Aeson.toJSON $ reverse errors)
]

View File

@ -1,5 +1,3 @@
{-# LANGUAGE OverloadedStrings #-}
-- | This module provides functions to execute a @GraphQL@ request.
module Language.GraphQL.Execute
( execute
@ -7,33 +5,30 @@ module Language.GraphQL.Execute
) where
import qualified Data.Aeson as Aeson
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NonEmpty
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.Sequence (Seq(..))
import Data.Text (Text)
import qualified Data.Text as Text
import Language.GraphQL.AST.Document
import qualified Language.GraphQL.AST.Core as AST.Core
import Language.GraphQL.AST.Document (Document, Name)
import Language.GraphQL.Execute.Coerce
import Language.GraphQL.Execute.Execution
import qualified Language.GraphQL.Execute.Transform as Transform
import Language.GraphQL.Error
import qualified Language.GraphQL.Schema as Schema
import qualified Language.GraphQL.Type.Definition as Definition
import qualified Language.GraphQL.Type.Out as Out
import Language.GraphQL.Type.Schema
-- | The substitution is applied to the document, and the resolvers are applied
-- to the resulting fields.
--
-- Returns the result of the query against the schema wrapped in a /data/
-- field, or errors wrapped in an /errors/ field.
execute :: Monad m
=> HashMap Text (NonEmpty (Schema.Resolver m)) -- ^ Resolvers.
-> Schema.Subs -- ^ Variable substitution function.
execute :: (Monad m, VariableValue a)
=> Schema m -- ^ Resolvers.
-> HashMap.HashMap Name a -- ^ Variable substitution function.
-> Document -- @GraphQL@ document.
-> m Aeson.Value
execute schema subs doc =
maybe transformError (document schema Nothing)
$ Transform.document subs doc
where
transformError = return $ singleError "Schema transformation error."
execute schema = executeRequest schema Nothing
-- | The substitution is applied to the document, and the resolvers are applied
-- to the resulting fields. The operation name can be used if the document
@ -41,46 +36,36 @@ execute schema subs doc =
--
-- Returns the result of the query against the schema wrapped in a /data/
-- field, or errors wrapped in an /errors/ field.
executeWithName :: Monad m
=> HashMap Text (NonEmpty (Schema.Resolver m)) -- ^ Resolvers
executeWithName :: (Monad m, VariableValue a)
=> Schema m -- ^ Resolvers
-> Text -- ^ Operation name.
-> Schema.Subs -- ^ Variable substitution function.
-> HashMap.HashMap Name a -- ^ Variable substitution function.
-> Document -- ^ @GraphQL@ Document.
-> m Aeson.Value
executeWithName schema name subs doc =
maybe transformError (document schema $ Just name)
$ Transform.document subs doc
where
transformError = return $ singleError "Schema transformation error."
executeWithName schema operationName =
executeRequest schema (Just operationName)
document :: Monad m
=> HashMap Text (NonEmpty (Schema.Resolver m))
executeRequest :: (Monad m, VariableValue a)
=> Schema m
-> Maybe Text
-> AST.Core.Document
-> HashMap.HashMap Name a
-> Document
-> m Aeson.Value
document schema Nothing (op :| []) = operation schema op
document schema (Just name) operations = case NonEmpty.dropWhile matchingName operations of
[] -> return $ singleError
$ Text.unwords ["Operation", name, "couldn't be found in the document."]
(op:_) -> operation schema op
where
matchingName (AST.Core.Query (Just name') _) = name == name'
matchingName (AST.Core.Mutation (Just name') _) = name == name'
matchingName _ = False
document _ _ _ = return $ singleError "Missing operation name."
executeRequest schema operationName subs document =
case Transform.document schema operationName subs document of
Left queryError -> pure $ singleError $ Transform.queryError queryError
Right (Transform.Document types' rootObjectType operation)
| (Transform.Query _ fields) <- operation ->
executeOperation types' rootObjectType fields
| (Transform.Mutation _ fields) <- operation ->
executeOperation types' rootObjectType fields
operation :: Monad m
=> HashMap Text (NonEmpty (Schema.Resolver m))
-> AST.Core.Operation
-- This is actually executeMutation, but we don't distinguish between queries
-- and mutations yet.
executeOperation :: Monad m
=> HashMap Name (Type m)
-> Out.ObjectType m
-> Seq (Transform.Selection m)
-> m Aeson.Value
operation schema = schemaOperation
where
runResolver fields = runCollectErrs
. flip Schema.resolve fields
. Schema.resolversToMap
resolve fields queryType = maybe lookupError (runResolver fields)
$ HashMap.lookup queryType schema
lookupError = pure
$ singleError "Root operation type couldn't be found in the schema."
schemaOperation (AST.Core.Query _ fields) = resolve fields "Query"
schemaOperation (AST.Core.Mutation _ fields) = resolve fields "Mutation"
executeOperation types' objectType fields =
runCollectErrs types' $ executeSelectionSet Definition.Null objectType fields

View File

@ -0,0 +1,230 @@
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ViewPatterns #-}
-- | Types and functions used for input and result coercion.
module Language.GraphQL.Execute.Coerce
( Output(..)
, Serialize(..)
, VariableValue(..)
, coerceInputLiteral
, matchFieldValues
) where
import qualified Data.Aeson as Aeson
import Data.Int (Int32)
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.Map.Strict (Map)
import Data.String (IsString(..))
import Data.Text (Text)
import qualified Data.Text.Lazy as Text.Lazy
import qualified Data.Text.Lazy.Builder as Text.Builder
import qualified Data.Text.Lazy.Builder.Int as Text.Builder
import Data.Scientific (toBoundedInteger, toRealFloat)
import Language.GraphQL.AST (Name)
import qualified Language.GraphQL.Type as Type
import qualified Language.GraphQL.Type.In as In
import qualified Language.GraphQL.Type.Out as Out
-- | Since variables are passed separately from the query, in an independent
-- format, they should be first coerced to the internal representation used by
-- this implementation.
class VariableValue a where
-- | Only a basic, format-specific, coercion must be done here. Type
-- correctness or nullability shouldn't be validated here, they will be
-- validated later. The type information is provided only as a hint.
--
-- For example @GraphQL@ prohibits the coercion from a 't:Float' to an
-- 't:Int', but @JSON@ doesn't have integers, so whole numbers should be
-- coerced to 't:Int` when receiving variables as a JSON object. The same
-- holds for 't:Enum'. There are formats that support enumerations, @JSON@
-- doesn't, so the type information is given and 'coerceVariableValue' can
-- check that an 't:Enum' is expected and treat the given value
-- appropriately. Even checking whether this value is a proper member of the
-- corresponding 't:Enum' type isn't required here, since this can be
-- checked independently.
--
-- Another example is an @ID@. @GraphQL@ explicitly allows to coerce
-- integers and strings to @ID@s, so if an @ID@ is received as an integer,
-- it can be left as is and will be coerced later.
--
-- If a value cannot be coerced without losing information, 'Nothing' should
-- be returned, the coercion will fail then and the query won't be executed.
coerceVariableValue
:: In.Type -- ^ Expected type (variable type given in the query).
-> a -- ^ Variable value being coerced.
-> Maybe Type.Value -- ^ Coerced value on success, 'Nothing' otherwise.
instance VariableValue Aeson.Value where
coerceVariableValue _ Aeson.Null = Just Type.Null
coerceVariableValue (In.ScalarBaseType scalarType) value
| (Aeson.String stringValue) <- value = Just $ Type.String stringValue
| (Aeson.Bool booleanValue) <- value = Just $ Type.Boolean booleanValue
| (Aeson.Number numberValue) <- value
, (Type.ScalarType "Float" _) <- scalarType =
Just $ Type.Float $ toRealFloat numberValue
| (Aeson.Number numberValue) <- value = -- ID or Int
Type.Int <$> toBoundedInteger numberValue
coerceVariableValue (In.EnumBaseType _) (Aeson.String stringValue) =
Just $ Type.Enum stringValue
coerceVariableValue (In.InputObjectBaseType objectType) value
| (Aeson.Object objectValue) <- value = do
let (In.InputObjectType _ _ inputFields) = objectType
(newObjectValue, resultMap) <- foldWithKey objectValue inputFields
if HashMap.null newObjectValue
then Just $ Type.Object resultMap
else Nothing
where
foldWithKey objectValue = HashMap.foldrWithKey matchFieldValues'
$ Just (objectValue, HashMap.empty)
matchFieldValues' _ _ Nothing = Nothing
matchFieldValues' fieldName inputField (Just (objectValue, resultMap)) =
let (In.InputField _ fieldType _) = inputField
insert = flip (HashMap.insert fieldName) resultMap
newObjectValue = HashMap.delete fieldName objectValue
in case HashMap.lookup fieldName objectValue of
Just variableValue -> do
coerced <- coerceVariableValue fieldType variableValue
pure (newObjectValue, insert coerced)
Nothing -> Just (objectValue, resultMap)
coerceVariableValue (In.ListBaseType listType) value
| (Aeson.Array arrayValue) <- value =
Type.List <$> foldr foldVector (Just []) arrayValue
| otherwise = coerceVariableValue listType value
where
foldVector _ Nothing = Nothing
foldVector variableValue (Just list) = do
coerced <- coerceVariableValue listType variableValue
pure $ coerced : list
coerceVariableValue _ _ = Nothing
-- | Looks up a value by name in the given map, coerces it and inserts into the
-- result map. If the coercion fails, returns 'Nothing'. If the value isn't
-- given, but a default value is known, inserts the default value into the
-- result map. Otherwise it fails with 'Nothing' if the Input Type is a
-- Non-Nullable type, or returns the unchanged, original map.
matchFieldValues :: forall a
. (In.Type -> a -> Maybe Type.Value)
-> HashMap Name a
-> Name
-> In.Type
-> Maybe Type.Value
-> Maybe (HashMap Name Type.Value)
-> Maybe (HashMap Name Type.Value)
matchFieldValues coerce values' fieldName type' defaultValue resultMap =
case HashMap.lookup fieldName values' of
Just variableValue -> coerceRuntimeValue $ coerce type' variableValue
Nothing
| Just value <- defaultValue ->
HashMap.insert fieldName value <$> resultMap
| Nothing <- defaultValue
, In.isNonNullType type' -> Nothing
| otherwise -> resultMap
where
coerceRuntimeValue (Just Type.Null)
| In.isNonNullType type' = Nothing
coerceRuntimeValue coercedValue =
HashMap.insert fieldName <$> coercedValue <*> resultMap
-- | Coerces operation arguments according to the input coercion rules for the
-- corresponding types.
coerceInputLiteral :: In.Type -> Type.Value -> Maybe Type.Value
coerceInputLiteral (In.isNonNullType -> False) Type.Null = Just Type.Null
coerceInputLiteral (In.ScalarBaseType type') value
| (Type.String stringValue) <- value
, (Type.ScalarType "String" _) <- type' = Just $ Type.String stringValue
| (Type.Boolean booleanValue) <- value
, (Type.ScalarType "Boolean" _) <- type' = Just $ Type.Boolean booleanValue
| (Type.Int intValue) <- value
, (Type.ScalarType "Int" _) <- type' = Just $ Type.Int intValue
| (Type.Float floatValue) <- value
, (Type.ScalarType "Float" _) <- type' = Just $ Type.Float floatValue
| (Type.Int intValue) <- value
, (Type.ScalarType "Float" _) <- type' =
Just $ Type.Float $ fromIntegral intValue
| (Type.String stringValue) <- value
, (Type.ScalarType "ID" _) <- type' = Just $ Type.String stringValue
| (Type.Int intValue) <- value
, (Type.ScalarType "ID" _) <- type' = Just $ decimal intValue
where
decimal = Type.String
. Text.Lazy.toStrict
. Text.Builder.toLazyText
. Text.Builder.decimal
coerceInputLiteral (In.EnumBaseType type') (Type.Enum enumValue)
| member enumValue type' = Just $ Type.Enum enumValue
where
member value (Type.EnumType _ _ members) = HashMap.member value members
coerceInputLiteral (In.InputObjectBaseType type') (Type.Object values) =
let (In.InputObjectType _ _ inputFields) = type'
in Type.Object
<$> HashMap.foldrWithKey (matchFieldValues' values) (Just HashMap.empty) inputFields
where
matchFieldValues' values' fieldName (In.InputField _ inputFieldType defaultValue) =
matchFieldValues coerceInputLiteral values' fieldName inputFieldType defaultValue
coerceInputLiteral (In.ListBaseType listType) (Type.List list) =
Type.List <$> traverse (coerceInputLiteral listType) list
coerceInputLiteral (In.ListBaseType listType) singleton =
wrapSingleton listType singleton
where
wrapSingleton (In.ListBaseType listType') singleton' =
Type.List <$> sequence [wrapSingleton listType' singleton']
wrapSingleton listType' singleton' =
Type.List <$> sequence [coerceInputLiteral listType' singleton']
coerceInputLiteral _ _ = Nothing
-- | 'Serialize' describes how a @GraphQL@ value should be serialized.
class Serialize a where
-- | Serializes a @GraphQL@ value according to the given serialization
-- format.
--
-- Type infomration is given as a hint, e.g. if you need to know what type
-- is being serialized to serialize it properly. Don't do any validation for
-- @GraphQL@ built-in types here.
--
-- If the value cannot be serialized without losing information, return
-- 'Nothing' — it will cause a field error.
serialize :: forall m
. Out.Type m -- ^ Expected output type.
-> Output a -- ^ The value to be serialized.
-> Maybe a -- ^ Serialized value on success or 'Nothing'.
-- | __null__ representation in the given serialization format.
null :: a
-- | Intermediate type used to serialize a @GraphQL@ value.
--
-- The serialization is done during the execution, and 'Output' contains
-- already serialized data (in 'List' and 'Object') as well as the new layer
-- that has to be serialized in the current step. So 'Output' is parameterized
-- by the serialization format.
data Output a
= Int Int32
| Float Double
| String Text
| Boolean Bool
| Enum Name
| List [a]
| Object (Map Name a)
deriving (Eq, Show)
instance forall a. IsString (Output a) where
fromString = String . fromString
instance Serialize Aeson.Value where
serialize (Out.ScalarBaseType scalarType) value
| Type.ScalarType "Int" _ <- scalarType
, Int int <- value = Just $ Aeson.toJSON int
| Type.ScalarType "Float" _ <- scalarType
, Float float <- value = Just $ Aeson.toJSON float
| Type.ScalarType "String" _ <- scalarType
, String string <- value = Just $ Aeson.String string
| Type.ScalarType "ID" _ <- scalarType
, String string <- value = Just $ Aeson.String string
| Type.ScalarType "Boolean" _ <- scalarType
, Boolean boolean <- value = Just $ Aeson.Bool boolean
serialize _ (Enum enum) = Just $ Aeson.String enum
serialize _ (List list) = Just $ Aeson.toJSON list
serialize _ (Object object) = Just $ Aeson.toJSON object
serialize _ _ = Nothing
null = Aeson.Null

View File

@ -0,0 +1,229 @@
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ViewPatterns #-}
module Language.GraphQL.Execute.Execution
( executeSelectionSet
) where
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Except (runExceptT)
import Control.Monad.Trans.Reader (runReaderT)
import Control.Monad.Trans.State (gets)
import Data.List.NonEmpty (NonEmpty(..))
import Data.Map.Strict (Map)
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import qualified Data.Map.Strict as Map
import Data.Maybe (fromMaybe)
import Data.Sequence (Seq(..))
import Data.Text (Text)
import Language.GraphQL.AST (Name)
import Language.GraphQL.AST.Core
import Language.GraphQL.Error
import Language.GraphQL.Execute.Coerce
import qualified Language.GraphQL.Execute.Transform as Transform
import Language.GraphQL.Trans
import qualified Language.GraphQL.Type as Type
import qualified Language.GraphQL.Type.In as In
import qualified Language.GraphQL.Type.Out as Out
import Language.GraphQL.Type.Schema
import Prelude hiding (null)
resolveFieldValue :: Monad m
=> Type.Value
-> Type.Subs
-> ActionT m a
-> m (Either Text a)
resolveFieldValue result args =
flip runReaderT (Context {arguments = Arguments args, values = result})
. runExceptT
. runActionT
collectFields :: Monad m
=> Out.ObjectType m
-> Seq (Transform.Selection m)
-> Map Name (NonEmpty (Transform.Field m))
collectFields objectType = foldl forEach Map.empty
where
forEach groupedFields (Transform.SelectionField field) =
let responseKey = aliasOrName field
in Map.insertWith (<>) responseKey (field :| []) groupedFields
forEach groupedFields (Transform.SelectionFragment selectionFragment)
| Transform.Fragment fragmentType fragmentSelectionSet <- selectionFragment
, doesFragmentTypeApply fragmentType objectType =
let fragmentGroupedFieldSet = collectFields objectType fragmentSelectionSet
in Map.unionWith (<>) groupedFields fragmentGroupedFieldSet
| otherwise = groupedFields
aliasOrName :: forall m. Transform.Field m -> Name
aliasOrName (Transform.Field alias name _ _) = fromMaybe name alias
resolveAbstractType :: Monad m
=> AbstractType m
-> Type.Subs
-> CollectErrsT m (Maybe (Out.ObjectType m))
resolveAbstractType abstractType values'
| Just (Type.String typeName) <- HashMap.lookup "__typename" values' = do
types' <- gets types
case HashMap.lookup typeName types' of
Just (ObjectType objectType) ->
if instanceOf objectType abstractType
then pure $ Just objectType
else pure Nothing
_ -> pure Nothing
| otherwise = pure Nothing
doesFragmentTypeApply :: forall m
. CompositeType m
-> Out.ObjectType m
-> Bool
doesFragmentTypeApply (CompositeObjectType fragmentType) objectType =
fragmentType == objectType
doesFragmentTypeApply (CompositeInterfaceType fragmentType) objectType =
instanceOf objectType $ AbstractInterfaceType fragmentType
doesFragmentTypeApply (CompositeUnionType fragmentType) objectType =
instanceOf objectType $ AbstractUnionType fragmentType
instanceOf :: forall m. Out.ObjectType m -> AbstractType m -> Bool
instanceOf objectType (AbstractInterfaceType interfaceType) =
let Out.ObjectType _ _ interfaces _ = objectType
in foldr go False interfaces
where
go objectInterfaceType@(Out.InterfaceType _ _ interfaces _) acc =
acc || foldr go (interfaceType == objectInterfaceType) interfaces
instanceOf objectType (AbstractUnionType unionType) =
let Out.UnionType _ _ members = unionType
in foldr go False members
where
go unionMemberType acc = acc || objectType == unionMemberType
executeField :: (Monad m, Serialize a)
=> Out.Resolver m
-> Type.Value
-> NonEmpty (Transform.Field m)
-> CollectErrsT m a
executeField (Out.Resolver fieldDefinition resolver) prev fields = do
let Out.Field _ fieldType argumentDefinitions = fieldDefinition
let (Transform.Field _ _ arguments' _ :| []) = fields
case coerceArgumentValues argumentDefinitions arguments' of
Nothing -> errmsg "Argument coercing failed."
Just argumentValues -> do
answer <- lift $ resolveFieldValue prev argumentValues resolver
case answer of
Right result -> completeValue fieldType fields result
Left errorMessage -> errmsg errorMessage
completeValue :: (Monad m, Serialize a)
=> Out.Type m
-> NonEmpty (Transform.Field m)
-> Type.Value
-> CollectErrsT m a
completeValue (Out.isNonNullType -> False) _ Type.Null = pure null
completeValue outputType@(Out.ListBaseType listType) fields (Type.List list)
= traverse (completeValue listType fields) list
>>= coerceResult outputType . List
completeValue outputType@(Out.ScalarBaseType _) _ (Type.Int int) =
coerceResult outputType $ Int int
completeValue outputType@(Out.ScalarBaseType _) _ (Type.Boolean boolean) =
coerceResult outputType $ Boolean boolean
completeValue outputType@(Out.ScalarBaseType _) _ (Type.Float float) =
coerceResult outputType $ Float float
completeValue outputType@(Out.ScalarBaseType _) _ (Type.String string) =
coerceResult outputType $ String string
completeValue outputType@(Out.EnumBaseType enumType) _ (Type.Enum enum) =
let Type.EnumType _ _ enumMembers = enumType
in if HashMap.member enum enumMembers
then coerceResult outputType $ Enum enum
else errmsg "Value completion failed."
completeValue (Out.ObjectBaseType objectType) fields result =
executeSelectionSet result objectType $ mergeSelectionSets fields
completeValue (Out.InterfaceBaseType interfaceType) fields result
| Type.Object objectMap <- result = do
let abstractType = AbstractInterfaceType interfaceType
concreteType <- resolveAbstractType abstractType objectMap
case concreteType of
Just objectType -> executeSelectionSet result objectType
$ mergeSelectionSets fields
Nothing -> errmsg "Value completion failed."
completeValue (Out.UnionBaseType unionType) fields result
| Type.Object objectMap <- result = do
let abstractType = AbstractUnionType unionType
concreteType <- resolveAbstractType abstractType objectMap
case concreteType of
Just objectType -> executeSelectionSet result objectType
$ mergeSelectionSets fields
Nothing -> errmsg "Value completion failed."
completeValue _ _ _ = errmsg "Value completion failed."
mergeSelectionSets :: Monad m => NonEmpty (Transform.Field m) -> Seq (Transform.Selection m)
mergeSelectionSets = foldr forEach mempty
where
forEach (Transform.Field _ _ _ fieldSelectionSet) selectionSet =
selectionSet <> fieldSelectionSet
errmsg :: (Monad m, Serialize a) => Text -> CollectErrsT m a
errmsg errorMessage = addErrMsg errorMessage >> pure null
coerceResult :: (Monad m, Serialize a)
=> Out.Type m
-> Output a
-> CollectErrsT m a
coerceResult outputType result
| Just serialized <- serialize outputType result = pure serialized
| otherwise = errmsg "Result coercion failed."
-- | Takes an 'Out.ObjectType' and a list of 'Transform.Selection's and applies
-- each field to each 'Transform.Selection'. Resolves into a value containing
-- the resolved 'Transform.Selection', or a null value and error information.
executeSelectionSet :: (Monad m, Serialize a)
=> Type.Value
-> Out.ObjectType m
-> Seq (Transform.Selection m)
-> CollectErrsT m a
executeSelectionSet result objectType@(Out.ObjectType _ _ _ resolvers) selectionSet = do
let fields = collectFields objectType selectionSet
resolvedValues <- Map.traverseMaybeWithKey forEach fields
coerceResult (Out.NonNullObjectType objectType) $ Object resolvedValues
where
forEach _ fields@(field :| _) =
let Transform.Field _ name _ _ = field
in traverse (tryResolver fields) $ lookupResolver name
lookupResolver = flip HashMap.lookup resolvers
tryResolver fields resolver =
executeField resolver result fields >>= lift . pure
coerceArgumentValues
:: HashMap Name In.Argument
-> HashMap Name Transform.Input
-> Maybe Type.Subs
coerceArgumentValues argumentDefinitions argumentValues =
HashMap.foldrWithKey forEach (pure mempty) argumentDefinitions
where
forEach variableName (In.Argument _ variableType defaultValue) =
matchFieldValues coerceArgumentValue argumentValues variableName variableType defaultValue
coerceArgumentValue inputType (Transform.Int integer) =
coerceInputLiteral inputType (Type.Int integer)
coerceArgumentValue inputType (Transform.Boolean boolean) =
coerceInputLiteral inputType (Type.Boolean boolean)
coerceArgumentValue inputType (Transform.String string) =
coerceInputLiteral inputType (Type.String string)
coerceArgumentValue inputType (Transform.Float float) =
coerceInputLiteral inputType (Type.Float float)
coerceArgumentValue inputType (Transform.Enum enum) =
coerceInputLiteral inputType (Type.Enum enum)
coerceArgumentValue inputType Transform.Null
| In.isNonNullType inputType = Nothing
| otherwise = coerceInputLiteral inputType Type.Null
coerceArgumentValue (In.ListBaseType inputType) (Transform.List list) =
let coerceItem = coerceInputLiteral inputType
in Type.List <$> traverse coerceItem list
coerceArgumentValue (In.InputObjectBaseType inputType) (Transform.Object object)
| In.InputObjectType _ _ inputFields <- inputType =
let go = forEachField object
resultMap = HashMap.foldrWithKey go (pure mempty) inputFields
in Type.Object <$> resultMap
coerceArgumentValue _ (Transform.Variable variable) = pure variable
coerceArgumentValue _ _ = Nothing
forEachField object variableName (In.InputField _ variableType defaultValue) =
matchFieldValues coerceArgumentValue object variableName variableType defaultValue

View File

@ -1,125 +1,356 @@
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TupleSections #-}
-- | After the document is parsed, before getting executed the AST is
-- transformed into a similar, simpler AST. This module is responsible for
-- this transformation.
-- | After the document is parsed, before getting executed, the AST is
-- transformed into a similar, simpler AST. Performed transformations include:
--
-- * Replacing variables with their values.
-- * Inlining fragments. Some fragments can be completely eliminated and
-- replaced by the selection set they represent. Invalid (recursive and
-- non-existing) fragments are skipped. The most fragments are inlined, so the
-- executor doesn't have to perform additional lookups later.
-- * Evaluating directives (@\@include@ and @\@skip@).
--
-- This module is also responsible for smaller rewrites that touch only parts of
-- the original AST.
module Language.GraphQL.Execute.Transform
( document
( Document(..)
, Field(..)
, Fragment(..)
, Input(..)
, Operation(..)
, QueryError(..)
, Selection(..)
, document
, queryError
) where
import Control.Arrow (first)
import Control.Monad (foldM, unless)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Reader (ReaderT, asks, runReaderT)
import Control.Monad.Trans.State (StateT, evalStateT, gets, modify)
import Control.Monad.Trans.State (State, evalStateT, gets, modify)
import Data.Foldable (find)
import Data.Functor.Identity (Identity(..))
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.Int (Int32)
import Data.Maybe (fromMaybe)
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NonEmpty
import Data.Sequence (Seq, (<|), (><))
import Data.Text (Text)
import qualified Data.Text as Text
import qualified Language.GraphQL.AST as Full
import qualified Language.GraphQL.AST.Core as Core
import Language.GraphQL.AST.Document (Definition(..), Document)
import qualified Language.GraphQL.Schema as Schema
import Language.GraphQL.AST (Name)
import Language.GraphQL.AST.Core
import qualified Language.GraphQL.Execute.Coerce as Coerce
import Language.GraphQL.Type.Directive (Directive(..))
import qualified Language.GraphQL.Type.Directive as Directive
import qualified Language.GraphQL.Type as Type
import qualified Language.GraphQL.Type.In as In
import qualified Language.GraphQL.Type.Out as Out
import Language.GraphQL.Type.Schema
-- | Associates a fragment name with a list of 'Core.Field's.
data Replacement = Replacement
{ fragments :: HashMap Core.Name Core.Fragment
, fragmentDefinitions :: HashMap Full.Name Full.FragmentDefinition
-- | Associates a fragment name with a list of 'Field's.
data Replacement m = Replacement
{ fragments :: HashMap Full.Name (Fragment m)
, fragmentDefinitions :: FragmentDefinitions
, variableValues :: Type.Subs
, types :: HashMap Full.Name (Type m)
}
type TransformT a = StateT Replacement (ReaderT Schema.Subs Maybe) a
type FragmentDefinitions = HashMap Full.Name Full.FragmentDefinition
liftJust :: forall a. a -> TransformT a
liftJust = lift . lift . Just
-- | Represents fragments and inline fragments.
data Fragment m
= Fragment (CompositeType m) (Seq (Selection m))
-- | Single selection element.
data Selection m
= SelectionFragment (Fragment m)
| SelectionField (Field m)
-- | GraphQL has 3 operation types: queries, mutations and subscribtions.
--
-- Currently only queries and mutations are supported.
data Operation m
= Query (Maybe Text) (Seq (Selection m))
| Mutation (Maybe Text) (Seq (Selection m))
-- | Single GraphQL field.
data Field m = Field
(Maybe Full.Name) Full.Name (HashMap Full.Name Input) (Seq (Selection m))
-- | Contains the operation to be executed along with its root type.
data Document m = Document
(HashMap Full.Name (Type m)) (Out.ObjectType m) (Operation m)
data OperationDefinition = OperationDefinition
Full.OperationType
(Maybe Full.Name)
[Full.VariableDefinition]
[Full.Directive]
Full.SelectionSet
-- | Query error types.
data QueryError
= OperationNotFound Text
| OperationNameRequired
| CoercionError
| TransformationError
| EmptyDocument
| UnsupportedRootOperation
data Input
= Int Int32
| Float Double
| String Text
| Boolean Bool
| Null
| Enum Name
| List [Type.Value]
| Object (HashMap Name Input)
| Variable Type.Value
deriving (Eq, Show)
queryError :: QueryError -> Text
queryError (OperationNotFound operationName) = Text.unwords
["Operation", operationName, "couldn't be found in the document."]
queryError OperationNameRequired = "Missing operation name."
queryError CoercionError = "Coercion error."
queryError TransformationError = "Schema transformation error."
queryError EmptyDocument =
"The document doesn't contain any executable operations."
queryError UnsupportedRootOperation =
"Root operation type couldn't be found in the schema."
getOperation
:: Maybe Full.Name
-> NonEmpty OperationDefinition
-> Either QueryError OperationDefinition
getOperation Nothing (operation' :| []) = pure operation'
getOperation Nothing _ = Left OperationNameRequired
getOperation (Just operationName) operations
| Just operation' <- find matchingName operations = pure operation'
| otherwise = Left $ OperationNotFound operationName
where
matchingName (OperationDefinition _ name _ _ _) =
name == Just operationName
lookupInputType
:: Full.Type
-> HashMap.HashMap Full.Name (Type m)
-> Maybe In.Type
lookupInputType (Full.TypeNamed name) types =
case HashMap.lookup name types of
Just (ScalarType scalarType) ->
Just $ In.NamedScalarType scalarType
Just (EnumType enumType) ->
Just $ In.NamedEnumType enumType
Just (InputObjectType objectType) ->
Just $ In.NamedInputObjectType objectType
_ -> Nothing
lookupInputType (Full.TypeList list) types
= In.ListType
<$> lookupInputType list types
lookupInputType (Full.TypeNonNull (Full.NonNullTypeNamed nonNull)) types =
case HashMap.lookup nonNull types of
Just (ScalarType scalarType) ->
Just $ In.NonNullScalarType scalarType
Just (EnumType enumType) ->
Just $ In.NonNullEnumType enumType
Just (InputObjectType objectType) ->
Just $ In.NonNullInputObjectType objectType
_ -> Nothing
lookupInputType (Full.TypeNonNull (Full.NonNullTypeList nonNull)) types
= In.NonNullListType
<$> lookupInputType nonNull types
coerceVariableValues :: Coerce.VariableValue a
=> forall m
. HashMap Full.Name (Type m)
-> OperationDefinition
-> HashMap.HashMap Full.Name a
-> Either QueryError Type.Subs
coerceVariableValues types operationDefinition variableValues =
let OperationDefinition _ _ variableDefinitions _ _ = operationDefinition
in maybe (Left CoercionError) Right
$ foldr forEach (Just HashMap.empty) variableDefinitions
where
forEach variableDefinition coercedValues = do
let Full.VariableDefinition variableName variableTypeName defaultValue =
variableDefinition
let defaultValue' = constValue <$> defaultValue
variableType <- lookupInputType variableTypeName types
Coerce.matchFieldValues
coerceVariableValue'
variableValues
variableName
variableType
defaultValue'
coercedValues
coerceVariableValue' variableType value'
= Coerce.coerceVariableValue variableType value'
>>= Coerce.coerceInputLiteral variableType
constValue :: Full.ConstValue -> Type.Value
constValue (Full.ConstInt i) = Type.Int i
constValue (Full.ConstFloat f) = Type.Float f
constValue (Full.ConstString x) = Type.String x
constValue (Full.ConstBoolean b) = Type.Boolean b
constValue Full.ConstNull = Type.Null
constValue (Full.ConstEnum e) = Type.Enum e
constValue (Full.ConstList l) = Type.List $ constValue <$> l
constValue (Full.ConstObject o) =
Type.Object $ HashMap.fromList $ constObjectField <$> o
where
constObjectField (Full.ObjectField key value') = (key, constValue value')
-- | Rewrites the original syntax tree into an intermediate representation used
-- for query execution.
document :: Schema.Subs -> Document -> Maybe Core.Document
document subs document' =
flip runReaderT subs
$ evalStateT (collectFragments >> operations operationDefinitions)
$ Replacement HashMap.empty fragmentTable
document :: Coerce.VariableValue a
=> forall m
. Schema m
-> Maybe Full.Name
-> HashMap Full.Name a
-> Full.Document
-> Either QueryError (Document m)
document schema operationName subs ast = do
let referencedTypes = collectReferencedTypes schema
(operations, fragmentTable) <- defragment ast
chosenOperation <- getOperation operationName operations
coercedValues <- coerceVariableValues referencedTypes chosenOperation subs
let replacement = Replacement
{ fragments = HashMap.empty
, fragmentDefinitions = fragmentTable
, variableValues = coercedValues
, types = referencedTypes
}
case chosenOperation of
OperationDefinition Full.Query _ _ _ _ ->
pure $ Document referencedTypes (query schema)
$ operation chosenOperation replacement
OperationDefinition Full.Mutation _ _ _ _
| Just mutationType <- mutation schema ->
pure $ Document referencedTypes mutationType
$ operation chosenOperation replacement
_ -> Left UnsupportedRootOperation
defragment
:: Full.Document
-> Either QueryError (NonEmpty OperationDefinition, FragmentDefinitions)
defragment ast =
let (operations, fragmentTable) = foldr defragment' ([], HashMap.empty) ast
nonEmptyOperations = NonEmpty.nonEmpty operations
emptyDocument = Left EmptyDocument
in (, fragmentTable) <$> maybe emptyDocument Right nonEmptyOperations
where
(fragmentTable, operationDefinitions) = foldr defragment mempty document'
defragment (ExecutableDefinition (Full.DefinitionOperation definition)) acc =
(definition :) <$> acc
defragment (ExecutableDefinition (Full.DefinitionFragment definition)) acc =
let (Full.FragmentDefinition name _ _ _) = definition
in first (HashMap.insert name definition) acc
defragment _ acc = acc
defragment' definition (operations, fragments')
| (Full.ExecutableDefinition executable) <- definition
, (Full.DefinitionOperation operation') <- executable =
(transform operation' : operations, fragments')
| (Full.ExecutableDefinition executable) <- definition
, (Full.DefinitionFragment fragment) <- executable
, (Full.FragmentDefinition name _ _ _) <- fragment =
(operations, HashMap.insert name fragment fragments')
defragment' _ acc = acc
transform = \case
Full.OperationDefinition type' name variables directives' selections ->
OperationDefinition type' name variables directives' selections
Full.SelectionSet selectionSet ->
OperationDefinition Full.Query Nothing mempty mempty selectionSet
-- * Operation
operations :: [Full.OperationDefinition] -> TransformT Core.Document
operations operations' = do
coreOperations <- traverse operation operations'
lift . lift $ NonEmpty.nonEmpty coreOperations
operation :: Full.OperationDefinition -> TransformT Core.Operation
operation (Full.SelectionSet sels)
= operation $ Full.OperationDefinition Full.Query mempty mempty mempty sels
operation (Full.OperationDefinition Full.Query name _vars _dirs sels)
= Core.Query name <$> appendSelection sels
operation (Full.OperationDefinition Full.Mutation name _vars _dirs sels)
= Core.Mutation name <$> appendSelection sels
operation :: OperationDefinition -> Replacement m -> Operation m
operation operationDefinition replacement
= runIdentity
$ evalStateT (collectFragments >> transform operationDefinition) replacement
where
transform (OperationDefinition Full.Query name _ _ sels) =
Query name <$> appendSelection sels
transform (OperationDefinition Full.Mutation name _ _ sels) =
Mutation name <$> appendSelection sels
-- * Selection
selection ::
Full.Selection ->
TransformT (Either (Seq Core.Selection) Core.Selection)
selection
:: Full.Selection
-> State (Replacement m) (Either (Seq (Selection m)) (Selection m))
selection (Full.Field alias name arguments' directives' selections) =
maybe (Left mempty) (Right . Core.SelectionField) <$> do
fieldArguments <- arguments arguments'
maybe (Left mempty) (Right . SelectionField) <$> do
fieldArguments <- foldM go HashMap.empty arguments'
fieldSelections <- appendSelection selections
fieldDirectives <- Directive.selection <$> directives directives'
let field' = Core.Field alias name fieldArguments fieldSelections
let field' = Field alias name fieldArguments fieldSelections
pure $ field' <$ fieldDirectives
where
go arguments (Full.Argument name' value') =
inputField arguments name' value'
selection (Full.FragmentSpread name directives') =
maybe (Left mempty) (Right . Core.SelectionFragment) <$> do
maybe (Left mempty) (Right . SelectionFragment) <$> do
spreadDirectives <- Directive.selection <$> directives directives'
fragments' <- gets fragments
fragment <- maybe lookupDefinition liftJust (HashMap.lookup name fragments')
pure $ fragment <$ spreadDirectives
where
lookupDefinition = do
fragmentDefinitions' <- gets fragmentDefinitions
found <- lift . lift $ HashMap.lookup name fragmentDefinitions'
fragmentDefinition found
case HashMap.lookup name fragments' of
Just definition -> lift $ pure $ definition <$ spreadDirectives
Nothing
| Just definition <- HashMap.lookup name fragmentDefinitions' -> do
fragDef <- fragmentDefinition definition
case fragDef of
Just fragment -> lift $ pure $ fragment <$ spreadDirectives
_ -> lift $ pure Nothing
| otherwise -> lift $ pure Nothing
selection (Full.InlineFragment type' directives' selections) = do
fragmentDirectives <- Directive.selection <$> directives directives'
case fragmentDirectives of
Nothing -> pure $ Left mempty
_ -> do
fragmentSelectionSet <- appendSelection selections
pure $ maybe Left selectionFragment type' fragmentSelectionSet
case type' of
Nothing -> pure $ Left fragmentSelectionSet
Just typeName -> do
typeCondition' <- lookupTypeCondition typeName
case typeCondition' of
Just typeCondition -> pure $
selectionFragment typeCondition fragmentSelectionSet
Nothing -> pure $ Left mempty
where
selectionFragment typeName = Right
. Core.SelectionFragment
. Core.Fragment typeName
. SelectionFragment
. Fragment typeName
appendSelection ::
Traversable t =>
t Full.Selection ->
TransformT (Seq Core.Selection)
appendSelection :: Traversable t
=> t Full.Selection
-> State (Replacement m) (Seq (Selection m))
appendSelection = foldM go mempty
where
go acc sel = append acc <$> selection sel
append acc (Left list) = list >< acc
append acc (Right one) = one <| acc
directives :: [Full.Directive] -> TransformT [Core.Directive]
directives :: [Full.Directive] -> State (Replacement m) [Directive]
directives = traverse directive
where
directive (Full.Directive directiveName directiveArguments) =
Core.Directive directiveName <$> arguments directiveArguments
directive (Full.Directive directiveName directiveArguments)
= Directive directiveName . Arguments
<$> foldM go HashMap.empty directiveArguments
go arguments (Full.Argument name value') = do
substitutedValue <- value value'
return $ HashMap.insert name substitutedValue arguments
-- * Fragment replacement
-- | Extract fragment definitions into a single 'HashMap'.
collectFragments :: TransformT ()
collectFragments :: State (Replacement m) ()
collectFragments = do
fragDefs <- gets fragmentDefinitions
let nextValue = head $ HashMap.elems fragDefs
@ -127,41 +358,79 @@ collectFragments = do
_ <- fragmentDefinition nextValue
collectFragments
fragmentDefinition ::
Full.FragmentDefinition ->
TransformT Core.Fragment
lookupTypeCondition :: Full.Name -> State (Replacement m) (Maybe (CompositeType m))
lookupTypeCondition type' = do
types' <- gets types
case HashMap.lookup type' types' of
Just (ObjectType objectType) ->
lift $ pure $ Just $ CompositeObjectType objectType
Just (UnionType unionType) ->
lift $ pure $ Just $ CompositeUnionType unionType
Just (InterfaceType interfaceType) ->
lift $ pure $ Just $ CompositeInterfaceType interfaceType
_ -> lift $ pure Nothing
fragmentDefinition
:: Full.FragmentDefinition
-> State (Replacement m) (Maybe (Fragment m))
fragmentDefinition (Full.FragmentDefinition name type' _ selections) = do
modify deleteFragmentDefinition
fragmentSelection <- appendSelection selections
let newValue = Core.Fragment type' fragmentSelection
modify $ insertFragment newValue
liftJust newValue
compositeType <- lookupTypeCondition type'
case compositeType of
Just compositeType' -> do
let newValue = Fragment compositeType' fragmentSelection
modify $ insertFragment newValue
lift $ pure $ Just newValue
_ -> lift $ pure Nothing
where
deleteFragmentDefinition (Replacement fragments' fragmentDefinitions') =
Replacement fragments' $ HashMap.delete name fragmentDefinitions'
insertFragment newValue (Replacement fragments' fragmentDefinitions') =
let newFragments = HashMap.insert name newValue fragments'
in Replacement newFragments fragmentDefinitions'
deleteFragmentDefinition replacement@Replacement{..} =
let newDefinitions = HashMap.delete name fragmentDefinitions
in replacement{ fragmentDefinitions = newDefinitions }
insertFragment newValue replacement@Replacement{..} =
let newFragments = HashMap.insert name newValue fragments
in replacement{ fragments = newFragments }
arguments :: [Full.Argument] -> TransformT Core.Arguments
arguments = fmap Core.Arguments . foldM go HashMap.empty
value :: forall m. Full.Value -> State (Replacement m) Type.Value
value (Full.Variable name) =
gets (fromMaybe Type.Null . HashMap.lookup name . variableValues)
value (Full.Int int) = pure $ Type.Int int
value (Full.Float float) = pure $ Type.Float float
value (Full.String string) = pure $ Type.String string
value (Full.Boolean boolean) = pure $ Type.Boolean boolean
value Full.Null = pure Type.Null
value (Full.Enum enum) = pure $ Type.Enum enum
value (Full.List list) = Type.List <$> traverse value list
value (Full.Object object) =
Type.Object . HashMap.fromList <$> traverse objectField object
where
go arguments' (Full.Argument name value') = do
substitutedValue <- value value'
return $ HashMap.insert name substitutedValue arguments'
objectField (Full.ObjectField name value') = (name,) <$> value value'
value :: Full.Value -> TransformT Core.Value
value (Full.Variable name) = lift (asks $ HashMap.lookup name) >>= lift . lift
value (Full.Int i) = pure $ Core.Int i
value (Full.Float f) = pure $ Core.Float f
value (Full.String x) = pure $ Core.String x
value (Full.Boolean b) = pure $ Core.Boolean b
value Full.Null = pure Core.Null
value (Full.Enum e) = pure $ Core.Enum e
value (Full.List l) =
Core.List <$> traverse value l
value (Full.Object o) =
Core.Object . HashMap.fromList <$> traverse objectField o
input :: forall m. Full.Value -> State (Replacement m) (Maybe Input)
input (Full.Variable name) =
gets (fmap Variable . HashMap.lookup name . variableValues)
input (Full.Int int) = pure $ pure $ Int int
input (Full.Float float) = pure $ pure $ Float float
input (Full.String string) = pure $ pure $ String string
input (Full.Boolean boolean) = pure $ pure $ Boolean boolean
input Full.Null = pure $ pure Null
input (Full.Enum enum) = pure $ pure $ Enum enum
input (Full.List list) = pure . List <$> traverse value list
input (Full.Object object) = do
objectFields <- foldM objectField HashMap.empty object
pure $ pure $ Object objectFields
where
objectField resultMap (Full.ObjectField name value') =
inputField resultMap name value'
objectField :: Full.ObjectField -> TransformT (Core.Name, Core.Value)
objectField (Full.ObjectField name value') = (name,) <$> value value'
inputField :: forall m
. HashMap Full.Name Input
-> Full.Name
-> Full.Value
-> State (Replacement m) (HashMap Full.Name Input)
inputField resultMap name value' = do
objectFieldValue <- input value'
case objectFieldValue of
Just fieldValue -> pure $ HashMap.insert name fieldValue resultMap
Nothing -> pure resultMap

View File

@ -1,138 +0,0 @@
{-# LANGUAGE OverloadedStrings #-}
-- | This module provides a representation of a @GraphQL@ Schema in addition to
-- functions for defining and manipulating schemas.
module Language.GraphQL.Schema
( Resolver(..)
, Subs
, object
, resolve
, resolversToMap
, scalar
, wrappedObject
, wrappedScalar
-- * AST Reexports
, Field
, Value(..)
) where
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Except (runExceptT)
import Control.Monad.Trans.Reader (runReaderT)
import Data.Foldable (fold, toList)
import Data.Maybe (fromMaybe)
import qualified Data.Aeson as Aeson
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.Sequence (Seq)
import Data.Text (Text)
import qualified Data.Text as T
import Language.GraphQL.AST.Core
import Language.GraphQL.Error
import Language.GraphQL.Trans
import qualified Language.GraphQL.Type as Type
-- | Resolves a 'Field' into an @Aeson.@'Data.Aeson.Types.Object' with error
-- information (if an error has occurred). @m@ is an arbitrary monad, usually
-- 'IO'.
data Resolver m = Resolver
Text -- ^ Name
(Field -> CollectErrsT m Aeson.Object) -- ^ Resolver
-- | Converts resolvers to a map.
resolversToMap
:: (Foldable f, Functor f)
=> f (Resolver m)
-> HashMap Text (Field -> CollectErrsT m Aeson.Object)
resolversToMap = HashMap.fromList . toList . fmap toKV
where
toKV (Resolver name f) = (name, f)
-- | Contains variables for the query. The key of the map is a variable name,
-- and the value is the variable value.
type Subs = HashMap Name Value
-- | Create a new 'Resolver' with the given 'Name' from the given 'Resolver's.
object :: Monad m => Name -> ActionT m [Resolver m] -> Resolver m
object name f = Resolver name $ resolveFieldValue f resolveRight
where
resolveRight fld@(Field _ _ _ flds) resolver
= withField (resolve (resolversToMap resolver) flds) fld
-- | Like 'object' but can be null or a list of objects.
wrappedObject ::
Monad m =>
Name ->
ActionT m (Type.Wrapping [Resolver m]) ->
Resolver m
wrappedObject name f = Resolver name $ resolveFieldValue f resolveRight
where
resolveRight fld@(Field _ _ _ sels) resolver
= withField (traverse (resolveMap sels) resolver) fld
resolveMap = flip (resolve . resolversToMap)
-- | A scalar represents a primitive value, like a string or an integer.
scalar :: (Monad m, Aeson.ToJSON a) => Name -> ActionT m a -> Resolver m
scalar name f = Resolver name $ resolveFieldValue f resolveRight
where
resolveRight fld result = withField (return result) fld
-- | Like 'scalar' but can be null or a list of scalars.
wrappedScalar ::
(Monad m, Aeson.ToJSON a) =>
Name ->
ActionT m (Type.Wrapping a) ->
Resolver m
wrappedScalar name f = Resolver name $ resolveFieldValue f resolveRight
where
resolveRight fld (Type.Named result) = withField (return result) fld
resolveRight fld Type.Null
= return $ HashMap.singleton (aliasOrName fld) Aeson.Null
resolveRight fld (Type.List result) = withField (return result) fld
resolveFieldValue ::
Monad m =>
ActionT m a ->
(Field -> a -> CollectErrsT m Aeson.Object) ->
Field ->
CollectErrsT m (HashMap Text Aeson.Value)
resolveFieldValue f resolveRight fld@(Field _ _ args _) = do
result <- lift $ reader . runExceptT . runActionT $ f
either resolveLeft (resolveRight fld) result
where
reader = flip runReaderT $ Context {arguments=args}
resolveLeft err = do
_ <- addErrMsg err
return $ HashMap.singleton (aliasOrName fld) Aeson.Null
-- | Helper function to facilitate error handling and result emitting.
withField :: (Monad m, Aeson.ToJSON a)
=> CollectErrsT m a -> Field -> CollectErrsT m (HashMap Text Aeson.Value)
withField v fld
= HashMap.singleton (aliasOrName fld) . Aeson.toJSON <$> runAppendErrs v
-- | Takes a list of 'Resolver's and a list of 'Field's and applies each
-- 'Resolver' to each 'Field'. Resolves into a value containing the
-- resolved 'Field', or a null value and error information.
resolve :: Monad m
=> HashMap Text (Field -> CollectErrsT m Aeson.Object)
-> Seq Selection
-> CollectErrsT m Aeson.Value
resolve resolvers = fmap (Aeson.toJSON . fold) . traverse tryResolvers
where
resolveTypeName f = do
value <- f $ Field Nothing "__typename" mempty mempty
return $ HashMap.lookupDefault "" "__typename" value
tryResolvers (SelectionField fld@(Field _ name _ _))
= fromMaybe (errmsg fld) $ HashMap.lookup name resolvers <*> Just fld
tryResolvers (SelectionFragment (Fragment typeCondition selections')) = do
that <- traverse resolveTypeName $ HashMap.lookup "__typename" resolvers
if maybe True (Aeson.String typeCondition ==) that
then fmap fold . traverse tryResolvers $ selections'
else return mempty
errmsg fld@(Field _ name _ _) = do
addErrMsg $ T.unwords ["field", name, "not resolved."]
return $ HashMap.singleton (aliasOrName fld) Aeson.Null
aliasOrName :: Field -> Text
aliasOrName (Field alias name _ _) = fromMaybe name alias

View File

@ -1,8 +1,8 @@
-- | Monad transformer stack used by the @GraphQL@ resolvers.
module Language.GraphQL.Trans
( ActionT(..)
( argument
, ActionT(..)
, Context(..)
, argument
) where
import Control.Applicative (Alternative(..))
@ -14,12 +14,15 @@ import Control.Monad.Trans.Reader (ReaderT, asks)
import qualified Data.HashMap.Strict as HashMap
import Data.Maybe (fromMaybe)
import Data.Text (Text)
import Language.GraphQL.AST (Name)
import Language.GraphQL.AST.Core
import Language.GraphQL.Type.Definition
import Prelude hiding (lookup)
-- | Resolution context holds resolver arguments.
newtype Context = Context
data Context = Context
{ arguments :: Arguments
, values :: Value
}
-- | Monad transformer stack used by the resolvers to provide error handling
@ -54,7 +57,7 @@ instance Monad m => MonadPlus (ActionT m) where
mplus = (<|>)
-- | Retrieves an argument by its name. If the argument with this name couldn't
-- be found, returns 'Value.Null' (i.e. the argument is assumed to
-- be found, returns 'Null' (i.e. the argument is assumed to
-- be optional then).
argument :: Monad m => Name -> ActionT m Value
argument argumentName = do

View File

@ -1,55 +1,16 @@
-- | Definitions for @GraphQL@ input types.
-- | Reexports non-conflicting type system and schema definitions.
module Language.GraphQL.Type
( Wrapping(..)
( In.InputField(..)
, In.InputObjectType(..)
, Out.Field(..)
, Out.InterfaceType(..)
, Out.ObjectType(..)
, Out.UnionType(..)
, module Language.GraphQL.Type.Definition
, module Language.GraphQL.Type.Schema
) where
import Data.Aeson as Aeson (ToJSON, toJSON)
import qualified Data.Aeson as Aeson
-- | GraphQL distinguishes between "wrapping" and "named" types. Each wrapping
-- type can wrap other wrapping or named types. Wrapping types are lists and
-- Non-Null types (named types are nullable by default).
--
-- This 'Wrapping' type doesn\'t reflect this distinction exactly but it is
-- used in the resolvers to take into account that the returned value can be
-- nullable or an (arbitrary nested) list.
data Wrapping a
= List [Wrapping a] -- ^ Arbitrary nested list
| Named a -- ^ Named type without further wrapping
| Null -- ^ Null
deriving (Eq, Show)
instance Functor Wrapping where
fmap f (List list) = List $ fmap (fmap f) list
fmap f (Named named) = Named $ f named
fmap _ Null = Null
instance Foldable Wrapping where
foldr f acc (List list) = foldr (flip $ foldr f) acc list
foldr f acc (Named named) = f named acc
foldr _ acc Null = acc
instance Traversable Wrapping where
traverse f (List list) = List <$> traverse (traverse f) list
traverse f (Named named) = Named <$> f named
traverse _ Null = pure Null
instance Applicative Wrapping where
pure = Named
Null <*> _ = Null
_ <*> Null = Null
(Named f) <*> (Named x) = Named $ f x
(List fs) <*> (List xs) = List $ (<*>) <$> fs <*> xs
(Named f) <*> list = f <$> list
(List fs) <*> named = List $ (<*> named) <$> fs
instance Monad Wrapping where
return = pure
Null >>= _ = Null
(Named x) >>= f = f x
(List xs) >>= f = List $ fmap (>>= f) xs
instance ToJSON a => ToJSON (Wrapping a) where
toJSON (List list) = toJSON list
toJSON (Named named) = toJSON named
toJSON Null = Aeson.Null
import Language.GraphQL.Type.Definition
import Language.GraphQL.Type.Schema (Schema(..))
import qualified Language.GraphQL.Type.In as In
import qualified Language.GraphQL.Type.Out as Out

View File

@ -0,0 +1,115 @@
{-# LANGUAGE OverloadedStrings #-}
-- | Types that can be used as both input and output types.
module Language.GraphQL.Type.Definition
( EnumType(..)
, EnumValue(..)
, ScalarType(..)
, Subs
, Value(..)
, boolean
, float
, id
, int
, string
) where
import Data.Int (Int32)
import Data.HashMap.Strict (HashMap)
import Data.String (IsString(..))
import Data.Text (Text)
import Language.GraphQL.AST.Document (Name)
import Prelude hiding (id)
-- | Represents accordingly typed GraphQL values.
data Value
= Int Int32
| Float Double -- ^ GraphQL Float is double precision.
| String Text
| Boolean Bool
| Null
| Enum Name
| List [Value] -- ^ Arbitrary nested list.
| Object (HashMap Name Value)
deriving (Eq, Show)
instance IsString Value where
fromString = String . fromString
-- | Contains variables for the query. The key of the map is a variable name,
-- and the value is the variable value.
type Subs = HashMap Name Value
-- | Scalar type definition.
--
-- The leaf values of any request and input values to arguments are Scalars (or
-- Enums) .
data ScalarType = ScalarType Name (Maybe Text)
instance Eq ScalarType where
(ScalarType this _) == (ScalarType that _) = this == that
-- | Enum type definition.
--
-- Some leaf values of requests and input values are Enums. GraphQL serializes
-- Enum values as strings, however internally Enums can be represented by any
-- kind of type, often integers.
data EnumType = EnumType Name (Maybe Text) (HashMap Name EnumValue)
instance Eq EnumType where
(EnumType this _ _) == (EnumType that _ _) = this == that
-- | Enum value is a single member of an 'EnumType'.
newtype EnumValue = EnumValue (Maybe Text)
-- | The @String@ scalar type represents textual data, represented as UTF-8
-- character sequences. The String type is most often used by GraphQL to
-- represent free-form human-readable text.
string :: ScalarType
string = ScalarType "String" (Just description)
where
description =
"The `String` scalar type represents textual data, represented as \
\UTF-8 character sequences. The String type is most often used by \
\GraphQL to represent free-form human-readable text."
-- | The @Boolean@ scalar type represents @true@ or @false@.
boolean :: ScalarType
boolean = ScalarType "Boolean" (Just description)
where
description = "The `Boolean` scalar type represents `true` or `false`."
-- | The @Int@ scalar type represents non-fractional signed whole numeric
-- values. Int can represent values between \(-2^{31}\) and \(2^{31 - 1}\).
int :: ScalarType
int = ScalarType "Int" (Just description)
where
description =
"The `Int` scalar type represents non-fractional signed whole numeric \
\values. Int can represent values between -(2^31) and 2^31 - 1."
-- | The @Float@ scalar type represents signed double-precision fractional
-- values as specified by
-- [IEEE 754](https://en.wikipedia.org/wiki/IEEE_floating_point).
float :: ScalarType
float = ScalarType "Float" (Just description)
where
description =
"The `Float` scalar type represents signed double-precision fractional \
\values as specified by \
\[IEEE 754](https://en.wikipedia.org/wiki/IEEE_floating_point)."
-- | The @ID@ scalar type represents a unique identifier, often used to refetch
-- an object or as key for a cache. The ID type appears in a JSON response as a
-- String; however, it is not intended to be human-readable. When expected as an
-- input type, any string (such as @"4"@) or integer (such as @4@) input value
-- will be accepted as an ID.
id :: ScalarType
id = ScalarType "ID" (Just description)
where
description =
"The `ID` scalar type represents a unique identifier, often used to \
\refetch an object or as key for a cache. The ID type appears in a \
\JSON response as a String; however, it is not intended to be \
\human-readable. When expected as an input type, any string (such as \
\`\"4\"`) or integer (such as `4`) input value will be accepted as an ID."

View File

@ -1,11 +1,18 @@
{-# LANGUAGE OverloadedStrings #-}
module Language.GraphQL.Type.Directive
( selection
( Directive(..)
, selection
) where
import qualified Data.HashMap.Strict as HashMap
import Language.GraphQL.AST (Name)
import Language.GraphQL.AST.Core
import Language.GraphQL.Type.Definition
-- | Directive.
data Directive = Directive Name Arguments
deriving (Eq, Show)
-- | Directive processing status.
data Status

View File

@ -0,0 +1,101 @@
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ViewPatterns #-}
-- | Input types and values.
--
-- This module is intended to be imported qualified, to avoid name clashes
-- with 'Language.GraphQL.Type.Out'.
module Language.GraphQL.Type.In
( Argument(..)
, InputField(..)
, InputObjectType(..)
, Type(..)
, isNonNullType
, pattern EnumBaseType
, pattern ListBaseType
, pattern InputObjectBaseType
, pattern ScalarBaseType
) where
import Data.HashMap.Strict (HashMap)
import Data.Text (Text)
import Language.GraphQL.AST.Document (Name)
import Language.GraphQL.Type.Definition
-- | Single field of an 'InputObjectType'.
data InputField = InputField (Maybe Text) Type (Maybe Value)
-- | Input object type definition.
--
-- An input object defines a structured collection of fields which may be
-- supplied to a field argument.
data InputObjectType = InputObjectType
Name (Maybe Text) (HashMap Name InputField)
instance Eq InputObjectType where
(InputObjectType this _ _) == (InputObjectType that _ _) = this == that
-- | These types may be used as input types for arguments and directives.
--
-- GraphQL distinguishes between "wrapping" and "named" types. Each wrapping
-- type can wrap other wrapping or named types. Wrapping types are lists and
-- Non-Null types (named types are nullable by default).
data Type
= NamedScalarType ScalarType
| NamedEnumType EnumType
| NamedInputObjectType InputObjectType
| ListType Type
| NonNullScalarType ScalarType
| NonNullEnumType EnumType
| NonNullInputObjectType InputObjectType
| NonNullListType Type
deriving Eq
-- | Field argument definition.
data Argument = Argument (Maybe Text) Type (Maybe Value)
-- | Matches either 'NamedScalarType' or 'NonNullScalarType'.
pattern ScalarBaseType :: ScalarType -> Type
pattern ScalarBaseType scalarType <- (isScalarType -> Just scalarType)
-- | Matches either 'NamedEnumType' or 'NonNullEnumType'.
pattern EnumBaseType :: EnumType -> Type
pattern EnumBaseType enumType <- (isEnumType -> Just enumType)
-- | Matches either 'NamedInputObjectType' or 'NonNullInputObjectType'.
pattern InputObjectBaseType :: InputObjectType -> Type
pattern InputObjectBaseType objectType <- (isInputObjectType -> Just objectType)
-- | Matches either 'ListType' or 'NonNullListType'.
pattern ListBaseType :: Type -> Type
pattern ListBaseType listType <- (isListType -> Just listType)
{-# COMPLETE EnumBaseType, ListBaseType, InputObjectBaseType, ScalarBaseType #-}
isScalarType :: Type -> Maybe ScalarType
isScalarType (NamedScalarType inputType) = Just inputType
isScalarType (NonNullScalarType inputType) = Just inputType
isScalarType _ = Nothing
isInputObjectType :: Type -> Maybe InputObjectType
isInputObjectType (NamedInputObjectType inputType) = Just inputType
isInputObjectType (NonNullInputObjectType inputType) = Just inputType
isInputObjectType _ = Nothing
isEnumType :: Type -> Maybe EnumType
isEnumType (NamedEnumType inputType) = Just inputType
isEnumType (NonNullEnumType inputType) = Just inputType
isEnumType _ = Nothing
isListType :: Type -> Maybe Type
isListType (ListType inputType) = Just inputType
isListType (NonNullListType inputType) = Just inputType
isListType _ = Nothing
-- | Checks whether the given input type is a non-null type.
isNonNullType :: Type -> Bool
isNonNullType (NonNullScalarType _) = True
isNonNullType (NonNullEnumType _) = True
isNonNullType (NonNullInputObjectType _) = True
isNonNullType (NonNullListType _) = True
isNonNullType _ = False

View File

@ -0,0 +1,168 @@
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ViewPatterns #-}
-- | Output types and values.
--
-- This module is intended to be imported qualified, to avoid name clashes
-- with 'Language.GraphQL.Type.In'.
module Language.GraphQL.Type.Out
( Field(..)
, InterfaceType(..)
, ObjectType(..)
, Resolver(..)
, Type(..)
, UnionType(..)
, isNonNullType
, pattern EnumBaseType
, pattern InterfaceBaseType
, pattern ListBaseType
, pattern ObjectBaseType
, pattern ScalarBaseType
, pattern UnionBaseType
) where
import Data.HashMap.Strict (HashMap)
import Data.Text (Text)
import Language.GraphQL.AST (Name)
import Language.GraphQL.Trans
import Language.GraphQL.Type.Definition
import qualified Language.GraphQL.Type.In as In
-- | Resolves a 'Field' into an @Aeson.@'Data.Aeson.Types.Object' with error
-- information (if an error has occurred). @m@ is an arbitrary monad, usually
-- 'IO'.
--
-- Resolving a field can result in a leaf value or an object, which is
-- represented as a list of nested resolvers, used to resolve the fields of that
-- object.
data Resolver m = Resolver (Field m) (ActionT m Value)
-- | Object type definition.
--
-- Almost all of the GraphQL types you define will be object types. Object
-- types have a name, but most importantly describe their fields.
data ObjectType m = ObjectType
Name (Maybe Text) [InterfaceType m] (HashMap Name (Resolver m))
instance forall a. Eq (ObjectType a) where
(ObjectType this _ _ _) == (ObjectType that _ _ _) = this == that
-- | Interface Type Definition.
--
-- When a field can return one of a heterogeneous set of types, a Interface type
-- is used to describe what types are possible, and what fields are in common
-- across all types.
data InterfaceType m = InterfaceType
Name (Maybe Text) [InterfaceType m] (HashMap Name (Field m))
instance forall a. Eq (InterfaceType a) where
(InterfaceType this _ _ _) == (InterfaceType that _ _ _) = this == that
-- | Union Type Definition.
--
-- When a field can return one of a heterogeneous set of types, a Union type is
-- used to describe what types are possible.
data UnionType m = UnionType Name (Maybe Text) [ObjectType m]
instance forall a. Eq (UnionType a) where
(UnionType this _ _) == (UnionType that _ _) = this == that
-- | Output object field definition.
data Field m = Field
(Maybe Text) -- ^ Description.
(Type m) -- ^ Field type.
(HashMap Name In.Argument) -- ^ Arguments.
-- | These types may be used as output types as the result of fields.
--
-- GraphQL distinguishes between "wrapping" and "named" types. Each wrapping
-- type can wrap other wrapping or named types. Wrapping types are lists and
-- Non-Null types (named types are nullable by default).
data Type m
= NamedScalarType ScalarType
| NamedEnumType EnumType
| NamedObjectType (ObjectType m)
| NamedInterfaceType (InterfaceType m)
| NamedUnionType (UnionType m)
| ListType (Type m)
| NonNullScalarType ScalarType
| NonNullEnumType EnumType
| NonNullObjectType (ObjectType m)
| NonNullInterfaceType (InterfaceType m)
| NonNullUnionType (UnionType m)
| NonNullListType (Type m)
deriving Eq
-- | Matches either 'NamedScalarType' or 'NonNullScalarType'.
pattern ScalarBaseType :: forall m. ScalarType -> Type m
pattern ScalarBaseType scalarType <- (isScalarType -> Just scalarType)
-- | Matches either 'NamedEnumType' or 'NonNullEnumType'.
pattern EnumBaseType :: forall m. EnumType -> Type m
pattern EnumBaseType enumType <- (isEnumType -> Just enumType)
-- | Matches either 'NamedObjectType' or 'NonNullObjectType'.
pattern ObjectBaseType :: forall m. ObjectType m -> Type m
pattern ObjectBaseType objectType <- (isObjectType -> Just objectType)
-- | Matches either 'NamedInterfaceType' or 'NonNullInterfaceType'.
pattern InterfaceBaseType :: forall m. InterfaceType m -> Type m
pattern InterfaceBaseType interfaceType <-
(isInterfaceType -> Just interfaceType)
-- | Matches either 'NamedUnionType' or 'NonNullUnionType'.
pattern UnionBaseType :: forall m. UnionType m -> Type m
pattern UnionBaseType unionType <- (isUnionType -> Just unionType)
-- | Matches either 'ListType' or 'NonNullListType'.
pattern ListBaseType :: forall m. Type m -> Type m
pattern ListBaseType listType <- (isListType -> Just listType)
{-# COMPLETE ScalarBaseType
, EnumBaseType
, ObjectBaseType
, ListBaseType
, InterfaceBaseType
, UnionBaseType
#-}
isScalarType :: forall m. Type m -> Maybe ScalarType
isScalarType (NamedScalarType outputType) = Just outputType
isScalarType (NonNullScalarType outputType) = Just outputType
isScalarType _ = Nothing
isObjectType :: forall m. Type m -> Maybe (ObjectType m)
isObjectType (NamedObjectType outputType) = Just outputType
isObjectType (NonNullObjectType outputType) = Just outputType
isObjectType _ = Nothing
isEnumType :: forall m. Type m -> Maybe EnumType
isEnumType (NamedEnumType outputType) = Just outputType
isEnumType (NonNullEnumType outputType) = Just outputType
isEnumType _ = Nothing
isInterfaceType :: forall m. Type m -> Maybe (InterfaceType m)
isInterfaceType (NamedInterfaceType interfaceType) = Just interfaceType
isInterfaceType (NonNullInterfaceType interfaceType) = Just interfaceType
isInterfaceType _ = Nothing
isUnionType :: forall m. Type m -> Maybe (UnionType m)
isUnionType (NamedUnionType unionType) = Just unionType
isUnionType (NonNullUnionType unionType) = Just unionType
isUnionType _ = Nothing
isListType :: forall m. Type m -> Maybe (Type m)
isListType (ListType outputType) = Just outputType
isListType (NonNullListType outputType) = Just outputType
isListType _ = Nothing
-- | Checks whether the given output type is a non-null type.
isNonNullType :: forall m. Type m -> Bool
isNonNullType (NonNullScalarType _) = True
isNonNullType (NonNullEnumType _) = True
isNonNullType (NonNullObjectType _) = True
isNonNullType (NonNullInterfaceType _) = True
isNonNullType (NonNullUnionType _) = True
isNonNullType (NonNullListType _) = True
isNonNullType _ = False

View File

@ -0,0 +1,112 @@
{-# LANGUAGE ExplicitForAll #-}
-- | This module provides a representation of a @GraphQL@ Schema in addition to
-- functions for defining and manipulating schemas.
module Language.GraphQL.Type.Schema
( AbstractType(..)
, CompositeType(..)
, Schema(..)
, Type(..)
, collectReferencedTypes
) where
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Language.GraphQL.AST.Document (Name)
import qualified Language.GraphQL.Type.Definition as Definition
import qualified Language.GraphQL.Type.In as In
import qualified Language.GraphQL.Type.Out as Out
-- | These are all of the possible kinds of types.
data Type m
= ScalarType Definition.ScalarType
| EnumType Definition.EnumType
| ObjectType (Out.ObjectType m)
| InputObjectType In.InputObjectType
| InterfaceType (Out.InterfaceType m)
| UnionType (Out.UnionType m)
deriving Eq
-- | These types may describe the parent context of a selection set.
data CompositeType m
= CompositeUnionType (Out.UnionType m)
| CompositeObjectType (Out.ObjectType m)
| CompositeInterfaceType (Out.InterfaceType m)
deriving Eq
-- | These types may describe the parent context of a selection set.
data AbstractType m
= AbstractUnionType (Out.UnionType m)
| AbstractInterfaceType (Out.InterfaceType m)
deriving Eq
-- | A Schema is created by supplying the root types of each type of operation,
-- query and mutation (optional). A schema definition is then supplied to the
-- validator and executor.
--
-- __Note:__ When the schema is constructed, by default only the types that
-- are reachable by traversing the root types are included, other types must
-- be explicitly referenced.
data Schema m = Schema
{ query :: Out.ObjectType m
, mutation :: Maybe (Out.ObjectType m)
}
-- | Traverses the schema and finds all referenced types.
collectReferencedTypes :: forall m. Schema m -> HashMap Name (Type m)
collectReferencedTypes schema =
let queryTypes = traverseObjectType (query schema) HashMap.empty
in maybe queryTypes (`traverseObjectType` queryTypes) $ mutation schema
where
collect traverser typeName element foundTypes
| HashMap.member typeName foundTypes = foundTypes
| otherwise = traverser $ HashMap.insert typeName element foundTypes
visitFields (Out.Field _ outputType arguments) foundTypes
= traverseOutputType outputType
$ foldr visitArguments foundTypes arguments
visitArguments (In.Argument _ inputType _) = traverseInputType inputType
visitInputFields (In.InputField _ inputType _) = traverseInputType inputType
traverseInputType (In.InputObjectBaseType objectType) =
let (In.InputObjectType typeName _ inputFields) = objectType
element = InputObjectType objectType
traverser = flip (foldr visitInputFields) inputFields
in collect traverser typeName element
traverseInputType (In.ListBaseType listType) =
traverseInputType listType
traverseInputType (In.ScalarBaseType scalarType) =
let (Definition.ScalarType typeName _) = scalarType
in collect Prelude.id typeName (ScalarType scalarType)
traverseInputType (In.EnumBaseType enumType) =
let (Definition.EnumType typeName _ _) = enumType
in collect Prelude.id typeName (EnumType enumType)
traverseOutputType (Out.ObjectBaseType objectType) =
traverseObjectType objectType
traverseOutputType (Out.InterfaceBaseType interfaceType) =
traverseInterfaceType interfaceType
traverseOutputType (Out.UnionBaseType unionType) =
let (Out.UnionType typeName _ types) = unionType
traverser = flip (foldr traverseObjectType) types
in collect traverser typeName (UnionType unionType)
traverseOutputType (Out.ListBaseType listType) =
traverseOutputType listType
traverseOutputType (Out.ScalarBaseType scalarType) =
let (Definition.ScalarType typeName _) = scalarType
in collect Prelude.id typeName (ScalarType scalarType)
traverseOutputType (Out.EnumBaseType enumType) =
let (Definition.EnumType typeName _ _) = enumType
in collect Prelude.id typeName (EnumType enumType)
traverseObjectType objectType foundTypes =
let (Out.ObjectType typeName _ interfaces resolvers) = objectType
element = ObjectType objectType
fields = extractObjectField <$> resolvers
traverser = polymorphicTraverser interfaces fields
in collect traverser typeName element foundTypes
traverseInterfaceType interfaceType foundTypes =
let (Out.InterfaceType typeName _ interfaces fields) = interfaceType
element = InterfaceType interfaceType
traverser = polymorphicTraverser interfaces fields
in collect traverser typeName element foundTypes
polymorphicTraverser interfaces fields
= flip (foldr visitFields) fields
. flip (foldr traverseInterfaceType) interfaces
extractObjectField (Out.Resolver field _) = field

View File

@ -1,4 +1,4 @@
resolver: lts-15.12
resolver: lts-16.1
packages:
- .

View File

@ -8,7 +8,7 @@ import Data.List.NonEmpty (NonEmpty(..))
import Language.GraphQL.AST.Document
import Language.GraphQL.AST.Parser
import Test.Hspec (Spec, describe, it)
import Test.Hspec.Megaparsec (shouldParse, shouldSucceedOn)
import Test.Hspec.Megaparsec (shouldParse, shouldFailOn, shouldSucceedOn)
import Text.Megaparsec (parse)
import Text.RawString.QQ (r)
@ -141,4 +141,11 @@ spec = describe "Parser" $ do
extend type Story {
isHiddenLocally: Boolean
}
|]
|]
it "rejects variables in DefaultValue" $
parse document "" `shouldFailOn` [r|
query ($book: String = "Zarathustra", $author: String = $book) {
title
}
|]

View File

@ -0,0 +1,122 @@
{-# LANGUAGE OverloadedStrings #-}
module Language.GraphQL.Execute.CoerceSpec
( spec
) where
import Data.Aeson as Aeson ((.=))
import qualified Data.Aeson as Aeson
import qualified Data.Aeson.Types as Aeson
import qualified Data.HashMap.Strict as HashMap
import Data.Maybe (isNothing)
import Data.Scientific (scientific)
import qualified Language.GraphQL.Execute.Coerce as Coerce
import Language.GraphQL.Type
import qualified Language.GraphQL.Type.In as In
import Prelude hiding (id)
import Test.Hspec (Spec, describe, it, shouldBe, shouldSatisfy)
direction :: EnumType
direction = EnumType "Direction" Nothing $ HashMap.fromList
[ ("NORTH", EnumValue Nothing)
, ("EAST", EnumValue Nothing)
, ("SOUTH", EnumValue Nothing)
, ("WEST", EnumValue Nothing)
]
singletonInputObject :: In.Type
singletonInputObject = In.NamedInputObjectType type'
where
type' = In.InputObjectType "ObjectName" Nothing inputFields
inputFields = HashMap.singleton "field" field
field = In.InputField Nothing (In.NamedScalarType string) Nothing
namedIdType :: In.Type
namedIdType = In.NamedScalarType id
spec :: Spec
spec = do
describe "VariableValue Aeson" $ do
it "coerces strings" $
let expected = Just (String "asdf")
actual = Coerce.coerceVariableValue
(In.NamedScalarType string) (Aeson.String "asdf")
in actual `shouldBe` expected
it "coerces non-null strings" $
let expected = Just (String "asdf")
actual = Coerce.coerceVariableValue
(In.NonNullScalarType string) (Aeson.String "asdf")
in actual `shouldBe` expected
it "coerces booleans" $
let expected = Just (Boolean True)
actual = Coerce.coerceVariableValue
(In.NamedScalarType boolean) (Aeson.Bool True)
in actual `shouldBe` expected
it "coerces zero to an integer" $
let expected = Just (Int 0)
actual = Coerce.coerceVariableValue
(In.NamedScalarType int) (Aeson.Number 0)
in actual `shouldBe` expected
it "rejects fractional if an integer is expected" $
let actual = Coerce.coerceVariableValue
(In.NamedScalarType int) (Aeson.Number $ scientific 14 (-1))
in actual `shouldSatisfy` isNothing
it "coerces float numbers" $
let expected = Just (Float 1.4)
actual = Coerce.coerceVariableValue
(In.NamedScalarType float) (Aeson.Number $ scientific 14 (-1))
in actual `shouldBe` expected
it "coerces IDs" $
let expected = Just (String "1234")
json = Aeson.String "1234"
actual = Coerce.coerceVariableValue namedIdType json
in actual `shouldBe` expected
it "coerces input objects" $
let actual = Coerce.coerceVariableValue singletonInputObject
$ Aeson.object ["field" .= ("asdf" :: Aeson.Value)]
expected = Just $ Object $ HashMap.singleton "field" "asdf"
in actual `shouldBe` expected
it "skips the field if it is missing in the variables" $
let actual = Coerce.coerceVariableValue
singletonInputObject Aeson.emptyObject
expected = Just $ Object HashMap.empty
in actual `shouldBe` expected
it "fails if input object value contains extra fields" $
let actual = Coerce.coerceVariableValue singletonInputObject
$ Aeson.object variableFields
variableFields =
[ "field" .= ("asdf" :: Aeson.Value)
, "extra" .= ("qwer" :: Aeson.Value)
]
in actual `shouldSatisfy` isNothing
it "preserves null" $
let actual = Coerce.coerceVariableValue namedIdType Aeson.Null
in actual `shouldBe` Just Null
it "preserves list order" $
let list = Aeson.toJSONList ["asdf" :: Aeson.Value, "qwer"]
listType = (In.ListType $ In.NamedScalarType string)
actual = Coerce.coerceVariableValue listType list
expected = Just $ List [String "asdf", String "qwer"]
in actual `shouldBe` expected
describe "coerceInputLiteral" $ do
it "coerces enums" $
let expected = Just (Enum "NORTH")
actual = Coerce.coerceInputLiteral
(In.NamedEnumType direction) (Enum "NORTH")
in actual `shouldBe` expected
it "fails with non-existing enum value" $
let actual = Coerce.coerceInputLiteral
(In.NamedEnumType direction) (Enum "NORTH_EAST")
in actual `shouldSatisfy` isNothing
it "coerces integers to IDs" $
let expected = Just (String "1234")
actual = Coerce.coerceInputLiteral namedIdType (Int 1234)
in actual `shouldBe` expected
it "coerces nulls" $ do
let actual = Coerce.coerceInputLiteral namedIdType Null
in actual `shouldBe` Just Null
it "wraps singleton lists" $ do
let expected = Just $ List [List [String "1"]]
embeddedType = In.ListType $ In.ListType namedIdType
actual = Coerce.coerceInputLiteral embeddedType (String "1")
in actual `shouldBe` expected

View File

@ -0,0 +1,75 @@
{-# LANGUAGE OverloadedStrings #-}
module Language.GraphQL.ExecuteSpec
( spec
) where
import Data.Aeson ((.=))
import qualified Data.Aeson as Aeson
import Data.Functor.Identity (Identity(..))
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Language.GraphQL.AST (Name)
import Language.GraphQL.AST.Parser (document)
import Language.GraphQL.Error
import Language.GraphQL.Execute
import Language.GraphQL.Type as Type
import Language.GraphQL.Type.Out as Out
import Test.Hspec (Spec, describe, it, shouldBe)
import Text.Megaparsec (parse)
schema :: Schema Identity
schema = Schema {query = queryType, mutation = Nothing}
queryType :: Out.ObjectType Identity
queryType = Out.ObjectType "Query" Nothing []
$ HashMap.singleton "philosopher"
$ Out.Resolver philosopherField
$ pure
$ Type.Object mempty
where
philosopherField =
Out.Field Nothing (Out.NonNullObjectType philosopherType) HashMap.empty
philosopherType :: Out.ObjectType Identity
philosopherType = Out.ObjectType "Philosopher" Nothing []
$ HashMap.fromList resolvers
where
resolvers =
[ ("firstName", firstNameResolver)
, ("lastName", lastNameResolver)
]
firstNameResolver = Out.Resolver firstNameField $ pure $ Type.String "Friedrich"
lastNameResolver = Out.Resolver lastNameField $ pure $ Type.String "Nietzsche"
firstNameField = Out.Field Nothing (Out.NonNullScalarType string) HashMap.empty
lastNameField = Out.Field Nothing (Out.NonNullScalarType string) HashMap.empty
spec :: Spec
spec =
describe "execute" $ do
it "skips unknown fields" $
let expected = Aeson.object
[ "data" .= Aeson.object
[ "philosopher" .= Aeson.object
[ "firstName" .= ("Friedrich" :: String)
]
]
]
execute' = execute schema (mempty :: HashMap Name Aeson.Value)
actual = runIdentity
$ either parseError execute'
$ parse document "" "{ philosopher { firstName surname } }"
in actual `shouldBe` expected
it "merges selections" $
let expected = Aeson.object
[ "data" .= Aeson.object
[ "philosopher" .= Aeson.object
[ "firstName" .= ("Friedrich" :: String)
, "lastName" .= ("Nietzsche" :: String)
]
]
]
execute' = execute schema (mempty :: HashMap Name Aeson.Value)
actual = runIdentity
$ either parseError execute'
$ parse document "" "{ philosopher { firstName } philosopher { lastName } }"
in actual `shouldBe` expected

View File

@ -0,0 +1,14 @@
{-# LANGUAGE OverloadedStrings #-}
module Language.GraphQL.Type.OutSpec
( spec
) where
import Language.GraphQL.Type
import Test.Hspec (Spec, describe, it, shouldBe)
spec :: Spec
spec =
describe "Value" $
it "supports overloaded strings" $
let nietzsche = "Goldstaub abblasen." :: Value
in nietzsche `shouldBe` String "Goldstaub abblasen."

View File

@ -4,21 +4,24 @@ module Test.DirectiveSpec
( spec
) where
import Data.Aeson (Value, object, (.=))
import Data.HashMap.Strict (HashMap)
import Data.Aeson (object, (.=))
import qualified Data.Aeson as Aeson
import qualified Data.HashMap.Strict as HashMap
import Data.List.NonEmpty (NonEmpty(..))
import Data.Text (Text)
import Language.GraphQL
import qualified Language.GraphQL.Schema as Schema
import Language.GraphQL.Type
import qualified Language.GraphQL.Type.Out as Out
import Test.Hspec (Spec, describe, it, shouldBe)
import Text.RawString.QQ (r)
experimentalResolver :: HashMap Text (NonEmpty (Schema.Resolver IO))
experimentalResolver = HashMap.singleton "Query"
$ Schema.scalar "experimentalField" (pure (5 :: Int)) :| []
experimentalResolver :: Schema IO
experimentalResolver = Schema { query = queryType, mutation = Nothing }
where
resolver = pure $ Int 5
queryType = Out.ObjectType "Query" Nothing []
$ HashMap.singleton "experimentalField"
$ Out.Resolver (Out.Field Nothing (Out.NamedScalarType int) mempty) resolver
emptyObject :: Value
emptyObject :: Aeson.Value
emptyObject = object
[ "data" .= object []
]
@ -27,17 +30,17 @@ spec :: Spec
spec =
describe "Directive executor" $ do
it "should be able to @skip fields" $ do
let query = [r|
let sourceQuery = [r|
{
experimentalField @skip(if: true)
}
|]
actual <- graphql experimentalResolver query
actual <- graphql experimentalResolver sourceQuery
actual `shouldBe` emptyObject
it "should not skip fields if @skip is false" $ do
let query = [r|
let sourceQuery = [r|
{
experimentalField @skip(if: false)
}
@ -48,21 +51,21 @@ spec =
]
]
actual <- graphql experimentalResolver query
actual <- graphql experimentalResolver sourceQuery
actual `shouldBe` expected
it "should skip fields if @include is false" $ do
let query = [r|
let sourceQuery = [r|
{
experimentalField @include(if: false)
}
|]
actual <- graphql experimentalResolver query
actual <- graphql experimentalResolver sourceQuery
actual `shouldBe` emptyObject
it "should be able to @skip a fragment spread" $ do
let query = [r|
let sourceQuery = [r|
{
...experimentalFragment @skip(if: true)
}
@ -72,11 +75,11 @@ spec =
}
|]
actual <- graphql experimentalResolver query
actual <- graphql experimentalResolver sourceQuery
actual `shouldBe` emptyObject
it "should be able to @skip an inline fragment" $ do
let query = [r|
let sourceQuery = [r|
{
... on ExperimentalType @skip(if: true) {
experimentalField
@ -84,5 +87,5 @@ spec =
}
|]
actual <- graphql experimentalResolver query
actual <- graphql experimentalResolver sourceQuery
actual `shouldBe` emptyObject

View File

@ -4,32 +4,35 @@ module Test.FragmentSpec
( spec
) where
import Data.Aeson (Value(..), object, (.=))
import Data.Aeson (object, (.=))
import qualified Data.Aeson as Aeson
import qualified Data.HashMap.Strict as HashMap
import Data.List.NonEmpty (NonEmpty(..))
import Data.Text (Text)
import Language.GraphQL
import qualified Language.GraphQL.Schema as Schema
import Test.Hspec ( Spec
, describe
, it
, shouldBe
, shouldSatisfy
, shouldNotSatisfy
)
import Language.GraphQL.Type
import qualified Language.GraphQL.Type.Out as Out
import Test.Hspec
( Spec
, describe
, it
, shouldBe
, shouldNotSatisfy
)
import Text.RawString.QQ (r)
size :: Schema.Resolver IO
size = Schema.scalar "size" $ return ("L" :: Text)
size :: (Text, Value)
size = ("size", String "L")
circumference :: Schema.Resolver IO
circumference = Schema.scalar "circumference" $ return (60 :: Int)
circumference :: (Text, Value)
circumference = ("circumference", Int 60)
garment :: Text -> Schema.Resolver IO
garment typeName = Schema.object "garment" $ return
[ if typeName == "Hat" then circumference else size
, Schema.scalar "__typename" $ return typeName
]
garment :: Text -> (Text, Value)
garment typeName =
("garment", Object $ HashMap.fromList
[ if typeName == "Hat" then circumference else size
, ("__typename", String typeName)
]
)
inlineQuery :: Text
inlineQuery = [r|{
@ -43,15 +46,52 @@ inlineQuery = [r|{
}
}|]
hasErrors :: Value -> Bool
hasErrors (Object object') = HashMap.member "errors" object'
hasErrors :: Aeson.Value -> Bool
hasErrors (Aeson.Object object') = HashMap.member "errors" object'
hasErrors _ = True
shirtType :: Out.ObjectType IO
shirtType = Out.ObjectType "Shirt" Nothing []
$ HashMap.fromList
[ ("size", Out.Resolver sizeFieldType $ pure $ snd size)
, ("circumference", Out.Resolver circumferenceFieldType $ pure $ snd circumference)
]
hatType :: Out.ObjectType IO
hatType = Out.ObjectType "Hat" Nothing []
$ HashMap.fromList
[ ("size", Out.Resolver sizeFieldType $ pure $ snd size)
, ("circumference", Out.Resolver circumferenceFieldType $ pure $ snd circumference)
]
circumferenceFieldType :: Out.Field IO
circumferenceFieldType = Out.Field Nothing (Out.NamedScalarType int) mempty
sizeFieldType :: Out.Field IO
sizeFieldType = Out.Field Nothing (Out.NamedScalarType string) mempty
toSchema :: Text -> (Text, Value) -> Schema IO
toSchema t (_, resolve) = Schema
{ query = queryType, mutation = Nothing }
where
unionMember = if t == "Hat" then hatType else shirtType
typeNameField = Out.Field Nothing (Out.NamedScalarType string) mempty
garmentField = Out.Field Nothing (Out.NamedObjectType unionMember) mempty
queryType =
case t of
"circumference" -> hatType
"size" -> shirtType
_ -> Out.ObjectType "Query" Nothing []
$ HashMap.fromList
[ ("garment", Out.Resolver garmentField $ pure resolve)
, ("__typename", Out.Resolver typeNameField $ pure $ String "Shirt")
]
spec :: Spec
spec = do
describe "Inline fragment executor" $ do
it "chooses the first selection if the type matches" $ do
actual <- graphql (HashMap.singleton "Query" $ garment "Hat" :| []) inlineQuery
actual <- graphql (toSchema "Hat" $ garment "Hat") inlineQuery
let expected = object
[ "data" .= object
[ "garment" .= object
@ -62,7 +102,7 @@ spec = do
in actual `shouldBe` expected
it "chooses the last selection if the type matches" $ do
actual <- graphql (HashMap.singleton "Query" $ garment "Shirt" :| []) inlineQuery
actual <- graphql (toSchema "Shirt" $ garment "Shirt") inlineQuery
let expected = object
[ "data" .= object
[ "garment" .= object
@ -73,7 +113,7 @@ spec = do
in actual `shouldBe` expected
it "embeds inline fragments without type" $ do
let query = [r|{
let sourceQuery = [r|{
garment {
circumference
... {
@ -81,9 +121,9 @@ spec = do
}
}
}|]
resolvers = Schema.object "garment" $ return [circumference, size]
resolvers = ("garment", Object $ HashMap.fromList [circumference, size])
actual <- graphql (HashMap.singleton "Query" $ resolvers :| []) query
actual <- graphql (toSchema "garment" resolvers) sourceQuery
let expected = object
[ "data" .= object
[ "garment" .= object
@ -95,18 +135,18 @@ spec = do
in actual `shouldBe` expected
it "evaluates fragments on Query" $ do
let query = [r|{
let sourceQuery = [r|{
... {
size
}
}|]
actual <- graphql (HashMap.singleton "Query" $ size :| []) query
actual <- graphql (toSchema "size" size) sourceQuery
actual `shouldNotSatisfy` hasErrors
describe "Fragment spread executor" $ do
it "evaluates fragment spreads" $ do
let query = [r|
let sourceQuery = [r|
{
...circumferenceFragment
}
@ -116,7 +156,7 @@ spec = do
}
|]
actual <- graphql (HashMap.singleton "Query" $ circumference :| []) query
actual <- graphql (toSchema "circumference" circumference) sourceQuery
let expected = object
[ "data" .= object
[ "circumference" .= (60 :: Int)
@ -125,7 +165,7 @@ spec = do
in actual `shouldBe` expected
it "evaluates nested fragments" $ do
let query = [r|
let sourceQuery = [r|
{
garment {
...circumferenceFragment
@ -141,7 +181,7 @@ spec = do
}
|]
actual <- graphql (HashMap.singleton "Query" $ garment "Hat" :| []) query
actual <- graphql (toSchema "Hat" $ garment "Hat") sourceQuery
let expected = object
[ "data" .= object
[ "garment" .= object
@ -152,7 +192,10 @@ spec = do
in actual `shouldBe` expected
it "rejects recursive fragments" $ do
let query = [r|
let expected = object
[ "data" .= object []
]
sourceQuery = [r|
{
...circumferenceFragment
}
@ -162,11 +205,11 @@ spec = do
}
|]
actual <- graphql (HashMap.singleton "Query" $ circumference :| []) query
actual `shouldSatisfy` hasErrors
actual <- graphql (toSchema "circumference" circumference) sourceQuery
actual `shouldBe` expected
it "considers type condition" $ do
let query = [r|
let sourceQuery = [r|
{
garment {
...circumferenceFragment
@ -187,5 +230,5 @@ spec = do
]
]
]
actual <- graphql (HashMap.singleton "Query" $ garment "Hat" :| []) query
actual <- graphql (toSchema "Hat" $ garment "Hat") sourceQuery
actual `shouldBe` expected

View File

@ -0,0 +1,68 @@
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
module Test.RootOperationSpec
( spec
) where
import Data.Aeson ((.=), object)
import qualified Data.HashMap.Strict as HashMap
import Language.GraphQL
import Test.Hspec (Spec, describe, it, shouldBe)
import Text.RawString.QQ (r)
import Language.GraphQL.Type
import qualified Language.GraphQL.Type.Out as Out
hatType :: Out.ObjectType IO
hatType = Out.ObjectType "Hat" Nothing []
$ HashMap.singleton "circumference"
$ Out.Resolver (Out.Field Nothing (Out.NamedScalarType int) mempty)
$ pure $ Int 60
schema :: Schema IO
schema = Schema
(Out.ObjectType "Query" Nothing [] hatField)
(Just $ Out.ObjectType "Mutation" Nothing [] incrementField)
where
garment = pure $ Object $ HashMap.fromList
[ ("circumference", Int 60)
]
incrementField = HashMap.singleton "incrementCircumference"
$ Out.Resolver (Out.Field Nothing (Out.NamedScalarType int) mempty)
$ pure $ Int 61
hatField = HashMap.singleton "garment"
$ Out.Resolver (Out.Field Nothing (Out.NamedObjectType hatType) mempty) garment
spec :: Spec
spec =
describe "Root operation type" $ do
it "returns objects from the root resolvers" $ do
let querySource = [r|
{
garment {
circumference
}
}
|]
expected = object
[ "data" .= object
[ "garment" .= object
[ "circumference" .= (60 :: Int)
]
]
]
actual <- graphql schema querySource
actual `shouldBe` expected
it "chooses Mutation" $ do
let querySource = [r|
mutation {
incrementCircumference
}
|]
expected = object
[ "data" .= object
[ "incrementCircumference" .= (61 :: Int)
]
]
actual <- graphql schema querySource
actual `shouldBe` expected

View File

@ -11,7 +11,7 @@ module Test.StarWars.Data
, getHuman
, id_
, homePlanet
, name
, name_
, secretBackstory
, typeName
) where
@ -22,7 +22,6 @@ import Control.Monad.Trans.Except (throwE)
import Data.Maybe (catMaybes)
import Data.Text (Text)
import Language.GraphQL.Trans
import qualified Language.GraphQL.Type as Type
-- * Data
-- See https://github.com/graphql/graphql-js/blob/master/src/__tests__/starWarsData.js
@ -55,9 +54,9 @@ id_ :: Character -> ID
id_ (Left x) = _id_ . _droidChar $ x
id_ (Right x) = _id_ . _humanChar $ x
name :: Character -> Text
name (Left x) = _name . _droidChar $ x
name (Right x) = _name . _humanChar $ x
name_ :: Character -> Text
name_ (Left x) = _name . _droidChar $ x
name_ (Right x) = _name . _humanChar $ x
friends :: Character -> [ID]
friends (Left x) = _friends . _droidChar $ x
@ -67,8 +66,8 @@ appearsIn :: Character -> [Int]
appearsIn (Left x) = _appearsIn . _droidChar $ x
appearsIn (Right x) = _appearsIn . _humanChar $ x
secretBackstory :: Character -> ActionT Identity Text
secretBackstory = const $ ActionT $ throwE "secretBackstory is secret."
secretBackstory :: ActionT Identity Text
secretBackstory = ActionT $ throwE "secretBackstory is secret."
typeName :: Character -> Text
typeName = either (const "Droid") (const "Human")
@ -184,8 +183,8 @@ getDroid' _ = empty
getFriends :: Character -> [Character]
getFriends char = catMaybes $ liftA2 (<|>) getDroid getHuman <$> friends char
getEpisode :: Int -> Maybe (Type.Wrapping Text)
getEpisode 4 = pure $ Type.Named "NEWHOPE"
getEpisode 5 = pure $ Type.Named "EMPIRE"
getEpisode 6 = pure $ Type.Named "JEDI"
getEpisode :: Int -> Maybe Text
getEpisode 4 = pure "NEW_HOPE"
getEpisode 5 = pure "EMPIRE"
getEpisode 6 = pure "JEDI"
getEpisode _ = empty

View File

@ -10,7 +10,6 @@ import Data.Functor.Identity (Identity(..))
import qualified Data.HashMap.Strict as HashMap
import Data.Text (Text)
import Language.GraphQL
import Language.GraphQL.Schema (Subs)
import Text.RawString.QQ (r)
import Test.Hspec.Expectations (Expectation, shouldBe)
import Test.Hspec (Spec, describe, it)
@ -40,7 +39,7 @@ spec = describe "Star Wars Query Tests" $ do
id
name
friends {
name
name
}
}
}
@ -65,9 +64,9 @@ spec = describe "Star Wars Query Tests" $ do
friends {
name
appearsIn
friends {
name
}
friends {
name
}
}
}
}
@ -78,7 +77,7 @@ spec = describe "Star Wars Query Tests" $ do
, "friends" .= [
Aeson.object [
"name" .= ("Luke Skywalker" :: Text)
, "appearsIn" .= ["NEWHOPE","EMPIRE","JEDI" :: Text]
, "appearsIn" .= ["NEW_HOPE", "EMPIRE", "JEDI" :: Text]
, "friends" .= [
Aeson.object [hanName]
, Aeson.object [leiaName]
@ -88,7 +87,7 @@ spec = describe "Star Wars Query Tests" $ do
]
, Aeson.object [
hanName
, "appearsIn" .= [ "NEWHOPE","EMPIRE","JEDI" :: Text]
, "appearsIn" .= ["NEW_HOPE", "EMPIRE", "JEDI" :: Text]
, "friends" .=
[ Aeson.object [lukeName]
, Aeson.object [leiaName]
@ -97,7 +96,7 @@ spec = describe "Star Wars Query Tests" $ do
]
, Aeson.object [
leiaName
, "appearsIn" .= [ "NEWHOPE","EMPIRE","JEDI" :: Text]
, "appearsIn" .= ["NEW_HOPE", "EMPIRE", "JEDI" :: Text]
, "friends" .=
[ Aeson.object [lukeName]
, Aeson.object [hanName]
@ -360,6 +359,6 @@ spec = describe "Star Wars Query Tests" $ do
testQuery :: Text -> Aeson.Value -> Expectation
testQuery q expected = runIdentity (graphql schema q) `shouldBe` expected
testQueryParams :: Subs -> Text -> Aeson.Value -> Expectation
testQueryParams :: Aeson.Object -> Text -> Aeson.Value -> Expectation
testQueryParams f q expected =
runIdentity (graphqlSubs schema f q) `shouldBe` expected

View File

@ -1,66 +1,133 @@
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Test.StarWars.Schema
( character
, droid
, hero
, human
, schema
( schema
) where
import Control.Monad.Trans.Reader (asks)
import Control.Monad.Trans.Except (throwE)
import Control.Monad.Trans.Class (lift)
import Data.Functor.Identity (Identity)
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.List.NonEmpty (NonEmpty(..))
import Data.Maybe (catMaybes)
import Data.Text (Text)
import qualified Language.GraphQL.Schema as Schema
import Language.GraphQL.Trans
import qualified Language.GraphQL.Type as Type
import Language.GraphQL.Type
import qualified Language.GraphQL.Type.In as In
import qualified Language.GraphQL.Type.Out as Out
import Test.StarWars.Data
import Prelude hiding (id)
-- See https://github.com/graphql/graphql-js/blob/master/src/__tests__/starWarsSchema.js
schema :: HashMap Text (NonEmpty (Schema.Resolver Identity))
schema = HashMap.singleton "Query" $ hero :| [human, droid]
schema :: Schema Identity
schema = Schema { query = queryType, mutation = Nothing }
where
queryType = Out.ObjectType "Query" Nothing [] $ HashMap.fromList
[ ("hero", Out.Resolver heroField hero)
, ("human", Out.Resolver humanField human)
, ("droid", Out.Resolver droidField droid)
]
heroField = Out.Field Nothing (Out.NamedObjectType heroObject)
$ HashMap.singleton "episode"
$ In.Argument Nothing (In.NamedEnumType episodeEnum) Nothing
humanField = Out.Field Nothing (Out.NamedObjectType heroObject)
$ HashMap.singleton "id"
$ In.Argument Nothing (In.NonNullScalarType string) Nothing
droidField = Out.Field Nothing (Out.NamedObjectType droidObject) mempty
hero :: Schema.Resolver Identity
hero = Schema.object "hero" $ do
heroObject :: Out.ObjectType Identity
heroObject = Out.ObjectType "Human" Nothing [] $ HashMap.fromList
[ ("id", Out.Resolver idFieldType (idField "id"))
, ("name", Out.Resolver nameFieldType (idField "name"))
, ("friends", Out.Resolver friendsFieldType (idField "friends"))
, ("appearsIn", Out.Resolver appearsInField (idField "appearsIn"))
, ("homePlanet", Out.Resolver homePlanetFieldType (idField "homePlanet"))
, ("secretBackstory", Out.Resolver secretBackstoryFieldType (String <$> secretBackstory))
, ("__typename", Out.Resolver (Out.Field Nothing (Out.NamedScalarType string) mempty) (idField "__typename"))
]
where
homePlanetFieldType = Out.Field Nothing (Out.NamedScalarType string) mempty
droidObject :: Out.ObjectType Identity
droidObject = Out.ObjectType "Droid" Nothing [] $ HashMap.fromList
[ ("id", Out.Resolver idFieldType (idField "id"))
, ("name", Out.Resolver nameFieldType (idField "name"))
, ("friends", Out.Resolver friendsFieldType (idField "friends"))
, ("appearsIn", Out.Resolver appearsInField (idField "appearsIn"))
, ("primaryFunction", Out.Resolver primaryFunctionFieldType (idField "primaryFunction"))
, ("secretBackstory", Out.Resolver secretBackstoryFieldType (String <$> secretBackstory))
, ("__typename", Out.Resolver (Out.Field Nothing (Out.NamedScalarType string) mempty) (idField "__typename"))
]
where
primaryFunctionFieldType = Out.Field Nothing (Out.NamedScalarType string) mempty
idFieldType :: Out.Field Identity
idFieldType = Out.Field Nothing (Out.NamedScalarType id) mempty
nameFieldType :: Out.Field Identity
nameFieldType = Out.Field Nothing (Out.NamedScalarType string) mempty
friendsFieldType :: Out.Field Identity
friendsFieldType = Out.Field Nothing (Out.ListType $ Out.NamedObjectType droidObject) mempty
appearsInField :: Out.Field Identity
appearsInField = Out.Field (Just description) fieldType mempty
where
fieldType = Out.ListType $ Out.NamedEnumType episodeEnum
description = "Which movies they appear in."
secretBackstoryFieldType :: Out.Field Identity
secretBackstoryFieldType = Out.Field Nothing (Out.NamedScalarType string) mempty
idField :: Text -> ActionT Identity Value
idField f = do
v <- ActionT $ lift $ asks values
let (Object v') = v
pure $ v' HashMap.! f
episodeEnum :: EnumType
episodeEnum = EnumType "Episode" (Just description)
$ HashMap.fromList [newHope, empire, jedi]
where
description = "One of the films in the Star Wars Trilogy"
newHope = ("NEW_HOPE", EnumValue $ Just "Released in 1977.")
empire = ("EMPIRE", EnumValue $ Just "Released in 1980.")
jedi = ("JEDI", EnumValue $ Just "Released in 1983.")
hero :: ActionT Identity Value
hero = do
episode <- argument "episode"
character $ case episode of
Schema.Enum "NEWHOPE" -> getHero 4
Schema.Enum "EMPIRE" -> getHero 5
Schema.Enum "JEDI" -> getHero 6
pure $ character $ case episode of
Enum "NEW_HOPE" -> getHero 4
Enum "EMPIRE" -> getHero 5
Enum "JEDI" -> getHero 6
_ -> artoo
human :: Schema.Resolver Identity
human = Schema.wrappedObject "human" $ do
human :: ActionT Identity Value
human = do
id' <- argument "id"
case id' of
Schema.String i -> do
String i -> do
humanCharacter <- lift $ return $ getHuman i >>= Just
case humanCharacter of
Nothing -> return Type.Null
Just e -> Type.Named <$> character e
Nothing -> pure Null
Just e -> pure $ character e
_ -> ActionT $ throwE "Invalid arguments."
droid :: Schema.Resolver Identity
droid = Schema.object "droid" $ do
droid :: ActionT Identity Value
droid = do
id' <- argument "id"
case id' of
Schema.String i -> character =<< getDroid i
String i -> character <$> getDroid i
_ -> ActionT $ throwE "Invalid arguments."
character :: Character -> ActionT Identity [Schema.Resolver Identity]
character char = return
[ Schema.scalar "id" $ return $ id_ char
, Schema.scalar "name" $ return $ name char
, Schema.wrappedObject "friends"
$ traverse character $ Type.List $ Type.Named <$> getFriends char
, Schema.wrappedScalar "appearsIn" $ return . Type.List
$ catMaybes (getEpisode <$> appearsIn char)
, Schema.scalar "secretBackstory" $ secretBackstory char
, Schema.scalar "homePlanet" $ return $ either mempty homePlanet char
, Schema.scalar "__typename" $ return $ typeName char
character :: Character -> Value
character char = Object $ HashMap.fromList
[ ("id", String $ id_ char)
, ("name", String $ name_ char)
, ("friends", List $ character <$> getFriends char)
, ("appearsIn", List $ Enum <$> catMaybes (getEpisode <$> appearsIn char))
, ("homePlanet", String $ either mempty homePlanet char)
, ("__typename", String $ typeName char)
]