/* Visitor generating a GENERIC tree. Copyright (C) 2025 Free Software Foundation, Inc. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include #include #include "elna/gcc/elna-generic.h" #include "elna/gcc/elna-diagnostic.h" #include "elna/gcc/elna1.h" #include "ggc.h" #include "function.h" #include "cgraph.h" #include "gimplify.h" #include "stringpool.h" #include "diagnostic.h" #include "realmpfr.h" #include "stor-layout.h" #include "varasm.h" #include "fold-const.h" #include "langhooks.h" namespace elna::gcc { tree get_inner_alias(const boot::type& type, std::shared_ptr symbols, std::unordered_map& unresolved) { if (auto reference = type.get()) { auto looked_up = unresolved.find(reference->identifier); if (looked_up == unresolved.cend()) { return symbols->lookup(reference->identifier); } else { return looked_up->second; } } else if (auto reference = type.get()) { return make_node(RECORD_TYPE); } else if (auto reference = type.get()) { return make_node(UNION_TYPE); } else if (auto reference = type.get()) { return build_pointer_type_for_mode(get_inner_alias(reference->base, symbols, unresolved), VOIDmode, true); } else if (auto reference = type.get()) { tree lower_bound = build_int_cst_type(integer_type_node, 0); tree upper_bound = build_int_cst_type(integer_type_node, reference->size); tree range_type = build_range_type(integer_type_node, lower_bound, upper_bound); return build_array_type(get_inner_alias(reference->base, symbols, unresolved), range_type); } else if (auto reference = type.get()) { return handle_symbol(reference->name, reference->reference, symbols, unresolved); } return error_mark_node; } tree handle_symbol(const std::string& symbol_name, const boot::type& type, std::shared_ptr symbols, std::unordered_map& unresolved) { auto looked_up = symbols->lookup(symbol_name); if (looked_up == NULL_TREE) { looked_up = get_inner_alias(type, symbols, unresolved); unresolved.insert({ symbol_name, looked_up }); } return looked_up; } std::deque> do_semantic_analysis(const char *path, std::unique_ptr& ast, std::shared_ptr info_table, std::shared_ptr symbols, std::unordered_map& unresolved) { boot::declaration_visitor declaration_visitor(path, info_table); declaration_visitor.visit(ast.get()); if (declaration_visitor.errors().empty()) { for (auto& [symbol_name, symbol_info] : declaration_visitor.unresolved) { handle_symbol(symbol_name, boot::type(symbol_info), symbols, unresolved); } } return std::move(declaration_visitor.errors()); } generic_visitor::generic_visitor(std::shared_ptr symbol_table, std::unordered_map&& unresolved) : symbols(symbol_table), unresolved(std::move(unresolved)) { } void generic_visitor::build_procedure_call(location_t call_location, tree procedure_address, const std::vector& arguments) { vec *argument_trees = nullptr; tree symbol_type = TREE_TYPE(TREE_TYPE(procedure_address)); tree current_parameter = TYPE_ARG_TYPES(symbol_type); vec_alloc(argument_trees, arguments.size()); for (boot::expression *const argument : arguments) { location_t argument_location = get_location(&argument->position()); if (is_void_type(TREE_VALUE(current_parameter))) { error_at(argument_location, "too many arguments, expected %i, got %lu", list_length(TYPE_ARG_TYPES(symbol_type)) - 1, arguments.size()); this->current_expression = error_mark_node; break; } argument->accept(this); this->current_expression = prepare_rvalue(this->current_expression); if (!is_assignable_from(TREE_VALUE(current_parameter), this->current_expression)) { error_at(argument_location, "cannot assign value of type '%s' to variable of type '%s'", print_type(TREE_TYPE(this->current_expression)).c_str(), print_type(TREE_VALUE(current_parameter)).c_str()); this->current_expression = error_mark_node; } current_parameter = TREE_CHAIN(current_parameter); argument_trees->quick_push(this->current_expression); } tree stmt = fold_build_call_array_loc(call_location, TREE_TYPE(symbol_type), procedure_address, vec_safe_length(argument_trees), vec_safe_address(argument_trees)); if (!is_void_type(TREE_VALUE(current_parameter))) { error_at(call_location, "too few arguments, expected %i, got %lu", list_length(TYPE_ARG_TYPES(symbol_type)) - 1, arguments.size()); this->current_expression = error_mark_node; } else { this->current_expression = stmt; } } void generic_visitor::build_record_call(location_t call_location, tree symbol, const std::vector& arguments) { vec *tree_arguments = nullptr; tree record_fields = TYPE_FIELDS(symbol); for (boot::expression *const argument : arguments) { location_t argument_location = get_location(&argument->position()); if (is_void_type(record_fields)) { error_at(argument_location, "too many arguments, expected %i, got %lu", list_length(TYPE_FIELDS(symbol)), arguments.size()); this->current_expression = error_mark_node; break; } argument->accept(this); tree unqualified_field = get_qualified_type(TREE_TYPE(record_fields), TYPE_UNQUALIFIED); if (!is_assignable_from(unqualified_field, this->current_expression)) { error_at(argument_location, "cannot assign value of type '%s' to variable of type '%s'", print_type(TREE_TYPE(this->current_expression)).c_str(), print_type(TREE_TYPE(record_fields)).c_str()); this->current_expression = error_mark_node; } CONSTRUCTOR_APPEND_ELT(tree_arguments, record_fields, this->current_expression); record_fields = TREE_CHAIN(record_fields); } if (!is_void_type(record_fields)) { error_at(call_location, "too few arguments, expected %i, got %lu", list_length(TYPE_FIELDS(symbol)), arguments.size()); this->current_expression = error_mark_node; } else { this->current_expression = build_constructor(symbol, tree_arguments); } } void generic_visitor::visit(boot::procedure_call *call) { location_t call_location = get_location(&call->position()); call->callable().accept(this); tree expression_type = TYPE_P(this->current_expression) ? this->current_expression : TREE_TYPE(this->current_expression); if (TREE_CODE(expression_type) == RECORD_TYPE) { build_record_call(call_location, expression_type, call->arguments); } else if (TREE_CODE(expression_type) == FUNCTION_TYPE) { this->current_expression = build1(ADDR_EXPR, build_pointer_type_for_mode(expression_type, VOIDmode, true), this->current_expression); build_procedure_call(call_location, this->current_expression, call->arguments); } else if (is_pointer_type(expression_type) && TREE_CODE(TREE_TYPE(expression_type)) == FUNCTION_TYPE) { build_procedure_call(call_location, this->current_expression, call->arguments); } else { error_at(call_location, "'%s' cannot be called, it is neither a procedure nor record", print_type(expression_type).c_str()); this->current_expression = error_mark_node; } } void generic_visitor::visit(boot::cast_expression *expression) { expression->target().accept(this); tree cast_target = this->current_expression; expression->value().accept(this); tree cast_source = TREE_TYPE(this->current_expression); if ((is_primitive_type(cast_target) || is_pointer_type(cast_target)) && (is_primitive_type(cast_source) || is_pointer_type(cast_source))) { this->current_expression = build1_loc(get_location(&expression->position()), CONVERT_EXPR, cast_target, this->current_expression); } else { error_at(get_location(&expression->position()), "Type '%s' cannot be converted to '%s'", print_type(cast_source).c_str(), print_type(cast_target).c_str()); this->current_expression = error_mark_node; } } void generic_visitor::visit(boot::program *program) { for (boot::constant_definition *const constant : program->constants) { constant->accept(this); } for (boot::type_definition *const type : program->types) { type->accept(this); } for (boot::variable_declaration *const variable : program->variables) { variable->accept(this); } for (boot::procedure_definition *const procedure : program->procedures) { procedure->accept(this); } tree declaration_type = build_function_type_list(integer_type_node, integer_type_node, build_pointer_type(build_pointer_type(char_type_node)), NULL_TREE); tree fndecl = build_fn_decl("main", declaration_type); tree resdecl = build_decl(UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, integer_type_node); DECL_CONTEXT(resdecl) = fndecl; DECL_RESULT(fndecl) = resdecl; push_struct_function(fndecl, false); DECL_STRUCT_FUNCTION(fndecl)->language = ggc_cleared_alloc(); enter_scope(); tree parameter_type = TYPE_ARG_TYPES(declaration_type); for (const char *argument_name : std::array{ "count", "parameters" }) { tree declaration_tree = build_decl(UNKNOWN_LOCATION, PARM_DECL, get_identifier(argument_name), TREE_VALUE(parameter_type)); DECL_CONTEXT(declaration_tree) = fndecl; DECL_ARG_TYPE(declaration_tree) = TREE_VALUE(parameter_type); this->symbols->enter(argument_name, declaration_tree); DECL_ARGUMENTS(fndecl) = chainon(DECL_ARGUMENTS(fndecl), declaration_tree); parameter_type = TREE_CHAIN(parameter_type); } visit_statements(program->body); tree set_result = build2(INIT_EXPR, void_type_node, DECL_RESULT(fndecl), build_int_cst_type(integer_type_node, 0)); tree return_stmt = build1(RETURN_EXPR, void_type_node, set_result); append_statement(return_stmt); tree mapping = leave_scope(); BLOCK_SUPERCONTEXT(BIND_EXPR_BLOCK(mapping)) = fndecl; DECL_INITIAL(fndecl) = BIND_EXPR_BLOCK(mapping); DECL_SAVED_TREE(fndecl) = mapping; DECL_EXTERNAL(fndecl) = 0; DECL_PRESERVE_P(fndecl) = 1; pop_cfun(); gimplify_function_tree(fndecl); cgraph_node::finalize_function(fndecl, true); } void generic_visitor::visit(boot::block *block) { for (boot::constant_definition *const constant : block->constants) { constant->accept(this); } for (boot::variable_declaration *const variable : block->variables) { variable->accept(this); } visit_statements(block->body); } void generic_visitor::visit(boot::procedure_definition *definition) { tree declaration_type = build_procedure_type(definition->heading()); tree fndecl = build_fn_decl(definition->identifier.c_str(), declaration_type); this->symbols->enter(definition->identifier, fndecl); if (definition->heading().return_type.no_return) { TREE_THIS_VOLATILE(fndecl) = 1; } if (definition->body != nullptr) { tree resdecl = build_decl(UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, TREE_TYPE(declaration_type)); DECL_CONTEXT(resdecl) = fndecl; DECL_RESULT(fndecl) = resdecl; push_struct_function(fndecl, false); DECL_STRUCT_FUNCTION(fndecl)->language = ggc_cleared_alloc(); enter_scope(); } tree argument_chain = NULL_TREE; function_args_iterator parameter_type; function_args_iter_init(¶meter_type, declaration_type); std::vector::const_iterator parameter_name = definition->parameter_names.cbegin(); for (std::shared_ptr parameter : definition->heading().parameters) { tree declaration_tree = build_decl(get_location(¶meter->position()), PARM_DECL, get_identifier(parameter_name->c_str()), function_args_iter_cond(¶meter_type)); DECL_CONTEXT(declaration_tree) = fndecl; DECL_ARG_TYPE(declaration_tree) = function_args_iter_cond(¶meter_type); if (definition->body != nullptr) { this->symbols->enter(*parameter_name, declaration_tree); } argument_chain = chainon(argument_chain, declaration_tree); function_args_iter_next(¶meter_type); ++parameter_name; } DECL_ARGUMENTS(fndecl) = argument_chain; TREE_PUBLIC(fndecl) = definition->exported; TREE_ADDRESSABLE(fndecl) = 1; if (definition->body != nullptr) { definition->body->accept(this); tree mapping = leave_scope(); BLOCK_SUPERCONTEXT(BIND_EXPR_BLOCK(mapping)) = fndecl; DECL_INITIAL(fndecl) = BIND_EXPR_BLOCK(mapping); DECL_SAVED_TREE(fndecl) = mapping; DECL_EXTERNAL(fndecl) = 0; DECL_PRESERVE_P(fndecl) = 1; pop_cfun(); gimplify_function_tree(fndecl); cgraph_node::finalize_function(fndecl, true); } else { DECL_EXTERNAL(fndecl) = 1; } } void generic_visitor::enter_scope() { this->symbols = std::make_shared(this->symbols); // Chain the binding levels. struct binding_level *new_level = ggc_cleared_alloc(); new_level->level_chain = f_binding_level; new_level->statement_list = alloc_stmt_list(); f_binding_level = new_level; } tree generic_visitor::leave_scope() { // Variables are only defined in the top function scope. tree variables = f_binding_level->level_chain == nullptr ? f_names : NULL_TREE; tree new_block = build_block(variables, f_binding_level->blocks, NULL_TREE, NULL_TREE); for (tree it = f_binding_level->blocks; it != NULL_TREE; it = BLOCK_CHAIN(it)) { BLOCK_SUPERCONTEXT(it) = new_block; } tree bind_expr = build3(BIND_EXPR, void_type_node, variables, chain_defer(), new_block); this->symbols = this->symbols->scope(); f_binding_level = f_binding_level->level_chain; if (f_binding_level != nullptr) { f_binding_level->blocks = chainon(f_binding_level->blocks, new_block); } return bind_expr; } void generic_visitor::visit(boot::literal *literal) { this->current_expression = build_int_cst(elna_int_type_node, literal->value); } void generic_visitor::visit(boot::literal *literal) { this->current_expression = build_int_cstu(elna_word_type_node, literal->value); } void generic_visitor::visit(boot::literal *literal) { REAL_VALUE_TYPE real_value1; mpfr_t number; mpfr_init2(number, SIGNIFICAND_BITS); mpfr_set_d(number, literal->value, MPFR_RNDN); real_from_mpfr(&real_value1, number, double_type_node, MPFR_RNDN); this->current_expression = build_real(double_type_node, real_value1); mpfr_clear(number); } void generic_visitor::visit(boot::literal *boolean) { this->current_expression = boolean->value ? boolean_true_node : boolean_false_node; } void generic_visitor::visit(boot::literal *character) { this->current_expression = build_int_cstu(elna_char_type_node, character->value); } void generic_visitor::visit(boot::literal *) { this->current_expression = elna_pointer_nil_node; } void generic_visitor::visit(boot::literal *string) { tree index_constant = build_int_cstu(elna_word_type_node, string->value.size()); tree string_type = build_array_type(elna_char_type_node, build_index_type(index_constant)); tree string_literal = build_string(string->value.size(), string->value.c_str()); TREE_TYPE(string_literal) = string_type; TREE_CONSTANT(string_literal) = 1; TREE_READONLY(string_literal) = 1; TREE_STATIC(string_literal) = 1; string_type = TREE_TYPE(elna_string_ptr_field_node); string_literal = build4(ARRAY_REF, elna_char_type_node, string_literal, integer_zero_node, NULL_TREE, NULL_TREE); string_literal = build1(ADDR_EXPR, string_type, string_literal); vec *elms = nullptr; CONSTRUCTOR_APPEND_ELT(elms, elna_string_ptr_field_node, string_literal); CONSTRUCTOR_APPEND_ELT(elms, elna_string_length_field_node, index_constant); this->current_expression = build_constructor(elna_string_type_node, elms); } tree generic_visitor::build_arithmetic_operation(boot::binary_expression *expression, tree_code operator_code, tree left, tree right) { return build_binary_operation(is_numeric_type(TREE_TYPE(left)), expression, operator_code, left, right, TREE_TYPE(left)); } tree generic_visitor::build_comparison_operation(boot::binary_expression *expression, tree_code operator_code, tree left, tree right) { return build_binary_operation(is_numeric_type(TREE_TYPE(left)) || is_pointer_type(TREE_TYPE(left)), expression, operator_code, left, right, elna_bool_type_node); } tree generic_visitor::build_bit_logic_operation(boot::binary_expression *expression, tree left, tree right) { location_t expression_location = get_location(&expression->position()); tree left_type = TREE_TYPE(left); tree right_type = TREE_TYPE(right); tree_code logical_code, bit_code; if (expression->operation() == boot::binary_operator::conjunction) { bit_code = BIT_AND_EXPR; logical_code = TRUTH_ANDIF_EXPR; } else if (expression->operation() == boot::binary_operator::disjunction) { bit_code = BIT_IOR_EXPR; logical_code = TRUTH_ORIF_EXPR; } else if (expression->operation() == boot::binary_operator::exclusive_disjunction) { bit_code = BIT_XOR_EXPR; logical_code = TRUTH_XOR_EXPR; } else { gcc_unreachable(); } if (left_type == elna_bool_type_node) { return build2_loc(expression_location, logical_code, elna_bool_type_node, left, right); } else if (is_integral_type(left_type)) { return build2_loc(expression_location, bit_code, left_type, left, right); } else { error_at(expression_location, "invalid operands of type '%s' and '%s' for operator %s", print_type(left_type).c_str(), print_type(right_type).c_str(), elna::boot::print_binary_operator(expression->operation())); return error_mark_node; } } tree generic_visitor::build_equality_operation(boot::binary_expression *expression, tree left, tree right) { location_t expression_location = get_location(&expression->position()); tree_code equality_code, combination_code; if (expression->operation() == boot::binary_operator::equals) { equality_code = EQ_EXPR; combination_code = TRUTH_ANDIF_EXPR; } else if (expression->operation() == boot::binary_operator::not_equals) { equality_code = NE_EXPR; combination_code = TRUTH_ORIF_EXPR; } else { gcc_unreachable(); } if (TREE_TYPE(left) == elna_string_type_node) { tree lhs_length = build3(COMPONENT_REF, TREE_TYPE(elna_string_length_field_node), left, elna_string_length_field_node, NULL_TREE); tree lhs_ptr = build3(COMPONENT_REF, TREE_TYPE(elna_string_ptr_field_node), left, elna_string_ptr_field_node, NULL_TREE); tree rhs_length = build3(COMPONENT_REF, TREE_TYPE(elna_string_length_field_node), right, elna_string_length_field_node, NULL_TREE); tree rhs_ptr = build3(COMPONENT_REF, TREE_TYPE(elna_string_ptr_field_node), right, elna_string_ptr_field_node, NULL_TREE); tree length_equality = build2(equality_code, elna_bool_type_node, lhs_length, rhs_length); tree *memcmp = elna_global_decls->get("__builtin_memcmp"); gcc_assert(memcmp != nullptr); tree fndecl_type = build_function_type(integer_type_node, TYPE_ARG_TYPES(*memcmp)); tree memcmp_addr = build1(ADDR_EXPR, build_pointer_type(fndecl_type), *memcmp); tree memcmp_call = build_call_nary(integer_type_node, memcmp_addr, 3, lhs_ptr, rhs_ptr, lhs_length); tree equals_zero = build2(equality_code, elna_bool_type_node, memcmp_call, integer_zero_node); return build2(combination_code, elna_bool_type_node, length_equality, equals_zero); } else { return build2_loc(expression_location, equality_code, elna_bool_type_node, left, right); } } void generic_visitor::visit(boot::binary_expression *expression) { expression->lhs().accept(this); tree left = this->current_expression; tree left_type = get_qualified_type(TREE_TYPE(left), TYPE_UNQUALIFIED); expression->rhs().accept(this); tree right = this->current_expression; tree right_type = get_qualified_type(TREE_TYPE(right), TYPE_UNQUALIFIED); location_t expression_location = get_location(&expression->position()); if ((is_pointer_type(left_type) || is_pointer_type(right_type)) && (expression->operation() == boot::binary_operator::sum || expression->operation() == boot::binary_operator::subtraction)) { this->current_expression = do_pointer_arithmetic(expression->operation(), left, right); if (this->current_expression == error_mark_node) { error_at(expression_location, "invalid operation %s on a pointer and an integral type", boot::print_binary_operator(expression->operation())); } else if (TREE_TYPE(this->current_expression) == ssizetype) { this->current_expression = fold_convert(elna_int_type_node, this->current_expression); } return; } if (left_type != right_type && !are_compatible_pointers(left_type, right) && !are_compatible_pointers(right_type, left) && !(is_integral_type(left_type) && right_type == elna_word_type_node)) { error_at(expression_location, "invalid operands of type '%s' and '%s' for operator %s", print_type(left_type).c_str(), print_type(right_type).c_str(), boot::print_binary_operator(expression->operation())); this->current_expression = error_mark_node; return; } switch (expression->operation()) { case boot::binary_operator::sum: this->current_expression = build_arithmetic_operation(expression, PLUS_EXPR, left, right); break; case boot::binary_operator::subtraction: this->current_expression = build_arithmetic_operation(expression, MINUS_EXPR, left, right); break; case boot::binary_operator::division: this->current_expression = build_arithmetic_operation(expression, TRUNC_DIV_EXPR, left, right); break; case boot::binary_operator::remainder: this->current_expression = build_arithmetic_operation(expression, TRUNC_MOD_EXPR, left, right); break; case boot::binary_operator::multiplication: this->current_expression = build_arithmetic_operation(expression, MULT_EXPR, left, right); break; case boot::binary_operator::less: this->current_expression = build_comparison_operation(expression, LT_EXPR, left, right); break; case boot::binary_operator::greater: this->current_expression = build_comparison_operation(expression, GT_EXPR, left, right); break; case boot::binary_operator::less_equal: this->current_expression = build_comparison_operation(expression, LE_EXPR, left, right); break; case boot::binary_operator::greater_equal: this->current_expression = build_comparison_operation(expression, GE_EXPR, left, right); break; case boot::binary_operator::conjunction: this->current_expression = build_bit_logic_operation(expression, left, right); break; case boot::binary_operator::disjunction: this->current_expression = build_bit_logic_operation(expression, left, right); break; case boot::binary_operator::exclusive_disjunction: this->current_expression = build_bit_logic_operation(expression, left, right); break; case boot::binary_operator::equals: this->current_expression = build_equality_operation(expression, left, right); break; case boot::binary_operator::not_equals: this->current_expression = build_equality_operation(expression, left, right); break; case boot::binary_operator::shift_left: this->current_expression = build_binary_operation( is_numeric_type(left_type) && right_type == elna_word_type_node, expression, LSHIFT_EXPR, left, right, left_type); break; case boot::binary_operator::shift_right: this->current_expression = build_binary_operation( is_numeric_type(left_type) && right_type == elna_word_type_node, expression, RSHIFT_EXPR, left, right, left_type); break; } } void generic_visitor::visit(boot::unary_expression *expression) { expression->operand().accept(this); location_t location = get_location(&expression->position()); switch (expression->operation()) { case boot::unary_operator::reference: this->current_expression = prepare_rvalue(this->current_expression); TREE_ADDRESSABLE(this->current_expression) = 1; this->current_expression = build_fold_addr_expr_with_type_loc(location, this->current_expression, build_pointer_type_for_mode(TREE_TYPE(this->current_expression), VOIDmode, true)); TREE_NO_TRAMPOLINE(this->current_expression) = 1; break; case boot::unary_operator::negation: if (TREE_TYPE(this->current_expression) == elna_bool_type_node) { this->current_expression = build1_loc(location, TRUTH_NOT_EXPR, boolean_type_node, this->current_expression); } else if (is_integral_type(TREE_TYPE(this->current_expression))) { this->current_expression = build1_loc(location, BIT_NOT_EXPR, TREE_TYPE(this->current_expression), this->current_expression); } else { error_at(location, "type '%s' cannot be negated", print_type(TREE_TYPE(this->current_expression)).c_str()); this->current_expression = error_mark_node; } break; case boot::unary_operator::minus: if (is_integral_type(TREE_TYPE(this->current_expression))) { this->current_expression = fold_build1(NEGATE_EXPR, TREE_TYPE(this->current_expression), this->current_expression); } else { error_at(location, "type '%s' cannot be negated", print_type(TREE_TYPE(this->current_expression)).c_str()); this->current_expression = error_mark_node; } } } void generic_visitor::visit(boot::constant_definition *definition) { location_t definition_location = get_location(&definition->position()); definition->body().accept(this); tree definition_tree = build_decl(definition_location, CONST_DECL, get_identifier(definition->identifier.c_str()), TREE_TYPE(this->current_expression)); auto result = this->symbols->enter(definition->identifier, definition_tree); if (result) { DECL_INITIAL(definition_tree) = this->current_expression; TREE_CONSTANT(definition_tree) = 1; TREE_READONLY(definition_tree) = 1; TREE_PUBLIC(definition_tree) = definition->exported; if (!lang_hooks.decls.global_bindings_p()) { auto declaration_statement = build1_loc(definition_location, DECL_EXPR, void_type_node, definition_tree); append_statement(declaration_statement); } } else { error_at(definition_location, "Variable '%s' already declared in this scope", definition->identifier.c_str()); } this->current_expression = NULL_TREE; } void generic_visitor::visit(boot::type_definition *definition) { location_t definition_location = get_location(&definition->position()); this->current_expression = this->unresolved.at(definition->identifier); definition->body().accept(this); tree definition_tree = build_decl(definition_location, TYPE_DECL, get_identifier(definition->identifier.c_str()), this->current_expression); TREE_PUBLIC(definition_tree) = definition->exported; TYPE_NAME(this->current_expression) = get_identifier(definition->identifier.c_str()); auto result = this->symbols->enter(definition->identifier, definition_tree); gcc_assert(result); this->current_expression = NULL_TREE; } tree generic_visitor::build_procedure_type(boot::procedure_type_expression& type) { std::vector parameter_types(type.parameters.size()); for (std::size_t i = 0; i < type.parameters.size(); ++i) { type.parameters.at(i)->accept(this); parameter_types[i] = this->current_expression; } tree return_type = void_type_node; if (type.return_type.type != nullptr) { type.return_type.type->accept(this); return_type = this->current_expression; } this->current_expression = NULL_TREE; return build_function_type_array(return_type, type.parameters.size(), parameter_types.data()); } void generic_visitor::build_composite_type(const std::vector& fields, tree composite_type_node) { std::set field_names; for (auto& field : fields) { if (field_names.find(field.first) != field_names.cend()) { error_at(get_location(&field.second->position()), "repeated field name"); this->current_expression = error_mark_node; return; } field_names.insert(field.first); field.second->accept(this); if (this->current_expression == NULL_TREE || this->current_expression == error_mark_node) { return; } tree field_declaration = build_field(get_location(&field.second->position()), composite_type_node, field.first, this->current_expression); TYPE_FIELDS(composite_type_node) = chainon(TYPE_FIELDS(composite_type_node), field_declaration); this->current_expression = NULL_TREE; } layout_type(composite_type_node); this->current_expression = composite_type_node; } void generic_visitor::visit(boot::variable_declaration *declaration) { declaration->variable_type().accept(this); location_t declaration_location = get_location(&declaration->position()); tree declaration_tree = build_decl(declaration_location, VAR_DECL, get_identifier(declaration->identifier.c_str()), this->current_expression); bool result = this->symbols->enter(declaration->identifier, declaration_tree); if (is_pointer_type(this->current_expression)) { DECL_INITIAL(declaration_tree) = elna_pointer_nil_node; } this->current_expression = NULL_TREE; if (!result) { error_at(declaration_location, "variable '%s' already declared in this scope", declaration->identifier.c_str()); } else if (lang_hooks.decls.global_bindings_p()) { TREE_STATIC(declaration_tree) = 1; varpool_node::get_create(declaration_tree); varpool_node::finalize_decl(declaration_tree); } else { DECL_CONTEXT(declaration_tree) = current_function_decl; f_names = chainon(f_names, declaration_tree); auto declaration_statement = build1_loc(declaration_location, DECL_EXPR, void_type_node, declaration_tree); append_statement(declaration_statement); } } void generic_visitor::visit(boot::variable_expression *expression) { auto symbol = this->symbols->lookup(expression->name); if (symbol == NULL_TREE) { error_at(get_location(&expression->position()), "Symbol '%s' not declared in the current scope", expression->name.c_str()); this->current_expression = error_mark_node; } else { this->current_expression = symbol; } } void generic_visitor::visit(boot::array_access_expression *expression) { expression->base().accept(this); tree designator = this->current_expression; location_t location = get_location(&expression->position()); expression->index().accept(this); if (!is_integral_type(TREE_TYPE(this->current_expression))) { error_at(location, "type '%s' cannot be used as index", print_type(TREE_TYPE(this->current_expression)).c_str()); this->current_expression = error_mark_node; return; } if (this->current_expression != elna_word_type_node) { this->current_expression = fold_convert(elna_word_type_node, this->current_expression); } tree offset = build2(MINUS_EXPR, elna_word_type_node, this->current_expression, size_one_node); if (is_array_type(TREE_TYPE(designator))) { tree element_type = TREE_TYPE(TREE_TYPE(designator)); this->current_expression = build4_loc(location, ARRAY_REF, element_type, designator, offset, NULL_TREE, NULL_TREE); } else if (TREE_TYPE(designator) == elna_string_type_node) { tree string_ptr = build3_loc(location, COMPONENT_REF, TREE_TYPE(elna_string_ptr_field_node), designator, elna_string_ptr_field_node, NULL_TREE); tree target_pointer = do_pointer_arithmetic(boot::binary_operator::sum, string_ptr, offset); this->current_expression = build1_loc(location, INDIRECT_REF, elna_char_type_node, target_pointer); } else { error_at(location, "indexing is not allowed on type '%s'", print_type(TREE_TYPE(designator)).c_str()); this->current_expression = error_mark_node; } } bool generic_visitor::expect_trait_type_only(boot::traits_expression *trait) { if (trait->parameters.size() != 1) { error_at(get_location(&trait->position()), "Trait '%s' expects 1 argument, got %lu", trait->name.c_str(), trait->parameters.size()); this->current_expression = error_mark_node; return false; } trait->parameters.front()->accept(this); return this->current_expression != error_mark_node; } bool generic_visitor::expect_trait_for_integral_type(boot::traits_expression *trait) { if (!expect_trait_type_only(trait)) { return false; } else if (!is_integral_type(this->current_expression)) { error_at(get_location(&trait->position()), "Type '%s' does not support trait '%s'", print_type(this->current_expression).c_str(), trait->name.c_str()); this->current_expression = error_mark_node; return false; } return true; } void generic_visitor::visit(boot::traits_expression *trait) { location_t trait_location = get_location(&trait->position()); if (trait->name == "size") { if (expect_trait_type_only(trait)) { this->current_expression = build1_loc(trait_location, CONVERT_EXPR, elna_word_type_node, size_in_bytes(this->current_expression)); } } else if (trait->name == "alignment") { if (expect_trait_type_only(trait)) { this->current_expression = build_int_cstu(elna_word_type_node, TYPE_ALIGN_UNIT(this->current_expression)); } } else if (trait->name == "min") { if (expect_trait_for_integral_type(trait)) { this->current_expression = TYPE_MIN_VALUE(this->current_expression); } } else if (trait->name == "max") { if (expect_trait_for_integral_type(trait)) { this->current_expression = TYPE_MAX_VALUE(this->current_expression); } } else if (trait->name == "offset") { if (trait->parameters.size() != 2) { error_at(trait_location, "Trait '%s' expects 2 arguments, got %lu", trait->name.c_str(), trait->parameters.size()); this->current_expression = error_mark_node; return; } trait->parameters.front()->accept(this); auto field_type = trait->parameters.at(1)->is_primitive(); if (field_type == nullptr) { error_at(trait_location, "The second argument to the offset trait is expected to be a field name," "got a type expression"); this->current_expression = error_mark_node; return; } tree field_declaration = find_field_by_name(trait_location, this->current_expression, field_type->name); if (field_declaration != error_mark_node) { this->current_expression = build1(CONVERT_EXPR, elna_word_type_node, byte_position(field_declaration)); } else { this->current_expression = error_mark_node; } } else { error_at(get_location(&trait->position()), "Trait '%s' is unknown", trait->name.c_str()); this->current_expression = error_mark_node; } } void generic_visitor::visit(boot::field_access_expression *expression) { expression->base().accept(this); location_t expression_location = get_location(&expression->position()); tree aggregate_type = TREE_TYPE(this->current_expression); if (is_array_type(aggregate_type) && expression->field() == "length") { this->current_expression = fold_convert(build_qualified_type(elna_word_type_node, TYPE_QUAL_CONST), TYPE_MAX_VALUE(TYPE_DOMAIN(aggregate_type))); } else if (is_array_type(aggregate_type) && expression->field() == "ptr") { tree ptr_type = build_pointer_type_for_mode(TREE_TYPE(aggregate_type), VOIDmode, true); this->current_expression = build1(ADDR_EXPR, build_qualified_type(ptr_type, TYPE_QUAL_CONST), this->current_expression); } else { tree field_declaration = find_field_by_name(expression_location, TREE_TYPE(this->current_expression), expression->field()); if (field_declaration != error_mark_node) { this->current_expression = build3_loc(expression_location, COMPONENT_REF, TREE_TYPE(field_declaration), this->current_expression, field_declaration, NULL_TREE); } } } void generic_visitor::visit(boot::dereference_expression *expression) { expression->base().accept(this); location_t expression_location = get_location(&expression->position()); tree expression_type = TREE_TYPE(this->current_expression); if (is_pointer_type(expression_type)) { this->current_expression = build1_loc(expression_location, INDIRECT_REF, TREE_TYPE(expression_type), this->current_expression); } else { error_at(expression_location, "Type '%s' cannot be dereferenced, it is not a pointer", print_type(expression_type).c_str()); this->current_expression = error_mark_node; } } void generic_visitor::visit(boot::assign_statement *statement) { statement->lvalue().accept(this); tree lvalue = this->current_expression; location_t statement_location = get_location(&statement->position()); statement->rvalue().accept(this); tree rvalue = prepare_rvalue(this->current_expression); if (TREE_CODE(lvalue) == CONST_DECL) { error_at(statement_location, "Cannot modify constant '%s'", statement->lvalue().is_variable()->name.c_str()); } else if (TYPE_READONLY(TREE_TYPE(lvalue))) { error_at(statement_location, "Cannot modify a constant expression of type '%s'", print_type(TREE_TYPE(lvalue)).c_str()); } else if (is_assignable_from(TREE_TYPE(lvalue), rvalue)) { tree assignment = build2_loc(statement_location, MODIFY_EXPR, void_type_node, lvalue, rvalue); append_statement(assignment); } else { error_at(statement_location, "Cannot assign value of type '%s' to variable of type '%s'", print_type(TREE_TYPE(rvalue)).c_str(), print_type(TREE_TYPE(lvalue)).c_str()); } this->current_expression = NULL_TREE; } void generic_visitor::visit(boot::if_statement *statement) { tree endif_label_decl = build_label_decl("endif", UNKNOWN_LOCATION); tree goto_endif = build1(GOTO_EXPR, void_type_node, endif_label_decl); make_if_branch(statement->body(), goto_endif); for (const auto branch : statement->branches) { make_if_branch(*branch, goto_endif); } if (statement->alternative() != nullptr) { enter_scope(); visit_statements(*statement->alternative()); tree mapping = leave_scope(); append_statement(mapping); } tree endif_label_expr = build1(LABEL_EXPR, void_type_node, endif_label_decl); append_statement(endif_label_expr); this->current_expression = NULL_TREE; } void generic_visitor::make_if_branch(boot::conditional_statements& branch, tree goto_endif) { branch.prerequisite().accept(this); if (TREE_TYPE(this->current_expression) != elna_bool_type_node) { error_at(get_location(&branch.prerequisite().position()), "expected expression of boolean type but its type is %s", print_type(TREE_TYPE(this->current_expression)).c_str()); this->current_expression = error_mark_node; return; } tree then_label_decl = build_label_decl("then", UNKNOWN_LOCATION); tree goto_then = build1(GOTO_EXPR, void_type_node, then_label_decl); tree else_label_decl = build_label_decl("else", UNKNOWN_LOCATION); tree goto_else = build1(GOTO_EXPR, void_type_node, else_label_decl); auto cond_expr = build3(COND_EXPR, void_type_node, this->current_expression, goto_then, goto_else); append_statement(cond_expr); tree then_label_expr = build1(LABEL_EXPR, void_type_node, then_label_decl); append_statement(then_label_expr); enter_scope(); visit_statements(branch.statements); tree mapping = leave_scope(); append_statement(mapping); append_statement(goto_endif); tree else_label_expr = build1(LABEL_EXPR, void_type_node, else_label_decl); append_statement(else_label_expr); } tree generic_visitor::build_label_decl(const char *name, location_t loc) { auto label_decl = build_decl(loc, LABEL_DECL, get_identifier(name), void_type_node); DECL_CONTEXT(label_decl) = current_function_decl; return label_decl; } void generic_visitor::visit(boot::while_statement *statement) { auto prerequisite_location = get_location(&statement->body().prerequisite().position()); auto prerequisite_label_decl = build_label_decl("while_check", prerequisite_location); auto prerequisite_label_expr = build1_loc(prerequisite_location, LABEL_EXPR, void_type_node, prerequisite_label_decl); auto goto_check = build1(GOTO_EXPR, void_type_node, prerequisite_label_decl); append_statement(prerequisite_label_expr); make_if_branch(statement->body(), goto_check); for (const auto branch : statement->branches) { make_if_branch(*branch, goto_check); } this->current_expression = NULL_TREE; } void generic_visitor::visit_statements(const std::vector& statements) { for (boot::statement *const statement : statements) { statement->accept(this); if (this->current_expression != NULL_TREE && this->current_expression != error_mark_node) { append_statement(this->current_expression); this->current_expression = NULL_TREE; } } } void generic_visitor::visit(boot::return_statement *statement) { boot::expression *return_expression = statement->return_expression(); location_t statement_position = get_location(&statement->position()); tree set_result{ NULL_TREE }; tree return_type = TREE_TYPE(TREE_TYPE(current_function_decl)); if (TREE_THIS_VOLATILE(current_function_decl) == 1) { error_at(statement_position, "This procedure is not allowed to return"); return; } if (return_expression != nullptr) { return_expression->accept(this); set_result = build2(INIT_EXPR, void_type_node, DECL_RESULT(current_function_decl), this->current_expression); } if (return_type == void_type_node && set_result != NULL_TREE) { error_at(statement_position, "Proper procedure is not allowed to return a value"); } else if (return_type != void_type_node && set_result == NULL_TREE) { error_at(statement_position, "Procedure is expected to return a value of type '%s'", print_type(return_type).c_str()); } else if (return_type != void_type_node && !is_assignable_from(return_type, this->current_expression)) { error_at(statement_position, "Cannot return '%s' from a procedure returning '%s'", print_type(return_type).c_str(), print_type(TREE_TYPE(this->current_expression)).c_str()); } else { tree return_stmt = build1_loc(statement_position, RETURN_EXPR, void_type_node, set_result); append_statement(return_stmt); } this->current_expression = NULL_TREE; } void generic_visitor::visit(boot::primitive_type_expression *type) { auto looked_up = this->unresolved.find(type->name); tree symbol; if (looked_up == this->unresolved.cend()) { symbol = this->symbols->lookup(type->name); if (symbol != NULL_TREE) { symbol = TREE_TYPE(symbol); } } else { symbol = looked_up->second; } if (symbol == NULL_TREE || !TYPE_P(symbol)) { error_at(get_location(&type->position()), "Type '%s' not declared", type->name.c_str()); this->current_expression = error_mark_node; } else { this->current_expression = symbol; } } void generic_visitor::visit(boot::array_type_expression *type) { tree lower_bound = build_int_cst_type(integer_type_node, 0); tree upper_bound = build_int_cst_type(integer_type_node, type->size); type->base().accept(this); if (this->current_expression != NULL_TREE && this->current_expression != error_mark_node) { tree range_type = build_range_type(integer_type_node, lower_bound, upper_bound); this->current_expression = build_array_type(this->current_expression, range_type); } } void generic_visitor::visit(boot::pointer_type_expression *type) { type->base().accept(this); if (this->current_expression != NULL_TREE && this->current_expression != error_mark_node) { this->current_expression = build_pointer_type_for_mode(this->current_expression, VOIDmode, true); } } void generic_visitor::visit(boot::record_type_expression *type) { tree composite_type_node = this->current_expression == NULL_TREE ? make_node(RECORD_TYPE) : this->current_expression; build_composite_type(type->fields, composite_type_node); } void generic_visitor::visit(boot::union_type_expression *type) { tree composite_type_node = this->current_expression == NULL_TREE ? make_node(UNION_TYPE) : this->current_expression; build_composite_type(type->fields, composite_type_node); } void generic_visitor::visit(boot::procedure_type_expression *type) { tree procedure_type_node = build_procedure_type(*type); this->current_expression = build_pointer_type_for_mode(procedure_type_node, VOIDmode, true); } void generic_visitor::visit(boot::defer_statement *statement) { enter_scope(); visit_statements(statement->statements); defer(leave_scope()); } }