#include "elna/backend/riscv.hpp" #include namespace elna::riscv { instruction::instruction(base_opcode opcode) { this->representation = static_cast::type>(opcode); } instruction& instruction::i(x_register rd, funct3_t funct3, x_register rs1, std::uint32_t immediate) { this->representation |= (static_cast::type>(rd) << 7) | (static_cast::type>(funct3) << 12) | (static_cast::type>(rs1) << 15) | (immediate << 20); return *this; } instruction& instruction::s(std::uint32_t imm1, funct3_t funct3, x_register rs1, x_register rs2) { this->representation |= ((imm1 & 0b11111) << 7) | (static_cast::type>(funct3) << 12) | (static_cast::type>(rs1) << 15) | (static_cast::type>(rs2) << 20) | ((imm1 & 0b111111100000) << 20); return *this; } instruction& instruction::r(x_register rd, funct3_t funct3, x_register rs1, x_register rs2, funct7_t funct7) { this->representation |= (static_cast::type>(rd) << 7) | (static_cast::type>(funct3) << 12) | (static_cast::type>(rs1) << 15) | (static_cast::type>(rs2) << 20) | (static_cast::type>(funct7) << 25); return *this; } instruction& instruction::u(x_register rd, std::uint32_t imm) { this->representation |= (static_cast::type>(rd) << 7) | (imm << 12); return *this; } const std::byte *instruction::cbegin() const { return reinterpret_cast(&this->representation); } const std::byte *instruction::cend() const { return reinterpret_cast(&this->representation) + sizeof(this->representation); } void visitor::visit(source::declaration *declaration) { } void visitor::visit(source::definition *definition) { constants[definition->identifier()] = definition->body().number(); } void visitor::visit(source::block *block) { this->instructions.push_back(instruction(base_opcode::opImm)); this->instructions.push_back(instruction(base_opcode::store)); this->instructions.push_back(instruction(base_opcode::store)); this->instructions.push_back(instruction(base_opcode::opImm)); for (const auto& block_definition : block->definitions()) { block_definition->accept(this); } for (const auto& block_declaration : block->declarations()) { block_declaration->accept(this); } block->body().accept(this); // Set the return value (0). this->instructions.push_back(instruction(base_opcode::op) .r(x_register::a0, funct3_t::_and, x_register::zero, x_register::zero)); // Prologue. const uint stack_size = static_cast(variable_counter * 4 + 12); this->instructions[0].i(x_register::sp, funct3_t::addi, x_register::sp, -stack_size); this->instructions[1].s(stack_size - 4, funct3_t::sw, x_register::sp, x_register::s0); this->instructions[2].s(stack_size - 8, funct3_t::sw, x_register::sp, x_register::ra); this->instructions[3].i(x_register::s0, funct3_t::addi, x_register::sp, stack_size); // Epilogue. this->instructions.push_back(instruction(base_opcode::load) .i(x_register::s0, funct3_t::lw, x_register::sp, stack_size - 4)); this->instructions.push_back(instruction(base_opcode::load) .i(x_register::ra, funct3_t::lw, x_register::sp, stack_size - 8)); this->instructions.push_back(instruction(base_opcode::opImm) .i(x_register::sp, funct3_t::addi, x_register::sp, stack_size)); this->instructions.push_back(instruction(base_opcode::jalr) .i(x_register::zero, funct3_t::jalr, x_register::ra, 0)); } void visitor::visit(source::bang_statement *statement) { statement->body().accept(this); // Print the result. this->instructions.push_back(instruction(base_opcode::opImm) .i(x_register::a1, funct3_t::addi, x_register::a0, 0)); this->references.push_back(reference()); this->references.back().name = ".CL0"; this->references.back().offset = instructions.size() * 4; this->references.back().target = address_t::high20; this->instructions.push_back(instruction(base_opcode::lui).u(x_register::a5, 0)); this->references.push_back(reference()); this->references.back().name = ".CL0"; this->references.back().offset = instructions.size() * 4; this->references.back().target = address_t::lower12i; this->instructions.push_back(instruction(base_opcode::opImm) .i(x_register::a0, funct3_t::addi, x_register::a5, 0)); this->references.push_back(reference()); this->references.back().name = "printf"; this->references.back().offset = instructions.size() * 4; this->references.back().target = address_t::text; this->instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0)); this->instructions.push_back(instruction(base_opcode::jalr) .i(x_register::ra, funct3_t::jalr, x_register::ra, 0)); } void visitor::visit(source::compound_statement *statement) { for (auto& nested_statement : statement->statements()) { nested_statement->accept(this); } } void visitor::visit(source::assignment_statement *statement) { } void visitor::visit(source::variable_expression *variable) { const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0; this->instructions.push_back( instruction(base_opcode::opImm) // movl $x, %eax; where $x is a number. .i(free_register, funct3_t::addi, x_register::zero, constants[variable->name()]) ); } void visitor::visit(source::integer_literal *number) { const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0; this->instructions.push_back( instruction(base_opcode::opImm) // movl $x, %eax; where $x is a number. .i(free_register, funct3_t::addi, x_register::zero, number->number()) ); } void visitor::visit(source::binary_expression *expression) { const auto lhs_register = this->register_in_use ? x_register::a0 : x_register::t0; this->register_in_use = true; expression->lhs().accept(this); this->instructions.push_back( // movl %eax, -x(%rbp); where x is a number. instruction(base_opcode::store) .s(static_cast(this->variable_counter * 4), funct3_t::sw, x_register::sp, x_register::a0) ); auto lhs_stack_position = ++this->variable_counter; this->register_in_use = false; expression->rhs().accept(this); this->instructions.push_back(instruction(base_opcode::load) .i(x_register::a0, funct3_t::lw, x_register::sp, static_cast((lhs_stack_position - 1) * 4)) ); // Calculate the result and assign it to a variable on the stack. switch (expression->operation()) { case source::binary_operator::sum: this->instructions.push_back(instruction(base_opcode::op) .r(lhs_register, funct3_t::add, x_register::a0, x_register::t0)); break; case source::binary_operator::subtraction: this->instructions.push_back(instruction(base_opcode::op) .r(lhs_register, funct3_t::sub, x_register::a0, x_register::t0, funct7_t::sub)); break; case source::binary_operator::multiplication: this->instructions.push_back(instruction(base_opcode::op) .r(lhs_register, funct3_t::mul, x_register::a0, x_register::t0, funct7_t::muldiv)); break; case source::binary_operator::division: this->instructions.push_back(instruction(base_opcode::op) .r(lhs_register, funct3_t::div, x_register::a0, x_register::t0, funct7_t::muldiv)); break; } } }