/* Visitor generating a GENERIC tree. Copyright (C) 2025 Free Software Foundation, Inc. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include #include "elna/gcc/elna-generic.h" #include "elna/gcc/elna-diagnostic.h" #include "elna/gcc/elna1.h" #include "elna/gcc/elna-builtins.h" #include "ggc.h" #include "function.h" #include "cgraph.h" #include "gimplify.h" #include "stringpool.h" #include "diagnostic.h" #include "realmpfr.h" #include "stor-layout.h" #include "varasm.h" #include "fold-const.h" #include "langhooks.h" namespace elna::gcc { generic_visitor::generic_visitor(std::shared_ptr symbol_table, std::shared_ptr info_table) : symbols(symbol_table), info_table(info_table) { } void generic_visitor::build_procedure_call(location_t call_location, tree procedure_address, const std::vector& arguments) { vec *argument_trees = nullptr; tree symbol_type = TREE_TYPE(TREE_TYPE(procedure_address)); tree current_parameter = TYPE_ARG_TYPES(symbol_type); vec_alloc(argument_trees, arguments.size()); for (boot::expression *const argument : arguments) { location_t argument_location = get_location(&argument->position()); if (VOID_TYPE_P(TREE_VALUE(current_parameter))) { error_at(argument_location, "Too many arguments, expected %i, got %lu", list_length(TYPE_ARG_TYPES(symbol_type)) - 1, arguments.size()); this->current_expression = error_mark_node; break; } argument->accept(this); this->current_expression = prepare_rvalue(this->current_expression); if (!is_assignable_from(TREE_VALUE(current_parameter), this->current_expression)) { error_at(argument_location, "Cannot assign value of type '%s' to variable of type '%s'", print_type(TREE_TYPE(this->current_expression)).c_str(), print_type(TREE_VALUE(current_parameter)).c_str()); this->current_expression = error_mark_node; } current_parameter = TREE_CHAIN(current_parameter); argument_trees->quick_push(this->current_expression); } tree stmt = fold_build_call_array_loc(call_location, TREE_TYPE(symbol_type), procedure_address, vec_safe_length(argument_trees), vec_safe_address(argument_trees)); if (!VOID_TYPE_P(TREE_VALUE(current_parameter))) { error_at(call_location, "too few arguments, expected %i, got %lu", list_length(TYPE_ARG_TYPES(symbol_type)) - 1, arguments.size()); this->current_expression = error_mark_node; } else { this->current_expression = stmt; } } void generic_visitor::build_record_call(location_t call_location, tree symbol, const std::vector& arguments) { vec *tree_arguments = nullptr; tree record_fields = TYPE_FIELDS(symbol); for (boot::expression *const argument : arguments) { location_t argument_location = get_location(&argument->position()); if (is_void_type(record_fields)) { error_at(argument_location, "Too many arguments, expected %i, got %lu", list_length(TYPE_FIELDS(symbol)), arguments.size()); this->current_expression = error_mark_node; break; } argument->accept(this); tree unqualified_field = get_qualified_type(TREE_TYPE(record_fields), TYPE_UNQUALIFIED); if (!is_assignable_from(unqualified_field, this->current_expression)) { error_at(argument_location, "cannot assign value of type '%s' to variable of type '%s'", print_type(TREE_TYPE(this->current_expression)).c_str(), print_type(TREE_TYPE(record_fields)).c_str()); this->current_expression = error_mark_node; } CONSTRUCTOR_APPEND_ELT(tree_arguments, record_fields, this->current_expression); record_fields = TREE_CHAIN(record_fields); } if (!is_void_type(record_fields)) { error_at(call_location, "Too few arguments, expected %i, got %lu", list_length(TYPE_FIELDS(symbol)), arguments.size()); this->current_expression = error_mark_node; } else { this->current_expression = build_constructor(symbol, tree_arguments); } } void generic_visitor::build_assert_builtin(location_t call_location, const std::vector& arguments) { if (arguments.size() != 1) { error_at(call_location, "assert expects exactly one boolean argument, got %lu", arguments.size()); this->current_expression = error_mark_node; } else { arguments.at(0)->accept(this); tree argument_type = TREE_TYPE(this->current_expression); if (argument_type != elna_bool_type_node) { error_at(call_location, "assert expects exactly one boolean argument, got %s", print_type(argument_type).c_str()); this->current_expression = error_mark_node; } tree constant_expression = extract_constant(this->current_expression); if (constant_expression == boolean_false_node) { this->current_expression = call_built_in(call_location, "__builtin_unreachable", void_type_node); } else if (constant_expression != boolean_true_node) { this->current_expression = call_built_in(call_location, "__builtin_trap", void_type_node); } else { this->current_expression = NULL_TREE; } } } bool generic_visitor::build_builtin_procedures(boot::procedure_call *call) { location_t call_location = get_location(&call->position()); if (boot::variable_expression *named_call = call->callable().is_variable()) { if (named_call->name == "assert") { build_assert_builtin(call_location, call->arguments); return true; } } return false; } void generic_visitor::visit(boot::procedure_call *call) { if (build_builtin_procedures(call)) { return; } location_t call_location = get_location(&call->position()); call->callable().accept(this); tree expression_type = TYPE_P(this->current_expression) ? this->current_expression : TREE_TYPE(this->current_expression); if (TREE_CODE(expression_type) == RECORD_TYPE) { build_record_call(call_location, expression_type, call->arguments); } else if (TREE_CODE(expression_type) == FUNCTION_TYPE) { this->current_expression = build1(ADDR_EXPR, build_global_pointer_type(expression_type), this->current_expression); build_procedure_call(call_location, this->current_expression, call->arguments); } else if (POINTER_TYPE_P(expression_type) && TREE_CODE(TREE_TYPE(expression_type)) == FUNCTION_TYPE) { build_procedure_call(call_location, this->current_expression, call->arguments); } else { error_at(call_location, "'%s' cannot be called, it is neither a procedure nor record", print_type(expression_type).c_str()); this->current_expression = error_mark_node; } } void generic_visitor::visit(boot::cast_expression *expression) { std::vector path; tree cast_target = get_inner_alias(expression->expression_type, this->symbols->scope(), path); expression->value().accept(this); tree cast_source = TREE_TYPE(this->current_expression); if (is_castable_type(cast_target) && (is_castable_type(cast_source))) { this->current_expression = build1_loc(get_location(&expression->position()), CONVERT_EXPR, cast_target, this->current_expression); } else { error_at(get_location(&expression->position()), "Type '%s' cannot be converted to '%s'", print_type(cast_source).c_str(), print_type(cast_target).c_str()); this->current_expression = error_mark_node; } } void generic_visitor::visit(boot::program *program) { visit(static_cast(program)); tree declaration_type = build_function_type_list(integer_type_node, elna_int_type_node, build_global_pointer_type(build_global_pointer_type(elna_char_type_node)), NULL_TREE); tree fndecl = build_fn_decl("main", declaration_type); tree resdecl = build_decl(UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, integer_type_node); DECL_CONTEXT(resdecl) = fndecl; DECL_RESULT(fndecl) = resdecl; push_struct_function(fndecl, false); DECL_STRUCT_FUNCTION(fndecl)->language = ggc_cleared_alloc(); enter_scope(); tree parameter_type = TYPE_ARG_TYPES(declaration_type); for (const char *argument_name : std::array{ "count", "parameters" }) { tree declaration_tree = build_decl(UNKNOWN_LOCATION, PARM_DECL, get_identifier(argument_name), TREE_VALUE(parameter_type)); DECL_CONTEXT(declaration_tree) = fndecl; DECL_ARG_TYPE(declaration_tree) = TREE_VALUE(parameter_type); this->symbols->enter(argument_name, declaration_tree); DECL_ARGUMENTS(fndecl) = chainon(DECL_ARGUMENTS(fndecl), declaration_tree); parameter_type = TREE_CHAIN(parameter_type); } visit_statements(program->body); tree set_result = build2(INIT_EXPR, void_type_node, DECL_RESULT(fndecl), build_int_cst_type(integer_type_node, 0)); tree return_stmt = build1(RETURN_EXPR, void_type_node, set_result); append_statement(return_stmt); tree mapping = leave_scope(); BLOCK_SUPERCONTEXT(BIND_EXPR_BLOCK(mapping)) = fndecl; DECL_INITIAL(fndecl) = BIND_EXPR_BLOCK(mapping); DECL_SAVED_TREE(fndecl) = mapping; DECL_EXTERNAL(fndecl) = 0; DECL_PRESERVE_P(fndecl) = 1; pop_cfun(); gimplify_function_tree(fndecl); cgraph_node::finalize_function(fndecl, true); } void generic_visitor::visit(boot::unit *unit) { for (boot::import_declaration *const declaration : unit->imports) { declaration->accept(this); } for (boot::constant_declaration *const constant : unit->constants) { constant->accept(this); } for (boot::type_declaration *const type : unit->types) { type->accept(this); } for (boot::variable_declaration *const variable : unit->variables) { variable->accept(this); } for (boot::procedure_declaration *const procedure : unit->procedures) { procedure->accept(this); } } void generic_visitor::visit(boot::procedure_declaration *definition) { tree fndecl = this->symbols->lookup(definition->identifier.identifier); TREE_PUBLIC(fndecl) = definition->identifier.exported; if (!definition->body.has_value()) { return; } push_struct_function(fndecl, false); DECL_STRUCT_FUNCTION(fndecl)->language = ggc_cleared_alloc(); enter_scope(); this->info_table = this->info_table->lookup(definition->identifier.identifier)->is_procedure()->symbols; tree argument_chain = DECL_ARGUMENTS(fndecl); for (; argument_chain != NULL_TREE; argument_chain = TREE_CHAIN(argument_chain)) { this->symbols->enter(IDENTIFIER_POINTER(DECL_NAME(argument_chain)), argument_chain); } for (boot::constant_declaration *const constant : definition->body.value().constants()) { constant->accept(this); } for (boot::variable_declaration *const variable : definition->body.value().variables()) { variable->accept(this); } visit_statements(definition->body.value().body()); tree mapping = leave_scope(); this->info_table = this->info_table->scope(); BLOCK_SUPERCONTEXT(BIND_EXPR_BLOCK(mapping)) = fndecl; DECL_INITIAL(fndecl) = BIND_EXPR_BLOCK(mapping); DECL_SAVED_TREE(fndecl) = mapping; DECL_PRESERVE_P(fndecl) = 1; pop_cfun(); gimplify_function_tree(fndecl); cgraph_node::finalize_function(fndecl, true); } void generic_visitor::enter_scope() { this->symbols = std::make_shared(this->symbols); // Chain the binding levels. struct binding_level *new_level = ggc_cleared_alloc(); new_level->level_chain = f_binding_level; new_level->statement_list = alloc_stmt_list(); f_binding_level = new_level; } tree generic_visitor::leave_scope() { // Variables are only defined in the top function scope. tree variables = f_binding_level->level_chain == nullptr ? f_names : NULL_TREE; tree new_block = build_block(variables, f_binding_level->blocks, NULL_TREE, NULL_TREE); for (tree it = f_binding_level->blocks; it != NULL_TREE; it = BLOCK_CHAIN(it)) { BLOCK_SUPERCONTEXT(it) = new_block; } tree bind_expr = build3(BIND_EXPR, void_type_node, variables, chain_defer(), new_block); this->symbols = this->symbols->scope(); f_binding_level = f_binding_level->level_chain; if (f_binding_level != nullptr) { f_binding_level->blocks = chainon(f_binding_level->blocks, new_block); } return bind_expr; } void generic_visitor::visit(boot::literal *literal) { this->current_expression = build_int_cst(elna_int_type_node, literal->value); } void generic_visitor::visit(boot::literal *literal) { this->current_expression = build_int_cstu(elna_word_type_node, literal->value); } void generic_visitor::visit(boot::literal *literal) { REAL_VALUE_TYPE real_value1; mpfr_t number; mpfr_init2(number, SIGNIFICAND_BITS); mpfr_set_d(number, literal->value, MPFR_RNDN); real_from_mpfr(&real_value1, number, double_type_node, MPFR_RNDN); this->current_expression = build_real(double_type_node, real_value1); mpfr_clear(number); } void generic_visitor::visit(boot::literal *boolean) { this->current_expression = boolean->value ? boolean_true_node : boolean_false_node; } void generic_visitor::visit(boot::literal *character) { this->current_expression = build_int_cstu(elna_char_type_node, character->value); } void generic_visitor::visit(boot::literal *) { this->current_expression = elna_pointer_nil_node; } void generic_visitor::visit(boot::literal *string) { tree index_constant = build_int_cstu(elna_word_type_node, string->value.size()); tree string_type = build_array_type(elna_char_type_node, build_index_type(index_constant)); tree string_literal = build_string(string->value.size(), string->value.c_str()); TREE_TYPE(string_literal) = string_type; TREE_CONSTANT(string_literal) = 1; TREE_READONLY(string_literal) = 1; TREE_STATIC(string_literal) = 1; string_type = TREE_TYPE(elna_string_ptr_field_node); string_literal = build4(ARRAY_REF, elna_char_type_node, string_literal, integer_zero_node, NULL_TREE, NULL_TREE); string_literal = build1(ADDR_EXPR, string_type, string_literal); vec *elms = nullptr; CONSTRUCTOR_APPEND_ELT(elms, elna_string_ptr_field_node, string_literal); CONSTRUCTOR_APPEND_ELT(elms, elna_string_length_field_node, index_constant); this->current_expression = build_constructor(elna_string_type_node, elms); } tree generic_visitor::build_arithmetic_operation(boot::binary_expression *expression, tree_code operator_code, tree left, tree right) { return build_binary_operation(is_numeric_type(TREE_TYPE(left)), expression, operator_code, left, right, TREE_TYPE(left)); } tree generic_visitor::build_comparison_operation(boot::binary_expression *expression, tree_code operator_code, tree left, tree right) { return build_binary_operation(is_numeric_type(TREE_TYPE(left)) || POINTER_TYPE_P(TREE_TYPE(left)), expression, operator_code, left, right, elna_bool_type_node); } tree generic_visitor::build_bit_logic_operation(boot::binary_expression *expression, tree left, tree right) { location_t expression_location = get_location(&expression->position()); tree left_type = TREE_TYPE(left); tree right_type = TREE_TYPE(right); tree_code logical_code, bit_code; if (expression->operation() == boot::binary_operator::conjunction) { bit_code = BIT_AND_EXPR; logical_code = TRUTH_ANDIF_EXPR; } else if (expression->operation() == boot::binary_operator::disjunction) { bit_code = BIT_IOR_EXPR; logical_code = TRUTH_ORIF_EXPR; } else if (expression->operation() == boot::binary_operator::exclusive_disjunction) { bit_code = BIT_XOR_EXPR; logical_code = TRUTH_XOR_EXPR; } else { gcc_unreachable(); } if (left_type == elna_bool_type_node) { return build2_loc(expression_location, logical_code, elna_bool_type_node, left, right); } else if (is_integral_type(left_type)) { return build2_loc(expression_location, bit_code, left_type, left, right); } else { error_at(expression_location, "Invalid operands of type '%s' and '%s' for operator %s", print_type(left_type).c_str(), print_type(right_type).c_str(), elna::boot::print_binary_operator(expression->operation())); return error_mark_node; } } tree generic_visitor::build_equality_operation(boot::binary_expression *expression, tree left, tree right) { location_t expression_location = get_location(&expression->position()); tree_code equality_code, combination_code; if (expression->operation() == boot::binary_operator::equals) { equality_code = EQ_EXPR; combination_code = TRUTH_ANDIF_EXPR; } else if (expression->operation() == boot::binary_operator::not_equals) { equality_code = NE_EXPR; combination_code = TRUTH_ORIF_EXPR; } else { gcc_unreachable(); } if (TREE_TYPE(left) == elna_string_type_node) { tree lhs_length = build3(COMPONENT_REF, TREE_TYPE(elna_string_length_field_node), left, elna_string_length_field_node, NULL_TREE); tree lhs_ptr = build3(COMPONENT_REF, TREE_TYPE(elna_string_ptr_field_node), left, elna_string_ptr_field_node, NULL_TREE); tree rhs_length = build3(COMPONENT_REF, TREE_TYPE(elna_string_length_field_node), right, elna_string_length_field_node, NULL_TREE); tree rhs_ptr = build3(COMPONENT_REF, TREE_TYPE(elna_string_ptr_field_node), right, elna_string_ptr_field_node, NULL_TREE); tree length_equality = build2(equality_code, elna_bool_type_node, lhs_length, rhs_length); tree memcmp_call = call_built_in(UNKNOWN_LOCATION, "__builtin_memcmp", integer_type_node, lhs_ptr, rhs_ptr, lhs_length); tree equals_zero = build2(equality_code, elna_bool_type_node, memcmp_call, integer_zero_node); return build2(combination_code, elna_bool_type_node, length_equality, equals_zero); } else { return build2_loc(expression_location, equality_code, elna_bool_type_node, left, right); } } void generic_visitor::visit(boot::binary_expression *expression) { expression->lhs().accept(this); tree left = this->current_expression; tree left_type = get_qualified_type(TREE_TYPE(left), TYPE_UNQUALIFIED); expression->rhs().accept(this); tree right = this->current_expression; tree right_type = get_qualified_type(TREE_TYPE(right), TYPE_UNQUALIFIED); location_t expression_location = get_location(&expression->position()); if ((POINTER_TYPE_P(left_type) || POINTER_TYPE_P(right_type)) && (expression->operation() == boot::binary_operator::sum || expression->operation() == boot::binary_operator::subtraction)) { this->current_expression = do_pointer_arithmetic(expression->operation(), left, right, expression_location); if (this->current_expression == error_mark_node) { error_at(expression_location, "invalid operation %s on a pointer and an integral type", boot::print_binary_operator(expression->operation())); } else if (TREE_TYPE(this->current_expression) == ssizetype) { this->current_expression = fold_convert(elna_int_type_node, this->current_expression); } return; } if (left_type != right_type && !are_compatible_pointers(left_type, right) && !are_compatible_pointers(right_type, left) && !(is_integral_type(left_type) && right_type == elna_word_type_node)) { error_at(expression_location, "invalid operands of type '%s' and '%s' for operator %s", print_type(left_type).c_str(), print_type(right_type).c_str(), boot::print_binary_operator(expression->operation())); this->current_expression = error_mark_node; return; } switch (expression->operation()) { case boot::binary_operator::sum: this->current_expression = build_arithmetic_operation(expression, PLUS_EXPR, left, right); break; case boot::binary_operator::subtraction: this->current_expression = build_arithmetic_operation(expression, MINUS_EXPR, left, right); break; case boot::binary_operator::division: this->current_expression = build_arithmetic_operation(expression, TRUNC_DIV_EXPR, left, right); break; case boot::binary_operator::remainder: this->current_expression = build_arithmetic_operation(expression, TRUNC_MOD_EXPR, left, right); break; case boot::binary_operator::multiplication: this->current_expression = build_arithmetic_operation(expression, MULT_EXPR, left, right); break; case boot::binary_operator::less: this->current_expression = build_comparison_operation(expression, LT_EXPR, left, right); break; case boot::binary_operator::greater: this->current_expression = build_comparison_operation(expression, GT_EXPR, left, right); break; case boot::binary_operator::less_equal: this->current_expression = build_comparison_operation(expression, LE_EXPR, left, right); break; case boot::binary_operator::greater_equal: this->current_expression = build_comparison_operation(expression, GE_EXPR, left, right); break; case boot::binary_operator::conjunction: this->current_expression = build_bit_logic_operation(expression, left, right); break; case boot::binary_operator::disjunction: this->current_expression = build_bit_logic_operation(expression, left, right); break; case boot::binary_operator::exclusive_disjunction: this->current_expression = build_bit_logic_operation(expression, left, right); break; case boot::binary_operator::equals: this->current_expression = build_equality_operation(expression, left, right); break; case boot::binary_operator::not_equals: this->current_expression = build_equality_operation(expression, left, right); break; case boot::binary_operator::shift_left: this->current_expression = build_binary_operation( is_numeric_type(left_type) && right_type == elna_word_type_node, expression, LSHIFT_EXPR, left, right, left_type); break; case boot::binary_operator::shift_right: this->current_expression = build_binary_operation( is_numeric_type(left_type) && right_type == elna_word_type_node, expression, RSHIFT_EXPR, left, right, left_type); break; } } void generic_visitor::visit(boot::unary_expression *expression) { expression->operand().accept(this); location_t location = get_location(&expression->position()); switch (expression->operation()) { case boot::unary_operator::reference: this->current_expression = prepare_rvalue(this->current_expression); TREE_ADDRESSABLE(this->current_expression) = 1; this->current_expression = build_fold_addr_expr_with_type_loc(location, this->current_expression, build_global_pointer_type(TREE_TYPE(this->current_expression))); TREE_NO_TRAMPOLINE(this->current_expression) = 1; break; case boot::unary_operator::negation: if (TREE_TYPE(this->current_expression) == elna_bool_type_node) { this->current_expression = build1_loc(location, TRUTH_NOT_EXPR, boolean_type_node, this->current_expression); } else if (is_integral_type(TREE_TYPE(this->current_expression))) { this->current_expression = build1_loc(location, BIT_NOT_EXPR, TREE_TYPE(this->current_expression), this->current_expression); } else { error_at(location, "type '%s' cannot be negated", print_type(TREE_TYPE(this->current_expression)).c_str()); this->current_expression = error_mark_node; } break; case boot::unary_operator::minus: if (is_integral_type(TREE_TYPE(this->current_expression))) { this->current_expression = fold_build1(NEGATE_EXPR, TREE_TYPE(this->current_expression), this->current_expression); } else { error_at(location, "type '%s' cannot be negated", print_type(TREE_TYPE(this->current_expression)).c_str()); this->current_expression = error_mark_node; } } } void generic_visitor::visit(boot::constant_declaration *definition) { location_t definition_location = get_location(&definition->position()); definition->body().accept(this); if (assert_constant(definition_location)) { this->current_expression = fold_init(this->current_expression); } else { this->current_expression = NULL_TREE; return; } tree definition_tree = build_decl(definition_location, CONST_DECL, get_identifier(definition->identifier.identifier.c_str()), TREE_TYPE(this->current_expression)); auto result = this->symbols->enter(definition->identifier.identifier, definition_tree); if (result) { DECL_INITIAL(definition_tree) = this->current_expression; TREE_CONSTANT(definition_tree) = 1; TREE_READONLY(definition_tree) = 1; TREE_PUBLIC(definition_tree) = definition->identifier.exported; if (!lang_hooks.decls.global_bindings_p()) { auto declaration_statement = build1_loc(definition_location, DECL_EXPR, void_type_node, definition_tree); append_statement(declaration_statement); } } else { error_at(definition_location, "Variable '%s' already declared in this scope", definition->identifier.identifier.c_str()); } this->current_expression = NULL_TREE; } void generic_visitor::visit(boot::type_declaration *declaration) { TREE_PUBLIC(this->symbols->lookup(declaration->identifier.identifier)) = declaration->identifier.exported; } void generic_visitor::visit(boot::variable_declaration *declaration) { std::vector path; this->current_expression = get_inner_alias( this->info_table->lookup(declaration->identifier.identifier)->is_variable()->symbol, this->symbols->scope(), path); location_t declaration_location = get_location(&declaration->position()); tree declaration_tree = build_decl(declaration_location, VAR_DECL, get_identifier(declaration->identifier.identifier.c_str()), this->current_expression); bool result = this->symbols->enter(declaration->identifier.identifier, declaration_tree); if (POINTER_TYPE_P(this->current_expression)) { DECL_INITIAL(declaration_tree) = elna_pointer_nil_node; } TREE_PUBLIC(declaration_tree) = declaration->identifier.exported; this->current_expression = NULL_TREE; if (!result) { error_at(declaration_location, "variable '%s' already declared in this scope", declaration->identifier.identifier.c_str()); } else if (lang_hooks.decls.global_bindings_p()) { TREE_STATIC(declaration_tree) = 1; varpool_node::get_create(declaration_tree); varpool_node::finalize_decl(declaration_tree); } else { DECL_CONTEXT(declaration_tree) = current_function_decl; f_names = chainon(f_names, declaration_tree); auto declaration_statement = build1_loc(declaration_location, DECL_EXPR, void_type_node, declaration_tree); append_statement(declaration_statement); } } void generic_visitor::visit(boot::variable_expression *expression) { auto symbol = this->symbols->lookup(expression->name); if (symbol == NULL_TREE) { error_at(get_location(&expression->position()), "Symbol '%s' not declared in the current scope", expression->name.c_str()); this->current_expression = error_mark_node; } else { this->current_expression = symbol; } } void generic_visitor::visit(boot::array_access_expression *expression) { expression->base().accept(this); tree designator = this->current_expression; location_t location = get_location(&expression->position()); expression->index().accept(this); if (!is_integral_type(TREE_TYPE(this->current_expression))) { error_at(location, "Type '%s' cannot be used as index", print_type(TREE_TYPE(this->current_expression)).c_str()); this->current_expression = error_mark_node; return; } if (this->current_expression != elna_word_type_node) { this->current_expression = convert(elna_word_type_node, this->current_expression); } tree offset = build2(MINUS_EXPR, elna_word_type_node, this->current_expression, size_one_node); if (TREE_CODE(TREE_TYPE(designator)) == ARRAY_TYPE) { tree element_type = TREE_TYPE(TREE_TYPE(designator)); this->current_expression = build4_loc(location, ARRAY_REF, element_type, designator, offset, NULL_TREE, NULL_TREE); } else if (TREE_TYPE(designator) == elna_string_type_node) { tree string_ptr = build3_loc(location, COMPONENT_REF, TREE_TYPE(elna_string_ptr_field_node), designator, elna_string_ptr_field_node, NULL_TREE); tree target_pointer = do_pointer_arithmetic(boot::binary_operator::sum, string_ptr, offset, location); this->current_expression = build1_loc(location, INDIRECT_REF, elna_char_type_node, target_pointer); } else { error_at(location, "Indexing is not allowed on type '%s'", print_type(TREE_TYPE(designator)).c_str()); this->current_expression = error_mark_node; } } bool generic_visitor::expect_trait_type_only(boot::traits_expression *trait) { if (trait->parameters.size() != 1) { error_at(get_location(&trait->position()), "Trait '%s' expects 1 argument, got %lu", trait->name.c_str(), trait->parameters.size()); this->current_expression = error_mark_node; return false; } std::vector path; this->current_expression = get_inner_alias(trait->types.front(), this->symbols, path); return this->current_expression != error_mark_node; } bool generic_visitor::expect_trait_for_integral_type(boot::traits_expression *trait) { if (!expect_trait_type_only(trait)) { return false; } else if (!is_integral_type(this->current_expression) && TREE_CODE(this->current_expression) != ENUMERAL_TYPE) { error_at(get_location(&trait->position()), "Type '%s' does not support trait '%s'", print_type(this->current_expression).c_str(), trait->name.c_str()); this->current_expression = error_mark_node; return false; } return true; } void generic_visitor::visit(boot::traits_expression *trait) { location_t trait_location = get_location(&trait->position()); if (trait->name == "size") { if (expect_trait_type_only(trait)) { this->current_expression = build1_loc(trait_location, CONVERT_EXPR, elna_word_type_node, size_in_bytes(this->current_expression)); } } else if (trait->name == "alignment") { if (expect_trait_type_only(trait)) { this->current_expression = build_int_cstu(elna_word_type_node, TYPE_ALIGN_UNIT(this->current_expression)); } } else if (trait->name == "min") { if (expect_trait_for_integral_type(trait)) { this->current_expression = TYPE_MIN_VALUE(this->current_expression); } } else if (trait->name == "max") { if (expect_trait_for_integral_type(trait)) { this->current_expression = TYPE_MAX_VALUE(this->current_expression); } } else if (trait->name == "offset") { if (trait->parameters.size() != 2) { error_at(trait_location, "Trait '%s' expects 2 arguments, got %lu", trait->name.c_str(), trait->parameters.size()); this->current_expression = error_mark_node; return; } std::vector path; this->current_expression = get_inner_alias(trait->types.front(), this->symbols, path); auto field_type = trait->parameters.at(1)->is_named(); if (field_type == nullptr) { error_at(trait_location, "The second argument to the offset trait is expected to be a field name," "got a type expression"); this->current_expression = error_mark_node; return; } tree field_declaration = find_field_by_name(trait_location, this->current_expression, field_type->name); if (field_declaration != error_mark_node) { this->current_expression = build1(CONVERT_EXPR, elna_word_type_node, byte_position(field_declaration)); } else { this->current_expression = error_mark_node; } } else { error_at(get_location(&trait->position()), "Trait '%s' is unknown", trait->name.c_str()); this->current_expression = error_mark_node; } } void generic_visitor::visit(boot::field_access_expression *expression) { expression->base().accept(this); location_t expression_location = get_location(&expression->position()); tree aggregate_type = TREE_TYPE(this->current_expression); if (TREE_CODE(aggregate_type) == ARRAY_TYPE && expression->field() == "length") { this->current_expression = convert(build_qualified_type(elna_word_type_node, TYPE_QUAL_CONST), TYPE_MAX_VALUE(TYPE_DOMAIN(aggregate_type))); } else if (TREE_CODE(aggregate_type) == ARRAY_TYPE && expression->field() == "ptr") { tree ptr_type = build_global_pointer_type(TREE_TYPE(aggregate_type)); this->current_expression = build1(ADDR_EXPR, build_qualified_type(ptr_type, TYPE_QUAL_CONST), this->current_expression); } else if (TREE_CODE(aggregate_type) == ENUMERAL_TYPE) { tree iterator{ NULL_TREE }; for (iterator = TYPE_VALUES(aggregate_type); iterator != NULL_TREE; iterator = TREE_CHAIN(iterator)) { if (IDENTIFIER_POINTER(TREE_PURPOSE(iterator)) == expression->field()) { this->current_expression = TREE_VALUE(iterator); return; } } this->current_expression = error_mark_node; error_at(expression_location, "Unknown enumeration member '%s'", expression->field().c_str()); } else { tree field_declaration = find_field_by_name(expression_location, TREE_TYPE(this->current_expression), expression->field()); if (field_declaration != error_mark_node) { this->current_expression = build3_loc(expression_location, COMPONENT_REF, TREE_TYPE(field_declaration), this->current_expression, field_declaration, NULL_TREE); } } } void generic_visitor::visit(boot::dereference_expression *expression) { expression->base().accept(this); location_t expression_location = get_location(&expression->position()); tree expression_type = TREE_TYPE(this->current_expression); if (POINTER_TYPE_P(expression_type)) { this->current_expression = build1_loc(expression_location, INDIRECT_REF, TREE_TYPE(expression_type), this->current_expression); } else { error_at(expression_location, "Type '%s' cannot be dereferenced, it is not a pointer", print_type(expression_type).c_str()); this->current_expression = error_mark_node; } } void generic_visitor::visit(boot::assign_statement *statement) { statement->lvalue().accept(this); tree lvalue = this->current_expression; location_t statement_location = get_location(&statement->position()); statement->rvalue().accept(this); tree rvalue = prepare_rvalue(this->current_expression); if (TREE_CODE(lvalue) == CONST_DECL) { error_at(statement_location, "Cannot modify constant '%s'", statement->lvalue().is_variable()->name.c_str()); } else if (TYPE_READONLY(TREE_TYPE(lvalue))) { error_at(statement_location, "Cannot modify a constant expression of type '%s'", print_type(TREE_TYPE(lvalue)).c_str()); } else if (is_assignable_from(TREE_TYPE(lvalue), rvalue)) { tree assignment = build2_loc(statement_location, MODIFY_EXPR, void_type_node, lvalue, rvalue); append_statement(assignment); } else { error_at(statement_location, "Cannot assign value of type '%s' to variable of type '%s'", print_type(TREE_TYPE(rvalue)).c_str(), print_type(TREE_TYPE(lvalue)).c_str()); } this->current_expression = NULL_TREE; } void generic_visitor::visit(boot::if_statement *statement) { tree endif_label_decl = create_artificial_label(UNKNOWN_LOCATION); tree goto_endif = build1(GOTO_EXPR, void_type_node, endif_label_decl); make_if_branch(statement->body(), goto_endif); for (const auto branch : statement->branches) { make_if_branch(*branch, goto_endif); } if (statement->alternative != nullptr) { enter_scope(); visit_statements(*statement->alternative); tree mapping = leave_scope(); append_statement(mapping); } tree endif_label_expr = build1(LABEL_EXPR, void_type_node, endif_label_decl); append_statement(endif_label_expr); this->current_expression = NULL_TREE; } void generic_visitor::make_if_branch(boot::conditional_statements& branch, tree goto_endif) { branch.prerequisite().accept(this); if (TREE_TYPE(this->current_expression) != elna_bool_type_node) { error_at(get_location(&branch.prerequisite().position()), "Expected expression of boolean type but its type is %s", print_type(TREE_TYPE(this->current_expression)).c_str()); this->current_expression = error_mark_node; return; } tree then_label_decl = build_label_decl("then", UNKNOWN_LOCATION); tree goto_then = build1(GOTO_EXPR, void_type_node, then_label_decl); tree else_label_decl = build_label_decl("else", UNKNOWN_LOCATION); tree goto_else = build1(GOTO_EXPR, void_type_node, else_label_decl); auto cond_expr = build3(COND_EXPR, void_type_node, this->current_expression, goto_then, goto_else); append_statement(cond_expr); tree then_label_expr = build1(LABEL_EXPR, void_type_node, then_label_decl); append_statement(then_label_expr); enter_scope(); visit_statements(branch.statements); tree mapping = leave_scope(); append_statement(mapping); append_statement(goto_endif); tree else_label_expr = build1(LABEL_EXPR, void_type_node, else_label_decl); append_statement(else_label_expr); } void generic_visitor::visit(boot::import_declaration *) { } void generic_visitor::visit(boot::while_statement *statement) { location_t prerequisite_location = get_location(&statement->body().prerequisite().position()); tree prerequisite_label_decl = build_label_decl("while_do", prerequisite_location); auto prerequisite_label_expr = build1_loc(prerequisite_location, LABEL_EXPR, void_type_node, prerequisite_label_decl); auto goto_check = build1(GOTO_EXPR, void_type_node, prerequisite_label_decl); tree branch_end_declaration = build_label_decl("while_end", UNKNOWN_LOCATION); tree branch_end_expression = build1_loc(UNKNOWN_LOCATION, LABEL_EXPR, void_type_node, branch_end_declaration); append_statement(prerequisite_label_expr); make_if_branch(statement->body(), goto_check); for (const auto branch : statement->branches) { make_if_branch(*branch, goto_check); } if (statement->alternative != nullptr) { enter_scope(); visit_statements(*statement->alternative); tree mapping = leave_scope(); append_statement(mapping); } append_statement(branch_end_expression); this->current_expression = NULL_TREE; } void generic_visitor::visit_statements(const std::vector& statements) { for (boot::statement *const statement : statements) { statement->accept(this); if (this->current_expression != NULL_TREE && this->current_expression != error_mark_node) { append_statement(this->current_expression); this->current_expression = NULL_TREE; } } } void generic_visitor::visit(boot::return_statement *statement) { boot::expression *return_expression = &statement->return_expression(); location_t statement_position = get_location(&statement->position()); tree set_result{ NULL_TREE }; tree return_type = TREE_TYPE(TREE_TYPE(current_function_decl)); if (TREE_THIS_VOLATILE(current_function_decl) == 1) { error_at(statement_position, "This procedure is not allowed to return"); return; } if (return_expression != nullptr) { return_expression->accept(this); set_result = build2(INIT_EXPR, void_type_node, DECL_RESULT(current_function_decl), this->current_expression); } if (return_type == void_type_node && set_result != NULL_TREE) { error_at(statement_position, "Proper procedure is not allowed to return a value"); } else if (return_type != void_type_node && set_result == NULL_TREE) { error_at(statement_position, "Procedure is expected to return a value of type '%s'", print_type(return_type).c_str()); } else if (return_type != void_type_node && !is_assignable_from(return_type, this->current_expression)) { error_at(statement_position, "Cannot return '%s' from a procedure returning '%s'", print_type(return_type).c_str(), print_type(TREE_TYPE(this->current_expression)).c_str()); } else { tree return_stmt = build1_loc(statement_position, RETURN_EXPR, void_type_node, set_result); append_statement(return_stmt); } this->current_expression = NULL_TREE; } void generic_visitor::visit(boot::named_type_expression *type) { this->current_expression = TREE_TYPE(this->symbols->lookup(type->name)); } void generic_visitor::visit(boot::array_type_expression *) { gcc_unreachable(); } void generic_visitor::visit(boot::pointer_type_expression *type) { type->base().accept(this); if (this->current_expression != NULL_TREE && this->current_expression != error_mark_node) { this->current_expression = build_global_pointer_type(this->current_expression); } } void generic_visitor::visit(boot::record_type_expression *) { gcc_unreachable(); } void generic_visitor::visit(boot::union_type_expression *) { gcc_unreachable(); } void generic_visitor::visit(boot::procedure_type_expression *) { gcc_unreachable(); } void generic_visitor::visit(boot::enumeration_type_expression *) { gcc_unreachable(); } void generic_visitor::visit(boot::defer_statement *statement) { enter_scope(); visit_statements(statement->statements); defer(leave_scope()); } void generic_visitor::visit(boot::case_statement *statement) { statement->condition().accept(this); tree condition_expression = this->current_expression; tree unqualified_condition = get_qualified_type(TREE_TYPE(this->current_expression), TYPE_UNQUALIFIED); if (!INTEGRAL_TYPE_P(unqualified_condition)) { error_at(get_location(&statement->condition().position()), "Case expressions can only be integral numbers, characters and enumerations, given '%s'", print_type(unqualified_condition).c_str()); this->current_expression = NULL_TREE; return; } tree end_label_declaration = create_artificial_label(get_location(&statement->position())); tree switch_statements = alloc_stmt_list(); for (const boot::switch_case& case_block : statement->cases) { for (boot::expression *const case_label : case_block.labels) { case_label->accept(this); location_t case_location = get_location(&case_label->position()); if (assert_constant(case_location) && !is_assignable_from(unqualified_condition, this->current_expression)) { error_at(case_location, "Case type '%s' does not match the expression type '%s'", print_type(TREE_TYPE(this->current_expression)).c_str(), print_type(unqualified_condition).c_str()); this->current_expression = error_mark_node; } tree case_label_declaration = create_artificial_label(case_location); tree case_expression = build_case_label(this->current_expression, NULL_TREE, case_label_declaration); append_to_statement_list(case_expression, &switch_statements); } enter_scope(); visit_statements(case_block.statements); append_to_statement_list(leave_scope(), &switch_statements); tree goto_end = build1(GOTO_EXPR, void_type_node, end_label_declaration); append_to_statement_list(goto_end, &switch_statements); TREE_USED(end_label_declaration) = 1; } if (statement->alternative != nullptr) { tree case_label_declaration = create_artificial_label(UNKNOWN_LOCATION); tree case_expression = build_case_label(NULL_TREE, NULL_TREE, case_label_declaration); append_to_statement_list(case_expression, &switch_statements); enter_scope(); visit_statements(*statement->alternative); append_to_statement_list(leave_scope(), &switch_statements); TREE_USED(end_label_declaration) = 1; } tree switch_expression = build2(SWITCH_EXPR, TREE_TYPE(condition_expression), condition_expression, switch_statements); append_statement(switch_expression); tree end_label_expression = build1(LABEL_EXPR, void_type_node, end_label_declaration); append_statement(end_label_expression); this->current_expression = NULL_TREE; } bool generic_visitor::assert_constant(location_t expression_location) { tree constant_expression = extract_constant(this->current_expression); if (constant_expression == NULL_TREE) { error_at(expression_location, "Expected a constant expression"); this->current_expression = error_mark_node; } else { this->current_expression = constant_expression; } return this->current_expression != error_mark_node; } }