elna/backend/riscv.cpp

417 lines
18 KiB
C++

#include "elna/backend/riscv.hpp"
#include <cassert>
#include <memory>
namespace elna::riscv
{
instruction::instruction(base_opcode opcode)
{
this->representation = static_cast<std::underlying_type<base_opcode>::type>(opcode);
}
instruction& instruction::i(x_register rd, funct3_t funct3, x_register rs1, std::uint32_t immediate)
{
this->representation |= (static_cast<std::underlying_type<x_register>::type>(rd) << 7)
| (static_cast<std::underlying_type<funct3_t>::type>(funct3) << 12)
| (static_cast<std::underlying_type<x_register>::type>(rs1) << 15)
| (immediate << 20);
return *this;
}
instruction& instruction::s(std::uint32_t imm, funct3_t funct3, x_register rs1, x_register rs2)
{
this->representation |= ((imm & 0x1f) << 7)
| (static_cast<std::underlying_type<funct3_t>::type>(funct3) << 12)
| (static_cast<std::underlying_type<x_register>::type>(rs1) << 15)
| (static_cast<std::underlying_type<x_register>::type>(rs2) << 20)
| ((imm & 0xfe0) << 20);
return *this;
}
instruction& instruction::b(std::uint32_t imm, funct3_t funct3, x_register rs1, x_register rs2)
{
this->representation |= ((imm & 0x800) >> 4) | ((imm & 0x1e) << 7)
| (static_cast<std::underlying_type<funct3_t>::type>(funct3) << 12)
| (static_cast<std::underlying_type<x_register>::type>(rs1) << 15)
| (static_cast<std::underlying_type<x_register>::type>(rs2) << 20)
| ((imm & 0x7e0) << 20) | ((imm & 0x1000) << 19);
return *this;
}
instruction& instruction::r(x_register rd, funct3_t funct3, x_register rs1, x_register rs2, funct7_t funct7)
{
this->representation |= (static_cast<std::underlying_type<x_register>::type>(rd) << 7)
| (static_cast<std::underlying_type<funct3_t>::type>(funct3) << 12)
| (static_cast<std::underlying_type<x_register>::type>(rs1) << 15)
| (static_cast<std::underlying_type<x_register>::type>(rs2) << 20)
| (static_cast<std::underlying_type<funct7_t>::type>(funct7) << 25);
return *this;
}
instruction& instruction::u(x_register rd, std::uint32_t imm)
{
this->representation |= (static_cast<std::underlying_type<x_register>::type>(rd) << 7) | (imm << 12);
return *this;
}
instruction& instruction::j(x_register rd, std::uint32_t imm)
{
this->representation |= (static_cast<std::underlying_type<x_register>::type>(rd) << 7)
| (imm & 0xff000) | ((imm & 0x800) << 9) | ((imm & 0x7fe) << 20) | ((imm & 0x100000) << 11);
return *this;
}
const std::byte *instruction::cbegin() const
{
return reinterpret_cast<const std::byte *>(&this->representation);
}
const std::byte *instruction::cend() const
{
return reinterpret_cast<const std::byte *>(&this->representation) + sizeof(this->representation);
}
visitor::visitor(std::shared_ptr<source::writer> writer,
std::shared_ptr<source::symbol_table> table)
: writer(writer), table(table)
{
}
void visitor::generate_intrinsics()
{
this->writer->sink("printf");
{
auto format_string = this->writer->sink(reinterpret_cast<const std::byte *>("%c\n\0"), 4);
prologue();
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a1, funct3_t::addi, x_register::zero, 't'));
this->instructions.push_back(instruction(base_opcode::branch)
.b(8, funct3_t::bne, x_register::zero, x_register::a0));
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a1, funct3_t::addi, x_register::zero, 'f'));
relocate(format_string, address_t::high20);
this->instructions.push_back(instruction(base_opcode::lui).u(x_register::a5, 0));
relocate(format_string, address_t::lower12i);
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a0, funct3_t::addi, x_register::a5, 0));
relocate("printf", address_t::text);
this->instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0));
this->instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::ra, funct3_t::jalr, x_register::ra, 0));
epilogue(8);
this->writer->sink("writeb", reinterpret_cast<const std::byte *>(this->instructions.data()),
this->instructions.size() * sizeof(instruction));
this->instructions.clear();
}
{
auto format_string = this->writer->sink(reinterpret_cast<const std::byte *>("%d\n\0"), 4);
prologue();
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a1, funct3_t::addi, x_register::a0, 0));
relocate(format_string, address_t::high20);
this->instructions.push_back(instruction(base_opcode::lui).u(x_register::a5, 0));
relocate(format_string, address_t::lower12i);
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a0, funct3_t::addi, x_register::a5, 0));
relocate("printf", address_t::text);
this->instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0));
this->instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::ra, funct3_t::jalr, x_register::ra, 0));
epilogue(8);
this->writer->sink("writei", reinterpret_cast<const std::byte *>(this->instructions.data()),
this->instructions.size() * sizeof(instruction));
this->instructions.clear();
}
}
void visitor::relocate(std::string_view name, address_t target)
{
this->references.push_back(reference());
this->references.back().name = name;
this->references.back().offset = writer->size() + instructions.size() * 4;
this->references.back().target = target;
}
void visitor::visit(source::declaration *declaration)
{
}
void visitor::visit(source::constant_definition *definition)
{
}
void visitor::prologue()
{
this->variable_counter = 1;
this->instructions.push_back(instruction(base_opcode::opImm));
this->instructions.push_back(instruction(base_opcode::store));
this->instructions.push_back(instruction(base_opcode::store));
this->instructions.push_back(instruction(base_opcode::opImm));
}
void visitor::epilogue(const std::size_t stack_size)
{
this->instructions[0].i(x_register::sp, funct3_t::addi, x_register::sp, -stack_size);
this->instructions[1].s(0, funct3_t::sw, x_register::sp, x_register::s0);
this->instructions[2].s(4, funct3_t::sw, x_register::sp, x_register::ra);
this->instructions[3].i(x_register::s0, funct3_t::addi, x_register::sp, stack_size);
// Epilogue.
this->instructions.push_back(instruction(base_opcode::load)
.i(x_register::s0, funct3_t::lw, x_register::sp, 0));
this->instructions.push_back(instruction(base_opcode::load)
.i(x_register::ra, funct3_t::lw, x_register::sp, 4));
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::sp, funct3_t::addi, x_register::sp, stack_size));
this->instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::zero, funct3_t::jalr, x_register::ra, 0));
}
void visitor::visit(source::procedure_definition *definition)
{
prologue();
auto main_symbol =
std::dynamic_pointer_cast<source::procedure_info>(this->table->lookup(definition->identifier()));
this->table = main_symbol->scope();
definition->body().accept(this);
this->table = main_symbol->scope()->scope();
// Set the return value (0).
this->instructions.push_back(instruction(base_opcode::op)
.r(x_register::a0, funct3_t::_and, x_register::zero, x_register::zero));
epilogue(static_cast<std::uint32_t>(this->variable_counter * 4 + 8 + main_symbol->stack_size()));
this->writer->sink(definition->identifier(),
reinterpret_cast<const std::byte *>(this->instructions.data()),
this->instructions.size() * sizeof(instruction));
this->instructions.clear();
}
void visitor::visit(source::block *block)
{
block->body().accept(this);
}
void visitor::visit(source::program *program)
{
generate_intrinsics();
for (auto& definition : program->definitions())
{
definition->accept(this);
}
prologue();
auto main_symbol =
std::dynamic_pointer_cast<source::procedure_info>(this->table->lookup("main"));
program->body().accept(this);
// Set the return value (0).
this->instructions.push_back(instruction(base_opcode::op)
.r(x_register::a0, funct3_t::_and, x_register::zero, x_register::zero));
epilogue(static_cast<std::uint32_t>(this->variable_counter * 4 + 8 + main_symbol->local_stack_size));
this->writer->sink("main", reinterpret_cast<const std::byte *>(this->instructions.data()),
this->instructions.size() * sizeof(instruction));
}
void visitor::visit(source::call_statement *statement)
{
std::size_t argument_offset{ 0 };
for (auto& argument : statement->arguments())
{
argument->accept(this);
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
this->instructions.push_back(instruction(base_opcode::store)
.s(argument_offset, funct3_t::sw, x_register::sp, free_register));
argument_offset += 4;
}
relocate(statement->name(), address_t::text);
this->instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0));
this->instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::ra, funct3_t::jalr, x_register::ra, 0));
}
void visitor::visit(source::compound_statement *statement)
{
for (auto& nested_statement : statement->statements())
{
nested_statement->accept(this);
}
}
void visitor::visit(source::assign_statement *statement)
{
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
auto symbol = table->lookup(statement->lvalue());
auto variable_symbol = std::dynamic_pointer_cast<source::variable_info>(symbol);
statement->rvalue().accept(this);
this->instructions.push_back(instruction(base_opcode::store)
.s(variable_symbol->offset, funct3_t::sw, x_register::s0, x_register::a0));
}
void visitor::visit(source::if_statement *statement)
{
statement->prerequisite().accept(this);
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
auto before_branch = instructions.size();
instructions.push_back(instruction(base_opcode::branch));
statement->body().accept(this);
instructions[before_branch]
.b((instructions.size() - before_branch) * 4 - 4, funct3_t::beq, x_register::zero, free_register);
}
void visitor::visit(source::while_statement *statement)
{
statement->prerequisite().accept(this);
statement->body().accept(this);
}
void visitor::visit(source::variable_expression *variable)
{
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
auto symbol = table->lookup(variable->name());
if (auto constant_symbol = std::dynamic_pointer_cast<source::constant_info>(symbol))
{
this->instructions.push_back(
instruction(base_opcode::opImm) // movl $x, %eax; where $x is a number.
.i(free_register, funct3_t::addi, x_register::zero, constant_symbol->value())
);
}
else if (auto variable_symbol = std::dynamic_pointer_cast<source::variable_info>(symbol))
{
this->instructions.push_back(
instruction(base_opcode::load)
.i(free_register, funct3_t::lw, x_register::s0, variable_symbol->offset)
);
}
else if (auto parameter_symbol = std::dynamic_pointer_cast<source::parameter_info>(symbol))
{
this->instructions.push_back(
instruction(base_opcode::load)
.i(free_register, funct3_t::lw, x_register::s0, parameter_symbol->offset)
);
}
}
void visitor::visit(source::binary_expression *expression)
{
const auto lhs_register = this->register_in_use ? x_register::a0 : x_register::t0;
this->register_in_use = true;
expression->lhs().accept(this);
auto lhs_stack_position = this->variable_counter * 4;
++this->variable_counter;
this->instructions.push_back(
instruction(base_opcode::store)
.s(static_cast<std::uint32_t>(lhs_stack_position), funct3_t::sw, x_register::sp, x_register::a0)
);
this->register_in_use = false;
expression->rhs().accept(this);
this->register_in_use = lhs_register == x_register::a0; // Restore.
this->instructions.push_back(instruction(base_opcode::load)
.i(x_register::a0, funct3_t::lw, x_register::sp,
static_cast<std::int8_t>(lhs_stack_position))
);
// Calculate the result and assign it to a variable on the stack.
switch (expression->operation())
{
case source::binary_operator::sum:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::add, x_register::a0, x_register::t0));
break;
case source::binary_operator::subtraction:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sub, x_register::a0, x_register::t0, funct7_t::sub));
break;
case source::binary_operator::multiplication:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::mul, x_register::a0, x_register::t0, funct7_t::muldiv));
break;
case source::binary_operator::division:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::div, x_register::a0, x_register::t0, funct7_t::muldiv));
break;
case source::binary_operator::equals:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sub, x_register::a0, x_register::t0, funct7_t::sub));
this->instructions.push_back(instruction(base_opcode::opImm)
.i(lhs_register, funct3_t::sltiu, lhs_register, 1));
break;
case source::binary_operator::not_equals:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sub, x_register::a0, x_register::t0, funct7_t::sub));
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sltu, x_register::zero, lhs_register));
break;
case source::binary_operator::less:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sltu, x_register::a0, x_register::t0));
break;
case source::binary_operator::greater_equal:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sltu, x_register::t0, x_register::a0));
break;
case source::binary_operator::greater:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::slt, x_register::a0, x_register::t0));
this->instructions.push_back(instruction(base_opcode::opImm)
.i(lhs_register, funct3_t::xori, lhs_register, 1));
break;
case source::binary_operator::less_equal:
this->instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::slt, x_register::t0, x_register::a0));
this->instructions.push_back(instruction(base_opcode::opImm)
.i(lhs_register, funct3_t::xori, lhs_register, 1));
break;
}
}
void visitor::visit(source::integer_literal *number)
{
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
this->instructions.push_back(
instruction(base_opcode::opImm) // movl $x, %eax; where $x is a number.
.i(free_register, funct3_t::addi, x_register::zero, number->number())
);
}
void visitor::visit(source::boolean_literal *number)
{
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
this->instructions.push_back(
instruction(base_opcode::opImm) // movl $x, %eax; where $x is a number.
.i(free_register, funct3_t::addi, x_register::zero, number->boolean())
);
}
}