# This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at https://mozilla.org/MPL/2.0/. .section .rodata panic_message: .asciz "\nPanic" .equ PANIC_MESSAGE_SIZE, . - panic_message .section .text.boot .type _start, @function .globl _start _start: # Save the physical start of the text section. # This must be the first instruction. auipc s2, 0 mv s1, a1 # Save the device tree pointer. # Virtual address of the start of the text section. lui s3, %hi(_start) addi s3, s3, %lo(_start) sub s4, s3, s2 # Save the offset to the virtual memory address. # Set the stack pointer. mv a0, s4 call set_up_stack # Create identity mapping for the kernel and copy it to higher half. mv a0, s2 mv a1, sp call get_page_tables_size mv a3, a0 mv a0, s2 mv a1, sp mv a2, s4 jal imem_initialize mv a0, s3 jal imem_mirror call set_up_trap_routine add sp, sp, s4 # Move the stack to the virtual memory. # Zero BSS and kernel stack. lui a0, %hi(__bss_start) addi a0, a0, %lo(__bss_start) mv a1, sp call imem_zero mv a0, sp mv a1, s1 lui t0, %hi(kernel_main) jr t0, %lo(kernel_main) # Given the start and end addresses of the kernel, calculates how # much additional storage should be mapped to store the page tables. # The original formula for getting the number of required pages is: # ((sp - start) / 4096 + 1 + 1023) / 1024. # # - sp is the stack pointer (kernel end). # - The kernel size is divided by the page size. It is the kernel size in pages. # - One additional page is added for the root page table. # - 1023 is added so the next division is rounded up and not down. # # A simplified formula is used in the actual implementation. # # Parameters: # a0 - Kernel start address. # a1 - Kernel end address. # # Returns the result in a0. .type get_page_tables_size, @function get_page_tables_size: sub a0, a1, a0 srli a0, a0, 22 addi a0, a0, 1 slli a0, a0, 12 ret # Set an exception handler. .type set_up_trap_routine, @function set_up_trap_routine: lui t0, %hi(trap_routine) addi t0, t0, %lo(trap_routine) csrw stvec, t0 ret .type set_up_stack, @function set_up_stack: lui sp, %hi(end) addi sp, sp, %lo(end) sub sp, sp, a0 li t0, 64 * 1024 add sp, sp, t0 ret # Zeroes a chunk of memory. # # Parameters: # a0 - Memory start pointer. # a1 - Memory end pointer. .type imem_zero, @function imem_zero: mv t0, a0 .Limem_zero_loop: bgeu t0, a1, .Limem_zero_end sw zero, (t0) addi t0, t0, 4 j .Limem_zero_loop .Limem_zero_end: ret # Copies the identity mappings to the higher half. # # Parameters: # a0 - Start of the kernel virtual space. .type imem_mirror, @function imem_mirror: csrr t0, satp slli t0, t0, 12 li t3, 0x1000 add t1, t0, t3 # Original page table. add t2, t1, t3 # Copied page table. mv t3, t2 .Limem_mirror_copy: lw t4, (t1) sw t4, (t3) addi t3, t3, 4 addi t1, t1, 4 blt t1, t2, .Limem_mirror_copy # Persist the copied page table in the root page table. srli t4, a0, 20 # VPN[1] * PTESIZE. add t4, t0, t4 # a + VPN[1] * PTESIZE. srli t3, t2, 2 ori t3, t3, 0b1 sw t3, (t4) ret # Activates paging and creates root page table. # Allocates enough pages for the kernel and its stack. # # Parameters: # a0 - Physical start of the text section. # a1 - Page aligned address following the kernel (kernel end). # a2 - Offset from the physical to virtual memory. # a3 - Size of additional page tables. .type imem_initialize, @function imem_initialize: # Prologue. addi sp, sp, -32 sw ra, 28(sp) sw s0, 24(sp) addi s0, sp, 32 sw s1, 16(sp) sw s2, 12(sp) sw s3, 8(sp) # Set s1 to the beginning of free memory (skipping root page table). li s1, 4096 add s1, a1, s1 slli a3, a3, 1 # Multiply by two to account for the copy in virtual memory. # s1 is a1 + PAGE, where PAGE is a free page reserved for future use, # since the size of the root page table is already included in a3. # s1 is used to avoid calculating a1 + PAGE_SIZE twice. add a3, s1, a3 sw a3, 20(sp) # Set boundaries between segments. lui s2, %hi(etext) sub s2, s2, a2 lui s3, %hi(_data) sub s3, s3, a2 # Set the root page since it is used by mapping functions, # but don't activate paging before the segments are property mapped. srli t0, a1, 12 csrw satp, t0 # Executable section. # a0 is coming from the parameter. addi a1, s2, %lo(etext) mv a2, s1 li a3, 1 li a4, 0b1010 jal imem_map_range # Read only section. addi a0, s2, %lo(etext) addi a1, s3, %lo(_data) mv a2, s1 li a3, 1 li a4, 0b0010 jal imem_map_range # Data section. addi a0, s3, %lo(_data) lw a1, 20(sp) mv a2, s1 li a3, 1 li a4, 0b0110 jal imem_map_range # Enable paging. csrr t0, satp li t1, 0x80000000 or t0, t0, t1 sfence.vma csrw satp, t0 sfence.vma lw s3, 8(sp) lw s2, 12(sp) lw s1, 16(sp) # Epilogue. lw ra, 28(sp) lw s0, 24(sp) addi sp, sp, 32 ret # Maps multiple pages of physical memory to the identical virtual memory. # # Parameters: # a0 - Start address. # a1 - End address. # a2 - Start of the free memory that can be used to create leaf page tables. # a3 - Page table level. If a3 is 0 a superpage is allocated, otherwise a normal page. # a4 - Flags. .type imem_map_range, @function imem_map_range: # Prologue. addi sp, sp, -32 sw ra, 28(sp) sw s0, 24(sp) addi s0, sp, 32 sw s1, 20(sp) sw a2, 16(sp) sw a3, 12(sp) sw a4, 8(sp) mv s1, a1 .Limem_map_range_loop: bge a0, s1, .Limem_map_range_end mv a1, a0 lw a2, 16(sp) lw a3, 12(sp) lw a4, 8(sp) jal imem_map_at li t0, 4096 add a0, a0, t0 j .Limem_map_range_loop .Limem_map_range_end: lw s1, 20(sp) # Epilogue. lw ra, 28(sp) lw s0, 24(sp) addi sp, sp, 32 ret # Maps a page of physical memory to the identical virtual memory. # # Parameters: # a0 - Corresponding virtual address. # a1 - Physical page address. # a2 - Free memory page that can be used to create a leaf page table. # a3 - Page table level. If a3 is 0 a superpage is allocated, otherwise a normal page. # a4 - Flags. # # Returns virtual page address in a0. .type imem_map_at, @function imem_map_at: csrr t0, satp slli t0, t0, 12 # Root table address. li t4, 0xfffffc00 li t5, 0xffc # 10 bit * PTESIZE mask. li t1, 20 .Limem_map_at_loop: # Multiply VPN[i] by 4 and add to the start address of the page table. # This gives the physical address of the page table entry. srl t2, a0, t1 and t2, t2, t5 # VPN[i] * PTESIZE. add t2, t0, t2 # a + VPN[i] * PTESIZE. beqz a3, .Limem_map_at_leaf lw t3, (t2) andi t6, t3, 0b1 beqz t6, .Limem_map_at_create and t0, t3, t4 slli t0, t0, 2 j .Limem_map_at_next .Limem_map_at_create: # Take a chunk of free memory and use it as the next page table. # The beginning addres off the chunk is the base address (a) for the next level. mv t0, a2 srli t3, t0, 2 ori t3, t3, 0b1 sw t3, (t2) .Limem_map_at_next: # Calculate the next page table address for the next level. addi t1, t1, -10 addi a3, a3, -1 j .Limem_map_at_loop .Limem_map_at_leaf: srli t3, a1, 2 # Physical page number mapped to 12 bits of the page table entry. ori a4, a4, 0b1 or t3, t3, a4 # Execute, write, read and valid. sw t3, (t2) ret .section .text .type kernel_main, @function kernel_main: # Prologue. addi sp, sp, -32 sw ra, 28(sp) sw s0, 24(sp) addi s0, sp, 32 sw a0, 20(sp) sw a1, 16(sp) # Map flat device tree to the virtual memory. lw a0, 16(sp) li t0, 0xffc00000 and a0, a0, t0 mv a1, a0 lw a2, 20(sp) li a3, 0 li a4, 0b0010 call imem_map_at lw a0, 16(sp) call device_tree # Do nothing in a loop. .Lkernel_main: j .Lkernel_main # Epilogue. lw ra, 28(sp) lw s0, 24(sp) addi sp, sp, 32 ret .balign 4 .type trap_routine, @function trap_routine: csrw sscratch, sp addi sp, sp, -4 * 31 sw ra, 0(sp) sw gp, 4(sp) sw tp, 8(sp) sw t0, 12(sp) sw t1, 16(sp) sw t2, 20(sp) sw t3, 24(sp) sw t4, 28(sp) sw t5, 32(sp) sw t6, 36(sp) sw a0, 40(sp) sw a1, 44(sp) sw a2, 48(sp) sw a3, 52(sp) sw a4, 56(sp) sw a5, 60(sp) sw a6, 64(sp) sw a7, 68(sp) sw s0, 72(sp) sw s1, 76(sp) sw s2, 80(sp) sw s3, 84(sp) sw s4, 88(sp) sw s5, 92(sp) sw s6, 96(sp) sw s7, 100(sp) sw s8, 104(sp) sw s9, 108(sp) sw s10, 112(sp) sw s11, 116(sp) csrr a0, sscratch sw a0, 120(sp) mv a0, sp call handle_trap lw ra, 0(sp) lw gp, 4(sp) lw tp, 8(sp) lw t0, 12(sp) lw t1, 16(sp) lw t2, 20(sp) lw t3, 24(sp) lw t4, 28(sp) lw t5, 32(sp) lw t6, 36(sp) lw a0, 40(sp) lw a1, 44(sp) lw a2, 48(sp) lw a3, 52(sp) lw a4, 56(sp) lw a5, 60(sp) lw a6, 64(sp) lw a7, 68(sp) lw s0, 72(sp) lw s1, 76(sp) lw s2, 80(sp) lw s3, 84(sp) lw s4, 88(sp) lw s5, 92(sp) lw s6, 96(sp) lw s7, 100(sp) lw s8, 104(sp) lw s9, 108(sp) lw s10, 112(sp) lw s11, 116(sp) lw sp, 120(sp) sret .type handle_trap, @function handle_trap: # Prologue. addi sp, sp, -32 sw ra, 28(sp) sw s0, 24(sp) addi s0, sp, 32 csrr t0, scause csrr t1, stval csrr t2, sepc li a1, PANIC_MESSAGE_SIZE la a0, panic_message call write_s li a0, ' ' call write_c csrr a0, scause la a1, write_c call print_i call separator call write_c csrr a0, stval la a1, write_c call print_i call separator call write_c csrr a0, sepc la a1, write_c call print_i call panic # Epilogue. lw ra, 28(sp) lw s0, 24(sp) addi sp, sp, 32 ret .type panic, @function panic: # Prologue. addi sp, sp, -32 sw ra, 28(sp) sw s0, 24(sp) addi s0, sp, 32 li a0, '\n' call write_c .Lpanic: j .Lpanic # Epilogue. lw ra, 28(sp) lw s0, 24(sp) addi sp, sp, 32 ret