#include "elna/backend/riscv.hpp" #include namespace elna::backend { Instruction::Instruction(BaseOpcode opcode) { this->instruction = static_cast::type>(opcode); } Instruction& Instruction::i(XRegister rd, Funct3 funct3, XRegister rs1, std::uint32_t immediate) { this->instruction |= (static_cast::type>(rd) << 7) | (static_cast::type>(funct3) << 12) | (static_cast::type>(rs1) << 15) | (immediate << 20); return *this; } Instruction& Instruction::s(std::uint32_t imm1, Funct3 funct3, XRegister rs1, XRegister rs2) { this->instruction |= ((imm1 & 0b11111) << 7) | (static_cast::type>(funct3) << 12) | (static_cast::type>(rs1) << 15) | (static_cast::type>(rs2) << 20) | ((imm1 & 0b111111100000) << 20); return *this; } Instruction& Instruction::r(XRegister rd, Funct3 funct3, XRegister rs1, XRegister rs2, Funct7 funct7) { this->instruction |= (static_cast::type>(rd) << 7) | (static_cast::type>(funct3) << 12) | (static_cast::type>(rs1) << 15) | (static_cast::type>(rs2) << 20) | (static_cast::type>(funct7) << 25); return *this; } Instruction& Instruction::u(XRegister rd, std::uint32_t imm) { this->instruction |= (static_cast::type>(rd) << 7) | (imm << 12); return *this; } const std::byte *Instruction::cbegin() const { return reinterpret_cast(&this->instruction); } const std::byte *Instruction::cend() const { return reinterpret_cast(&this->instruction) + sizeof(this->instruction); } void RiscVVisitor::visit(source::definition *definition) { constants[definition->identifier()] = definition->body().number(); } void RiscVVisitor::visit(source::block *block) { for (const auto& block_definition : block->definitions()) { block_definition->accept(this); } block->body().accept(this); // Prologue. const uint stackSize = static_cast(variableCounter * 4 + 12); this->instructions.push_back(Instruction(BaseOpcode::opImm) .i(XRegister::sp, Funct3::addi, XRegister::sp, -stackSize)); this->instructions.push_back(Instruction(BaseOpcode::store) .s(stackSize - 4, Funct3::sw, XRegister::sp, XRegister::s0)); this->instructions.push_back(Instruction(BaseOpcode::store) .s(stackSize - 8, Funct3::sw, XRegister::sp, XRegister::ra)); this->instructions.push_back(Instruction(BaseOpcode::opImm) .i(XRegister::s0, Funct3::addi, XRegister::sp, stackSize)); // Print the result. this->instructions.push_back(Instruction(BaseOpcode::opImm) .i(XRegister::a1, Funct3::addi, XRegister::a0, 0)); this->references[0] = Reference(); this->references[0].name = ".CL0"; this->references[0].offset = instructions.size() * 4; this->references[0].target = Target::high20; this->instructions.push_back(Instruction(BaseOpcode::lui).u(XRegister::a5, 0)); this->references[1] = Reference(); this->references[1].name = ".CL0"; this->references[1].offset = instructions.size() * 4; this->references[1].target = Target::lower12i; this->instructions.push_back(Instruction(BaseOpcode::opImm) .i(XRegister::a0, Funct3::addi, XRegister::a5, 0)); this->references[2] = Reference(); this->references[2].name = "printf"; this->references[2].offset = instructions.size() * 4; this->references[2].target = Target::text; this->instructions.push_back(Instruction(BaseOpcode::auipc).u(XRegister::ra, 0)); this->instructions.push_back(Instruction(BaseOpcode::jalr) .i(XRegister::ra, Funct3::jalr, XRegister::ra, 0)); // Set the return value (0). this->instructions.push_back(Instruction(BaseOpcode::op) .r(XRegister::a0, Funct3::_and, XRegister::zero, XRegister::zero)); // Epilogue. this->instructions.push_back(Instruction(BaseOpcode::load) .i(XRegister::s0, Funct3::lw, XRegister::sp, stackSize - 4)); this->instructions.push_back(Instruction(BaseOpcode::load) .i(XRegister::ra, Funct3::lw, XRegister::sp, stackSize - 8)); this->instructions.push_back(Instruction(BaseOpcode::opImm) .i(XRegister::sp, Funct3::addi, XRegister::sp, stackSize)); this->instructions.push_back(Instruction(BaseOpcode::jalr) .i(XRegister::zero, Funct3::jalr, XRegister::ra, 0)); } void RiscVVisitor::visit(source::bang_statement *statement) { statement->body().accept(this); } void RiscVVisitor::visit(source::variable_expression *variable) { const auto freeRegister = this->registerInUse ? XRegister::a0 : XRegister::t0; this->instructions.push_back( Instruction(BaseOpcode::opImm) // movl $x, %eax; where $x is a number. .i(freeRegister, Funct3::addi, XRegister::zero, constants[variable->name()]) ); } void RiscVVisitor::visit(source::integer_literal *number) { const auto freeRegister = this->registerInUse ? XRegister::a0 : XRegister::t0; this->instructions.push_back( Instruction(BaseOpcode::opImm) // movl $x, %eax; where $x is a number. .i(freeRegister, Funct3::addi, XRegister::zero, number->number()) ); } void RiscVVisitor::visit(source::binary_expression *expression) { const auto lhs_register = this->registerInUse ? XRegister::a0 : XRegister::t0; this->registerInUse = true; expression->lhs().accept(this); this->instructions.push_back( // movl %eax, -x(%rbp); where x is a number. Instruction(BaseOpcode::store) .s(static_cast(this->variableCounter * 4), Funct3::sw, XRegister::sp, XRegister::a0) ); auto lhs_stack_position = ++this->variableCounter; this->registerInUse = false; expression->rhs().accept(this); this->instructions.push_back(Instruction(BaseOpcode::load) .i(XRegister::a0, Funct3::lw, XRegister::sp, static_cast((lhs_stack_position - 1) * 4)) ); // Calculate the result and assign it to a variable on the stack. switch (expression->operation()) { case source::binary_operator::sum: this->instructions.push_back(Instruction(BaseOpcode::op) .r(lhs_register, Funct3::add, XRegister::a0, XRegister::t0)); break; case source::binary_operator::subtraction: this->instructions.push_back(Instruction(BaseOpcode::op) .r(lhs_register, Funct3::sub, XRegister::a0, XRegister::t0, Funct7::sub)); break; case source::binary_operator::multiplication: this->instructions.push_back(Instruction(BaseOpcode::op) .r(lhs_register, Funct3::mul, XRegister::a0, XRegister::t0, Funct7::muldiv)); break; } } }