# This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at https://mozilla.org/MPL/2.0/. # Stage 9 compiler. # const symbol_builtin_name_int := "Int"; symbol_builtin_name_word := "Word"; symbol_builtin_name_pointer := "Pointer"; symbol_builtin_name_char := "Char"; symbol_builtin_name_bool := "Bool"; # Every type info starts with a word describing what type it is. # # PRIMITIVE_TYPE = 1 # # Primitive types have only type size. symbol_builtin_type_int := S(1, 4); symbol_builtin_type_word := S(1, 4); symbol_builtin_type_pointer := S(1, 4); symbol_builtin_type_char := S(1, 1); symbol_builtin_type_bool := S(1, 1); # Info objects start with a word describing its type. # # INFO_TYPE = 1 # # Type info has the type it belongs to. symbol_type_info_int := S(1, @symbol_builtin_type_int); symbol_type_info_word := S(1, @symbol_builtin_type_word); symbol_type_info_pointer := S(1, @symbol_builtin_type_pointer); symbol_type_info_char := S(1, @symbol_builtin_type_char); symbol_type_info_bool := S(1, @symbol_builtin_type_bool); # When modifiying also change the read size in the entry point procedure. .type source_code, @object source_code: .zero 81920 .type compiler_strings, @object compiler_strings: .zero 8192 var compiler_strings_position: Pointer := @compiler_strings; compiler_strings_length: Word := 0; source_code_position: Pointer := @source_code; # Calculates and returns the string token length between quotes, including the # escaping slash characters. # # Parameters: # a0 - String token pointer. # # Returns the length in a0. proc _string_length(); begin # Reset the counter. v0 := 0; .string_length_loop: v88 := v88 + 1; lw t0, 88(sp) lb t0, (t0) li t1, '"' beq t0, t1, .string_length_end v0 := v0 + 1; goto .string_length_loop; .string_length_end: return v0 end; # Adds a string to the global, read-only string storage. # # Parameters: # a0 - String token. # # Returns the offset from the beginning of the storage to the new string in a0. proc _add_string(); begin v0 := v88 + 1; v4 := compiler_strings_length; .add_string_loop: lw t0, 0(sp) lb t1, (t0) li t2, '"' beq t1, t2, .add_string_end la t2, compiler_strings_position lw t3, (t2) sb t1, (t3) addi t3, t3, 1 sw t3, (t2) addi t0, t0, 1 sw t0, 0(sp) li t2, '\\' bne t1, t2, .add_string_increment goto .add_string_loop; .add_string_increment: la t2, compiler_strings_length lw t4, (t2) addi t4, t4, 1 sw t4, (t2) goto .add_string_loop; .add_string_end: return v4 end; # Reads standard input into a buffer. # a0 - Buffer pointer. # a1 - Buffer size. # # Returns the amount of bytes written in a0. proc _read_file(); begin mv a2, a1 mv a1, a0 # STDIN. li a0, 0 li a7, 63 # SYS_READ. ecall end; # Writes to the standard output. # # Parameters: # a0 - Buffer. # a1 - Buffer length. proc _write_s(); begin mv a2, a1 mv a1, a0 # STDOUT. li a0, 1 li a7, 64 # SYS_WRITE. ecall end; # Writes a number to a string buffer. # # t0 - Local buffer. # t1 - Constant 10. # t2 - Current character. # t3 - Whether the number is negative. # # Parameters: # a0 - Whole number. # a1 - Buffer pointer. # # Sets a0 to the length of the written number. proc _print_i(); begin li t1, 10 addi t0, s0, -9 li t3, 0 bgez a0, .print_i_digit10 li t3, 1 neg a0, a0 .print_i_digit10: rem t2, a0, t1 addi t2, t2, '0' sb t2, 0(t0) div a0, a0, t1 addi t0, t0, -1 bne zero, a0, .print_i_digit10 beq zero, t3, .print_i_write_call addi t2, zero, '-' sb t2, 0(t0) addi t0, t0, -1 .print_i_write_call: mv a0, a1 addi a1, t0, 1 sub a2, s0, t0 addi a2, a2, -9 sw a2, 0(sp) _memcpy(); return v0 end; # Writes a number to the standard output. # # Parameters: # a0 - Whole number. proc _write_i(); begin _print_i(v88, @v0); mv a1, a0 addi a0, sp, 0 _write_s(); end; # Writes a character from a0 into the standard output. proc _write_c(); begin _write_s(@v88, 1); end; # Write null terminated string. # # Parameters: # a0 - String. proc _write_z(); begin .write_z_loop: # Check for 0 character. lw a0, 88(sp) lb a0, (a0) beqz a0, .write_z_end # Print a character. _write_c(); # Advance the input string by one byte. v88 := v88 + 1; goto .write_z_loop; .write_z_end: end; # Detects if a0 is an uppercase character. Sets a0 to 1 if so, otherwise to 0. proc _is_upper(); begin v0 := v88 >= 'A'; v4 := v88 <= 'Z'; return v0 & v4 end; # Detects if a0 is an lowercase character. Sets a0 to 1 if so, otherwise to 0. proc _is_lower(); begin v0 := v88 >= 'a'; v4 := v88 <= 'z'; return v0 & v4 end; # Detects if the passed character is a 7-bit alpha character or an underscore. # # Paramters: # a0 - Tested character. # # Sets a0 to 1 if the character is an alpha character or underscore, sets it to 0 otherwise. proc _is_alpha(); begin sw a0, 0(sp) _is_upper(); sw a0, 4(sp) _is_lower(v0); lw t0, 0(sp) xori t1, t0, '_' seqz t1, t1 lw t0, 4(sp) or a0, a0, t0 or a0, a0, t1 end; # Detects whether the passed character is a digit # (a value between 0 and 9). # # Parameters: # a0 - Exemined value. # # Sets a0 to 1 if it is a digit, to 0 otherwise. proc _is_digit(); begin v0 := v88 >= '0'; v4 := v88 <= '9'; return v0 & v4 end; proc _is_alnum(); begin sw a0, 4(sp) _is_alpha(); sw a0, 0(sp) _is_digit(v4); lw a1, 0(sp) or a0, a0, a1 end; # Reads the next token. # # Returns token length in a0. proc _read_token(); begin # Current token position. v0 := source_code_position; # Token length. v4 := 0; .read_token_loop: lw t0, 0(sp) lb t0, (t0) # Current character. # First we try to read a derictive. # A derictive can contain a dot and characters. li t1, '.' beq t0, t1, .read_token_next lw a0, 0(sp) lb a0, (a0) _is_alnum(); bnez a0, .read_token_next goto .read_token_end; .read_token_next: # Advance the source code position and token length. v4 := v4 + 1; v0 := v0 + 1; goto .read_token_loop; .read_token_end: return v4 end; # a0 - First pointer. # a1 - Second pointer. # a2 - The length to compare. # # Returns 0 in a0 if memory regions are equal. proc _memcmp(); begin mv t0, a0 li a0, 0 .memcmp_loop: beqz a2, .memcmp_end lbu t1, (t0) lbu t2, (a1) sub a0, t1, t2 bnez a0, .memcmp_end addi t0, t0, 1 addi a1, a1, 1 addi a2, a2, -1 goto .memcmp_loop; .memcmp_end: end; # Copies memory. # # Parameters: # a0 - Destination. # a1 - Source. # a2 - Size. # # Preserves a0. proc _memcpy(); begin mv t0, a0 .memcpy_loop: beqz a2, .memcpy_end lbu t1, (a1) sb t1, (a0) addi a0, a0, 1 addi a1, a1, 1 addi a2, a2, -1 goto .memcpy_loop .memcpy_end: mv a0, t0 end; # Advances the token stream by a0 bytes. proc _advance_token(); begin la t0, source_code_position lw t1, (t0) add t1, t1, a0 sw t1, (t0) end; # Prints the current token. # # Parameters: # a0 - Token length. # # Returns a0 unchanged. proc _write_token(); begin _write_s(source_code_position, v88); return v88 end; proc _compile_section(); begin # Print and skip the ".section" (8 characters) directive and a space after it. _write_token(9); _advance_token(); # Read the section name. _read_token(); addi a0, a0, 1 _write_token(); _advance_token(); end; # Prints and skips a line. proc _skip_comment(); begin la t0, source_code_position lw t1, (t0) .skip_comment_loop: # Check for newline character. lb t2, (t1) li t3, '\n' beq t2, t3, .skip_comment_end # Advance the input string by one byte. addi t1, t1, 1 sw t1, (t0) goto .skip_comment_loop; .skip_comment_end: # Skip the newline. addi t1, t1, 1 sw t1, (t0) end; # Prints and skips a line. proc _compile_line(); begin .compile_line_loop: la a0, source_code_position lw a1, (a0) lb t0, (a1) li t1, '\n' beq t0, t1, .compile_line_end # Print a character. lw a0, (a1) _write_c(); # Advance the input string by one byte. _advance_token(1); goto .compile_line_loop; .compile_line_end: _write_c('\n'); _advance_token(1); end; proc _compile_integer_literal(); begin _write_z("\tli t0, \0"); _read_token(); _write_token(); _advance_token(); _write_c('\n'); end; proc _compile_character_literal(); begin _write_z("\tli t0, \0"); _write_c('\''); _advance_token(1); la t0, source_code_position lw t0, (t0) lb a0, (t0) li t1, '\\' bne a0, t1, .compile_character_literal_end _write_c('\\'); _advance_token(1); .compile_character_literal_end: la t0, source_code_position lw t0, (t0) lb a0, (t0) _write_c(); _write_c('\''); _write_c('\n'); _advance_token(2); end; proc _compile_variable_expression(); begin _compile_designator(); _write_z("\tlw t0, (t0)\n\0"); end; proc _compile_address_expression(); begin # Skip the "@" sign. _advance_token(1); _compile_designator(); end; proc _compile_negate_expression(); begin # Skip the "-" sign. _advance_token(1); _compile_term(); _write_z("\tneg t0, t0\n\0"); end; proc _compile_not_expression(); begin # Skip the "~" sign. _advance_token(1); _compile_term(); _write_z("\tnot t0, t0\n\0"); end; proc _compile_string_literal(); begin _string_length(source_code_position); sw a0, 0(sp) _add_string(source_code_position); sw a0, 4(sp) _advance_token(v0 + 2); _write_z("\tla t0, strings\n\0"); _write_z("\tli t1, \0"); _write_i(v4); _write_c('\n'); _write_z("\tadd t0, t0, t1\n\0"); end; proc _compile_term(); begin la t0, source_code_position lw t0, (t0) lb a0, (t0) sw a0, 0(sp) li t1, '\'' beq a0, t1, .compile_term_character_literal li t1, '@' beq a0, t1, .compile_term_address li t1, '-' beq a0, t1, .compile_term_negation li t1, '~' beq a0, t1, .compile_term_not li t1, '"' beq a0, t1, .compile_term_string_literal _is_digit(v0); bnez a0, .compile_term_integer_literal goto .compile_term_variable; .compile_term_character_literal: _compile_character_literal(); goto .compile_term_end; .compile_term_integer_literal: _compile_integer_literal(); goto .compile_term_end; .compile_term_address: _compile_address_expression(); goto .compile_term_end; .compile_term_negation: _compile_negate_expression(); goto .compile_term_end; .compile_term_not: _compile_not_expression(); goto .compile_term_end; .compile_term_string_literal: _compile_string_literal(); goto .compile_term_end; .compile_term_variable: _compile_variable_expression(); goto .compile_term_end; .compile_term_end: end; proc _compile_binary_rhs(); begin # Skip the whitespace after the binary operator. _advance_token(1); _compile_term(); # Load the left expression from the stack; _write_z("\tlw t1, 24(sp)\n\0"); end; proc _compile_expression(); begin _compile_term(); la t0, source_code_position lw t0, (t0) lb a0, (t0) li t1, ' ' bne a0, t1, .compile_expression_end # It is a binary expression. # Save the value of the left expression on the stack. _write_z("sw t0, 24(sp)\n\0"); # Skip surrounding whitespace in front of the operator. _advance_token(1); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '+' beq t0, t1, .compile_expression_add li t1, '*' beq t0, t1, .compile_expression_mul li t1, '&' beq t0, t1, .compile_expression_and li t1, 'o' beq t0, t1, .compile_expression_or li t1, 'x' beq t0, t1, .compile_expression_xor li t1, '=' beq t0, t1, .compile_expression_equals li t1, '<' beq t0, t1, .compile_expression_less li t1, '>' beq t0, t1, .compile_expression_greater # Unknown binary operator. unimp .compile_expression_add: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("add t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_mul: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\tmul t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_and: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\tand t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_or: _advance_token(2); _compile_binary_rhs(); # Execute the operation. _write_z("or t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_xor: _advance_token(3); _compile_binary_rhs(); # Execute the operation. _write_z("xor t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_equals: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("xor t0, t0, t1\nseqz t0, t0\n\0"); goto .compile_expression_end; .compile_expression_less: _advance_token(1); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '>' beq t0, t1, .compile_expression_not_equal li t1, '=' beq t0, t1, .compile_expression_less_equal _compile_binary_rhs(); # Execute the operation. _write_z("slt t0, t0, t1\n\0"); goto .compile_expression_end; .compile_expression_not_equal: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\txor t0, t0, t1\nsnez t0, t0\n\0"); goto .compile_expression_end; .compile_expression_less_equal: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\tslt t0, t0, t1\nxori t0, t0, 1\n\0"); goto .compile_expression_end; .compile_expression_greater: _advance_token(1); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '=' beq t0, t1, .compile_expression_greater_equal _compile_binary_rhs(); # Execute the operation. _write_z("\tslt t0, t1, t0\n\0"); goto .compile_expression_end; .compile_expression_greater_equal: _advance_token(1); _compile_binary_rhs(); # Execute the operation. _write_z("\tslt t0, t1, t0\nxori t0, t0, 1\n\0"); goto .compile_expression_end; .compile_expression_end: end; proc _compile_call(); begin # Stack variables: # v0 - Procedure name length. # v4 - Procedure name pointer. # v8 - Argument count. _read_token(); sw a0, 0(sp) v4 := source_code_position; v8 := 0; # Skip the identifier and left paren. _advance_token(v0 + 1); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ')' beq t0, t1, .compile_call_finalize .compile_call_loop: _compile_expression(); # Save the argument on the stack. _write_z("\tsw t0, \0"); # Calculate the stack offset: 116 - (4 * argument_counter) v12 := v8 * 4; v12 := 116 + -v12; _write_i(v12); _write_z("(sp)\n\0"); # Add one to the argument counter. v8 := v8 + 1; la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ',' bne t0, t1, .compile_call_finalize _advance_token(2); goto .compile_call_loop; .compile_call_finalize: # Load the argument from the stack. lw t0, 8(sp) beqz t0, .compile_call_end # Decrement the argument counter. v8 := v8 + -1; _write_z("\tlw a\0"); _write_i(v8); _write_z(", \0"); # Calculate the stack offset: 116 - (4 * argument_counter) v12 := v8 * 4; v12 := 116 + -v12; _write_i(v12); _write_z("(sp)\n\0"); goto .compile_call_finalize; .compile_call_end: _write_z("\tcall \0"); _write_s(v4, v0); # Skip the right paren. _advance_token(1); end; proc _compile_goto(); begin _advance_token(5); _read_token(); sw a0, 0(sp) _write_z("\tj \0"); _write_token(v0); _advance_token(); end; proc _compile_local_designator(); begin # Skip "v" in the local variable name. _advance_token(1); _write_z("\t addi t0, sp, \0"); # Read local variable stack offset and save it. _read_token(); _write_token(); _advance_token(); _write_c('\n'); end; proc _compile_global_designator(); begin _write_z("\tla t0, \0"); _read_token(); _write_token(); _advance_token(); _write_c('\n'); end; proc _compile_designator(); begin la t0, source_code_position lw t0, (t0) lb a0, (t0) li t1, 'v' beq a0, t1, .compile_designator_local goto .compile_designator_global; .compile_designator_local: _compile_local_designator(); goto .compile_designator_end; .compile_designator_global: _compile_global_designator(); goto .compile_designator_end; .compile_designator_end: end; proc _compile_assignment(); begin _compile_designator(); # Save the assignee address on the stack. _write_z("\tsw t0, 20(sp)\n\0"); # Skip the assignment sign (:=) with surrounding whitespaces. _advance_token(4); # Compile the assignment. _compile_expression(); _write_z("\tlw t1, 20(sp)\nsw t0, (t1)\n\0"); end; proc _compile_return_statement(); begin # Skip "return" keyword and whitespace after it. _advance_token(7); _compile_expression(); _write_z("mv a0, t0\n\0"); end; proc _compile_statement(); begin # This is a call if the statement starts with an underscore. la t0, source_code_position lw t0, (t0) # First character after alignment tab. addi t0, t0, 1 lb t0, (t0) li t1, '_' beq t0, t1, .compile_statement_call li t1, 'g' beq t0, t1, .compile_statement_goto li t1, 'v' beq t0, t1, .compile_statement_assignment # keyword_ret contains "\tret", so it's 4 bytes long. _memcmp(source_code_position, "\treturn", 7); beqz a0, .compile_statement_return _compile_line(); goto .compile_statement_end; .compile_statement_call: _advance_token(1); _compile_call(); goto .compile_statement_semicolon; .compile_statement_goto: _advance_token(1); _compile_goto(); goto .compile_statement_semicolon; .compile_statement_assignment: _advance_token(1); _compile_assignment(); goto .compile_statement_semicolon; .compile_statement_return: _advance_token(1); _compile_return_statement(); _write_c('\n'); goto .compile_statement_end; .compile_statement_semicolon: _advance_token(2); _write_c('\n'); .compile_statement_end: end; proc _compile_procedure_body(); begin .compile_procedure_body_loop: # 3 is "end" length. _memcmp(source_code_position, "end", 3); beqz a0, .compile_procedure_body_epilogue _compile_statement(); goto .compile_procedure_body_loop; .compile_procedure_body_epilogue: end; # Writes a regster name to the standard output. # # Parameters: # a0 - Register character. # a1 - Register number. proc _write_register(); begin _write_c(v88); v84 := v84 + '0'; _write_c(v84); end; proc _compile_procedure_prologue(); begin _write_z("\taddi sp, sp, -128\n\tsw ra, 124(sp)\n\tsw s0, 120(sp)\n\taddi s0, sp, 128\n\0"); v0 := 0; .compile_procedure_prologue_loop: _write_z("\tsw a\0"); _write_i(v0); _write_z(", \0"); # Calculate the stack offset: 88 - (4 * parameter_counter) v4 := v0 * 4; v4 := 88 + -v4; _write_i(v4); _write_z("(sp)\n\0"); v0 := v0 + 1; lw a0, 0(sp) li t0, 8 bne a0, t0, .compile_procedure_prologue_loop end; proc _compile_procedure(); begin # Skip "proc ". _advance_token(5); _read_token(); sw a0, 0(sp) # Save the procedure name length. # Write .type _procedure_name, @function. _write_z(".type \0"); _write_token(v0); _write_z(", @function\n\0"); # Write procedure label, _procedure_name: _write_token(v0); _write_z(":\n\0"); # Skip the function name and trailing parens, semicolon, "begin" and newline. _advance_token(v0 + 10); _compile_procedure_prologue(); _compile_procedure_body(); # Write the epilogue. _write_z("\tlw ra, 124(sp)\n\tlw s0, 120(sp)\n\taddi sp, sp, 128\n\tret\n\0"); # Skip the "end" keyword, semicolon and newline. _advance_token(5); end; proc _skip_newlines(); begin # Skip newlines. la t0, source_code_position lw t1, (t0) .skip_newlines_loop: lb t2, (t1) li t3, '\n' bne t2, t3, .skip_newlines_end beqz t2, .skip_newlines_end addi t1, t1, 1 sw t1, (t0) goto .skip_newlines_loop; .skip_newlines_end: end; # Skip newlines and comments. proc _skip_empty_lines(); begin .skip_empty_lines_loop: la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '#' beq t0, t1, .skip_empty_lines_comment li t1, '\n' beq t0, t1, .skip_empty_lines_newline goto .skip_empty_lines_end; .skip_empty_lines_comment: _skip_comment(); goto .skip_empty_lines_loop; .skip_empty_lines_newline: _advance_token(1); goto .skip_empty_lines_loop; .skip_empty_lines_end: end; proc _compile_global_initializer(); begin la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '"' beq t0, t1, .compile_global_initializer_string li t1, 'S' beq t0, t1, .compile_global_initializer_record li t1, '@' beq t0, t1, .compile_global_initializer_pointer la a0, source_code_position lw a0, (a0) lb a0, (a0) _is_digit(); bnez a0, .compile_global_initializer_number unimp .compile_global_initializer_pointer: # Skip @. _advance_token(1); _write_z("\n\t.word \0"); _read_token(); _write_token(); _advance_token(); goto .compile_global_initializer_end; .compile_global_initializer_number: _write_z("\n\t.word \0"); _read_token(); _write_token(); _advance_token(1); goto .compile_global_initializer_end; .compile_global_initializer_record: # Skip "S(". _advance_token(2); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ')' beq t0, t1, .compile_global_initializer_closing .compile_global_initializer_loop: _compile_global_initializer(); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ')' beq t0, t1, .compile_global_initializer_closing # Skip comma and whitespace after it. _advance_token(2); goto .compile_global_initializer_loop; .compile_global_initializer_closing: # Skip ")" _advance_token(1); goto .compile_global_initializer_end; .compile_global_initializer_string: _write_z("\n\t.word strings + \0"); _string_length(source_code_position); sw a0, 4(sp) _add_string(source_code_position); _write_i(); # Skip the quoted string. _advance_token(v4 + 2); goto .compile_global_initializer_end; .compile_global_initializer_end: end; proc _compile_constant_declaration(); begin _read_token(); sw a0, 0(sp) _write_z(".type \0"); _write_token(v0); _write_z(", @object\n\0"); _write_token(v0); _write_c(':'); # Skip the constant name with assignment sign and surrounding whitespaces. _advance_token(v0 + 4); _compile_global_initializer(); # Skip semicolon and newline. _advance_token(2); _write_c('\n'); end; proc _compile_const_part(); begin _skip_empty_lines(); _memcmp(source_code_position, "const\0", 5); bnez a0, .compile_const_part_end # Skip "const" with the newline after it. _advance_token(6); _write_z(".section .rodata # Compiled from const section.\n\n\0"); .compile_const_part_loop: _skip_empty_lines(); la t0, source_code_position lw t0, (t0) lb t0, (t0) # If the character at the line beginning is not indentation, # it is probably the next code section. li t1, '\t' bne t0, t1, .compile_const_part_end _advance_token(1); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, '#' beq t0, t1, .compile_const_part_loop _compile_constant_declaration(); goto .compile_const_part_loop; .compile_const_part_end: end; proc _compile_variable_declaration(); begin _read_token(); sw a0, 0(sp) _write_z(".type \0"); _write_token(v0); _write_z(", @object\n\0"); _write_token(v0); _write_c(':'); # Skip the variable name and colon with space before the type. _advance_token(v0 + 2); # Skip the type name. _read_token(); _advance_token(); la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, ' ' beq t0, t1, .compile_variable_declaration_initializer # Else we assume this is a zeroed 81920 bytes big array. _write_z(" .zero 81920\0"); goto .compile_variable_declaration_finalize; .compile_variable_declaration_initializer: # Skip the assignment sign with surrounding whitespaces. _advance_token(4); _compile_global_initializer(); goto .compile_variable_declaration_finalize; .compile_variable_declaration_finalize: # Skip semicolon and newline. _advance_token(2); _write_c('\n'); end; proc _compile_var_part(); begin _memcmp(source_code_position, "var\0", 3); bnez a0, .compile_var_part_end # Skip "var" and newline. _advance_token(4); _write_z(".section .data\n\0"); .compile_var_part_loop: la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, 'p' beq t0, t1, .compile_var_part_end li t1, '\t' beq t0, t1, .compile_var_part_declaration _compile_line(); goto .compile_var_part_loop; .compile_var_part_declaration: _advance_token(1); _compile_variable_declaration(); goto .compile_var_part_loop; .compile_var_part_end: end; # Process the source code and print the generated code. proc _compile_module(); begin _compile_const_part(); _write_z(".section .bss\n\0"); .compile_module_bss: la t0, source_code_position lw t0, (t0) lb t0, (t0) li t1, 'v' beq t0, t1, .compile_module_code li t1, 'p' beq t0, t1, .compile_module_code _compile_line(); goto .compile_module_bss; .compile_module_code: _compile_var_part(); _write_z(".section .text\n\0"); .compile_module_loop: _skip_newlines(); la t0, source_code_position lw t0, (t0) lb t0, (t0) beqz t0, .compile_module_end li t1, '#' beq t0, t1, .compile_module_comment # 8 is ".section" length. _memcmp(source_code_position, ".section", 8); beqz a0, .compile_module_section # 5 is "proc " length. Space is needed to distinguish from "procedure". _memcmp(source_code_position, "proc ", 5); beqz a0, .compile_module_procedure # 6 is ".globl" length. _memcmp(source_code_position, ".globl", 6); beqz a0, .compile_module_global # Not a known token, exit. goto .compile_module_end; .compile_module_section: _compile_section(); goto .compile_module_loop; .compile_module_global: _compile_line(); goto .compile_module_loop; .compile_module_comment: _skip_comment(); goto .compile_module_loop; .compile_module_procedure: _compile_procedure(); goto .compile_module_loop; .compile_module_end: end; proc _compile(); begin _write_z(".globl _start\n\n\0"); _compile_module(); _write_z(".section .rodata\n.type strings, @object\nstrings: .ascii \0"); _write_c('"'); la t0, compiler_strings sw t0, 0(sp) .compile_loop: lw t0, 0(sp) la t1, compiler_strings_position lw t1, (t1) bge t0, t1, .compile_end lb a0, (t0) addi t0, t0, 1 sw t0, 0(sp) _write_c(); j .compile_loop .compile_end: _write_c('"'); _write_c('\n'); end; # Terminates the program. a0 contains the return code. # # Parameters: # a0 - Status code. proc _exit(); begin li a7, 93 # SYS_EXIT ecall end; # Entry point. proc _start(); begin # Read the source from the standard input. # Second argument is buffer size. Modifying update the source_code definition. _read_file(@source_code, 81920); _compile(); _exit(0); end;