Implement a RISC-V backend

This commit is contained in:
Eugen Wissner 2022-06-11 00:38:03 +02:00
parent 77857ad118
commit f5c4a27a6d
Signed by: belka
GPG Key ID: A27FDC1E8EE902C0
11 changed files with 1211 additions and 849 deletions

View File

@ -4,12 +4,13 @@ require 'open3'
DFLAGS = ['--warn-no-deprecated', '-L/usr/lib64/gcc-12'] DFLAGS = ['--warn-no-deprecated', '-L/usr/lib64/gcc-12']
BINARY = 'build/bin/elna' BINARY = 'build/bin/elna'
TESTS = FileList['tests/*.elna'].flat_map do |test| TESTS = FileList['tests/*.eln'].flat_map do |test|
build = Pathname.new 'build' build = Pathname.new 'build'
asm_test = build + 'asm' + Pathname.new(test).basename('') test_basename = Pathname.new(test).basename('')
[build + test, asm_test].map { |path| path.sub_ext('').to_path } [build + 'riscv' + test_basename].map { |path| path.sub_ext('').to_path }
end end
SOURCES = FileList['source/**/*.d'] SOURCES = FileList['source/**/*.d']
directory 'build' directory 'build'
@ -17,27 +18,23 @@ directory 'build'
CLEAN.include 'build' CLEAN.include 'build'
CLEAN.include '.dub' CLEAN.include '.dub'
rule(/build\/tests\/[^\/\.]+$/ => ->(file) { test_for_out(file, '.o') }) do |t| rule(/build\/riscv\/[^\/\.]+$/ => ->(file) { test_for_out(file, '.o') }) do |t|
sh 'ld.gold', '-L/usr/lib64', sh '/opt/riscv/bin/riscv32-unknown-elf-ld',
'--dynamic-linker', '/lib64/ld-linux-x86-64.so.2',
'-o', t.name, '-o', t.name,
'/usr/lib64/crt1.o', '/usr/lib64/crti.o', '-lc', t.source, '/usr/lib64/crtn.o' '-L/opt/riscv/lib/gcc/riscv32-unknown-elf/11.1.0',
'-L/opt/riscv/riscv32-unknown-elf/lib',
'/opt/riscv/riscv32-unknown-elf/lib/crt0.o',
'/opt/riscv/lib/gcc/riscv32-unknown-elf/11.1.0/crtbegin.o',
t.source,
'--start-group', '-lc', '-lgloss', '--end-group',
'/opt/riscv/lib/gcc/riscv32-unknown-elf/11.1.0/crtend.o'
end end
rule(/build\/asm\/[^\/\.]+$/ => ->(file) { test_for_out(file, '.s') }) do |t| rule(/build\/riscv\/.+\.o$/ => ->(file) { test_for_object(file, '.eln') }) do |t|
sh 'gcc', '-x', 'assembler', '-o', t.name, t.source
end
rule(/build\/tests\/.+\.o$/ => ->(file) { test_for_object(file) }) do |t|
Pathname.new(t.name).dirname.mkpath Pathname.new(t.name).dirname.mkpath
sh BINARY, '-o', t.name, t.source sh BINARY, '-o', t.name, t.source
end end
rule(/build\/asm\/.+\.s$/ => ->(file) { test_for_object(file) }) do |t|
Pathname.new(t.name).dirname.mkpath
sh BINARY, '-s', '-o', t.name, t.source
end
file BINARY => SOURCES do |t| file BINARY => SOURCES do |t|
sh({ 'DFLAGS' => (DFLAGS * ' ') }, 'dub', 'build', '--compiler=gdc-12') sh({ 'DFLAGS' => (DFLAGS * ' ') }, 'dub', 'build', '--compiler=gdc-12')
end end
@ -56,7 +53,13 @@ task test: BINARY do
.to_i .to_i
puts "Running #{test}" puts "Running #{test}"
system test if test.include? '/riscv/'
system('/opt/riscv/bin/spike',
'/opt/riscv/riscv32-unknown-elf/bin/pk', test,
{ out: '/dev/null' })
else
raise 'Unsupported test platform'
end
actual = $?.exitstatus actual = $?.exitstatus
fail "#{test}: Expected #{expected}, got #{actual}" unless expected == actual fail "#{test}: Expected #{expected}, got #{actual}" unless expected == actual
@ -68,10 +71,10 @@ task unittest: SOURCES do |t|
sh('dub', 'test', '--compiler=gdc-12') sh('dub', 'test', '--compiler=gdc-12')
end end
def test_for_object(out_file) def test_for_object(out_file, extension)
test_source = Pathname test_source = Pathname
.new(out_file) .new(out_file)
.sub_ext('.elna') .sub_ext(extension)
.sub(/^build\/[[:alpha:]]+\//, 'tests/') .sub(/^build\/[[:alpha:]]+\//, 'tests/')
.to_path .to_path
[test_source, BINARY] [test_source, BINARY]

65
source/elna/backend.d Normal file
View File

@ -0,0 +1,65 @@
module elna.backend;
import core.stdc.stdio;
import elna.elf;
import elna.ir;
import elna.extended;
import elna.riscv;
import elna.lexer;
import elna.parser;
import std.algorithm;
import std.sumtype;
import std.typecons;
import tanya.os.error;
import tanya.container.array;
import tanya.container.string;
private Nullable!String readSource(string source) @nogc
{
enum size_t bufferSize = 255;
auto sourceFilename = String(source);
return readFile(sourceFilename).match!(
(ErrorCode errorCode) {
perror(sourceFilename.toStringz);
return Nullable!String();
},
(Array!ubyte contents) => nullable(String(cast(char[]) contents.get))
);
}
int generate(string inFile, ref String outputFilename) @nogc
{
auto sourceText = readSource(inFile);
if (sourceText.isNull)
{
return 3;
}
auto tokens = lex(sourceText.get.get);
if (tokens.length == 0)
{
printf("Lexical analysis failed.\n");
return 1;
}
auto ast = parse(tokens);
if (!ast.valid)
{
auto compileError = ast.error.get;
printf("%lu:%lu: %s\n", compileError.line, compileError.column, compileError.message.ptr);
return 2;
}
auto ir = transform(ast.result);
auto handle = File.open(outputFilename.toStringz, BitFlags!(File.Mode)(File.Mode.truncate));
if (!handle.valid)
{
return 1;
}
auto programText = writeNext(ir);
auto elf = Elf(move(handle));
elf.addCode("main", programText);
elf.finish();
return 0;
}

859
source/elna/elf.d Normal file
View File

@ -0,0 +1,859 @@
module elna.elf;
import elna.extended;
import std.algorithm;
import tanya.container.array;
import tanya.container.string;
/// Unsigned program address.
alias Elf64_Addr = ulong*;
/// Unsigned file offset.
alias Elf64_Off = ulong;
/// Unsigned medium integer.
alias Elf64_Half = ushort;
/// Unsigned integer.
alias Elf64_Word = uint;
/// Signed integer.
alias Elf64_Sword = int;
/// Unsigned long integer.
alias Elf64_Xword = ulong;
/// Signed long integer.
alias Elf64_Sxword = long;
/// Unsigned program address.
alias Elf32_Addr = uint;
/// Unsigned file offset.
alias Elf32_Off = uint;
/// Unsigned medium integer.
alias Elf32_Half = ushort;
/// Unsigned integer.
alias Elf32_Word = uint;
/// Signed integer.
alias Elf32_Sword = int;
enum : size_t
{
/// File identification.
EI_MAG0 = 0,
/// File identification.
EI_MAG1 = 1,
/// File identification.
EI_MAG2 = 2,
/// File identification.
EI_MAG3 = 3,
/// File class.
EI_CLASS = 4,
/// Data encoding.
EI_DATA = 5,
/// File version.
EI_VERSION = 6,
/// Start of padding bytes.
EI_PAD = 7,
/// Size of e_ident[]
EI_NIDENT = 16
}
enum : ubyte
{
/// e_ident[EI_MAG0].
ELFMAG0 = 0x7f,
/// e_ident[EI_MAG1].
ELFMAG1 = 'E',
/// e_ident[EI_MAG2].
ELFMAG2 = 'L',
/// e_ident[EI_MAG3].
ELFMAG3 = 'F'
}
/**
* File header.
*/
struct Elf64_Ehdr
{
/// ELF identification.
ubyte[EI_NIDENT] e_ident;
/// Object file type.
Elf64_Half e_type;
/// Machine type.
Elf64_Half e_machine;
/// Object file version
Elf64_Word e_version;
/// Entry point address.
Elf64_Addr e_entry;
/// Program header offset.
Elf64_Off e_phoff;
/// Section header offset.
Elf64_Off e_shoff;
/// Processor-specific flags.
Elf64_Word e_flags;
/// ELF header size.
Elf64_Half e_ehsize;
/// Size of program header entry.
Elf64_Half e_phentsize;
/// Number of program header entries.
Elf64_Half e_phnum;
/// Size of section header entry.
Elf64_Half e_shentsize;
/// Number of section header entries.
Elf64_Half e_shnum;
/// Section name string table index.
Elf64_Half e_shstrndx;
}
/**
* File header.
*/
struct Elf32_Ehdr {
/// ELF identification.
ubyte[EI_NIDENT] e_ident;
/// Object file type.
Elf32_Half e_type;
/// Machine type.
Elf32_Half e_machine;
/// Object file version
Elf32_Word e_version;
/// Entry point address.
Elf32_Addr e_entry;
/// Program header offset.
Elf32_Off e_phoff;
/// Section header offset.
Elf32_Off e_shoff;
/// Processor-specific flags.
Elf32_Word e_flags;
/// ELF header size.
Elf32_Half e_ehsize;
/// Size of program header entry.
Elf32_Half e_phentsize;
/// Number of program header entries.
Elf32_Half e_phnum;
/// Size of section header entry.
Elf32_Half e_shentsize;
/// Number of section header entries.
Elf32_Half e_shnum;
/// Section name string table index.
Elf32_Half e_shstrndx;
}
/**
* Section header.
*/
struct Elf64_Shdr
{
/// Section name.
Elf64_Word sh_name;
/// Section type.
Elf64_Word sh_type;
/// Section attributes.
Elf64_Xword sh_flags;
/// Virtual address in memory.
Elf64_Addr sh_addr;
/// Offset in file.
Elf64_Off sh_offset;
/// Size of section.
Elf64_Xword sh_size;
/// Link to other section.
Elf64_Word sh_link;
/// Miscellaneous information.
Elf64_Word sh_info;
/// Address alignment boundary.
Elf64_Xword sh_addralign;
/// Size of entries, if section has table.
Elf64_Xword sh_entsize;
}
/**
* Section header.
*/
struct Elf32_Shdr
{
/// Section name.
Elf32_Word sh_name;
/// Section type.
Elf32_Word sh_type;
/// Section attributes.
Elf32_Word sh_flags;
/// Virtual address in memory.
Elf32_Addr sh_addr;
/// Offset in file.
Elf32_Off sh_offset;
/// Size of section.
Elf32_Word sh_size;
/// Link to other section.
Elf32_Word sh_link;
/// Miscellaneous information.
Elf32_Word sh_info;
/// Address alignment boundary.
Elf32_Word sh_addralign;
/// Size of entries, if section has table.
Elf32_Word sh_entsize;
}
/**
* Symbol table entry.
*/
struct Elf64_Sym
{
/// Symbol name.
Elf64_Word st_name;
/// Type and Binding attributes.
ubyte st_info;
/// Reserved.
ubyte st_other;
/// Section table index.
Elf64_Half st_shndx;
/// Symbol value.
Elf64_Addr st_value;
/// Size of object (e.g., common).
Elf64_Xword st_size;
}
/**
* Relocation entry.
*/
struct Elf64_Rel
{
/// Address of reference.
Elf64_Addr r_offset;
/// Symbol index and type of relocation.
Elf64_Xword r_info;
}
/**
* Relocation entry with explicit addend.
*/
struct Elf64_Rela
{
/// Address of reference.
Elf64_Addr r_offset;
/// Symbol index and type of relocation.
Elf64_Xword r_info;
/// Constant part of expression.
Elf64_Sxword r_addend;
}
/**
* Symbol table entry.
*/
struct Elf32_Sym
{
/// Symbol name.
Elf32_Word st_name;
/// Symbol value.
Elf32_Addr st_value;
/// Size of object (e.g., common).
Elf32_Word st_size;
/// Type and Binding attributes.
ubyte st_info;
/// Reserved.
ubyte st_other;
/// Section table index.
Elf32_Half st_shndx;
}
/**
* Relocation entry.
*/
struct Elf32_Rel
{
/// Address of reference.
Elf32_Addr r_offset;
/// Symbol index and type of relocation.
Elf32_Word r_info;
}
/**
* Relocation entry with explicit addend.
*/
struct Elf32_Rela
{
/// Address of reference.
Elf32_Addr r_offset;
/// Symbol index and type of relocation.
Elf32_Word r_info;
/// Constant part of expression.
Elf32_Sword r_addend;
}
/// Section Types, sh_type.
enum : Elf64_Word
{
/// Marks an unused section header.
SHT_NULL = 0,
/// Contains information defined by the program.
SHT_PROGBITS = 1,
/// Contains a linker symbol table.
SHT_SYMTAB = 2,
/// Contains a string table.
SHT_STRTAB = 3,
/// Contains “Rela” type relocation entries.
SHT_RELA = 4,
/// Contains a symbol hash table
SHT_HASH = 5,
/// Contains dynamic linking tables
SHT_DYNAMIC = 6,
/// Contains note information
SHT_NOTE = 7,
/// Contains uninitialized space; does not occupy any space in the file.
SHT_NOBITS = 8,
/// Contains "Rel" type relocation entries.
SHT_REL = 9,
/// Reserved.
SHT_SHLIB = 10,
/// Contains a dynamic loader symbol table.
SHT_DYNSYM = 11,
/// Environment-specific use.
SHT_LOOS = 0x60000000,
SHT_HIOS = 0x6FFFFFFF,
/// Processor-specific use.
SHT_LOPROC = 0x70000000,
SHT_HIPROC = 0x7FFFFFFF,
}
/**
* Section Attributes, sh_flags.
*/
enum : Elf64_Xword
{
/// Section contains writable data.
SHF_WRITE = 0x1,
/// Section is allocated in memory image of program.
SHF_ALLOC = 0x2,
/// Section contains executable instructions.
SHF_EXECINSTR = 0x4,
/// Environment-specific use.
SHF_MASKOS = 0x0F000000,
/// Processor-specific use.
SHF_MASKPROC = 0xF0000000,
}
auto ELF64_R_SYM(I)(I i)
{
return i >> 32;
}
auto ELF64_R_TYPE(I)(I i)
{
return i & 0xffffffffL;
}
auto ELF64_R_INFO(S, T)(S s, t)
{
return (s << 32) + (t & 0xffffffffL);
}
ubyte ELF32_ST_BIND(ubyte i) @nogc nothrow pure @safe
{
return i >> 4;
}
ubyte ELF32_ST_TYPE(ubyte i) @nogc nothrow pure @safe
{
return i & 0xf;
}
ubyte ELF32_ST_INFO(ubyte b, ubyte t) @nogc nothrow pure @safe
{
return cast(ubyte) ((b << 4) + (t & 0xf));
}
T ELF32_R_SYMT(I)(I i)
{
return i >> 8;
}
ubyte ELF32_R_TYPE(I)(I i)
{
return cast(ubyte) i;
}
auto ELF32_R_INFO(S, T)(S s, T t)
{
return (s << 8) + cast(ubyte) t;
}
enum : uint
{
/// Not visible outside the object file.
STB_LOCAL = 0,
/// Global symbol, visible to all object files.
STB_GLOBAL = 1,
/// Global scope, but with lower precedence than global symbols.
STB_WEAK = 2,
/// Environment-specific use.
STB_LOOS = 10,
STB_HIOS = 12,
/// Processor-specific use.
STB_LOPROC = 13,
STB_HIPROC = 15,
}
enum : uint
{
/// No type specified (e.g., an absolute symbol).
STT_NOTYPE = 0,
/// Data object.
STT_OBJECT = 1,
/// Function entry point.
STT_FUNC = 2,
/// Symbol is associated with a section.
STT_SECTION = 3,
/// Source file associated with the object file.
STT_FILE = 4,
/// Environment-specific use.
STT_LOOS = 10,
STT_HIOS = 12,
/// Processor-specific use.
STT_LOPROC = 13,
STT_HIPROC = 15,
}
Elf64_Ehdr makeFileHeader(Elf64_Off sectionHeaderOffset,
Elf64_Half sectionHeaderCount,
Elf64_Half stringIndex) @nogc
{
Elf64_Ehdr header;
// Magic number.
header.e_ident[0] = '\x7f';
header.e_ident[1] = 'E';
header.e_ident[2] = 'L';
header.e_ident[3] = 'F';
// File class.
header.e_ident[4] = ELFCLASS64;
// Data encoding.
header.e_ident[5] = ELFDATA2LSB;
// Version.
header.e_ident[6] = EV_CURRENT;
// OS/ABI identification.
header.e_ident[7] = EI_OSABI.ELFOSABI_SYSV;
// ABI version.
header.e_ident[8] = 0;
// Size of e_ident[].
header.e_ident[15] = 0;
header.e_type = ET_REL;
header.e_machine = 0x3e; // EM_X86_64: AMD x86-64 architecture
header.e_version = EV_CURRENT;
header.e_entry = null;
header.e_phoff = 0;
header.e_shoff = sectionHeaderOffset;
header.e_flags = 0;
header.e_ehsize = Elf64_Ehdr.sizeof;
header.e_phentsize = 0;
header.e_phnum = 0;
header.e_shentsize = Elf64_Shdr.sizeof;
header.e_shnum = sectionHeaderCount;
header.e_shstrndx = stringIndex;
return header;
}
Elf64_Shdr makeTextHeader(Elf64_Off offset, Elf64_Xword size) @nogc
{
Elf64_Shdr table;
table.sh_name = 0x1b;
table.sh_type = SHT_PROGBITS;
table.sh_flags = SHF_EXECINSTR | SHF_ALLOC;
table.sh_addr = null;
table.sh_offset = offset;
table.sh_size = size;
table.sh_link = SHN_UNDEF;
table.sh_info = 0;
table.sh_addralign = 1;
table.sh_entsize = 0;
return table;
}
Elf64_Shdr makeSymtableHeader(Elf64_Off offset, Elf64_Xword size, Elf64_Word entriesCount) @nogc
{
Elf64_Shdr table;
table.sh_name = 0x01;
table.sh_type = SHT_SYMTAB;
table.sh_flags = 0;
table.sh_addr = null;
table.sh_offset = offset;
table.sh_size = size;
table.sh_link = 0x03; // String table used by entries in this section.
table.sh_info = entriesCount;
table.sh_addralign = 8;
table.sh_entsize = Elf64_Sym.sizeof;
return table;
}
Elf64_Shdr makeStringHeader(Elf64_Word stringIndex, Elf64_Off offset, Elf64_Xword size) @nogc
{
Elf64_Shdr table;
table.sh_name = stringIndex;
table.sh_type = SHT_STRTAB;
table.sh_flags = 0;
table.sh_addr = null;
table.sh_offset = offset;
table.sh_size = size;
table.sh_link = SHN_UNDEF;
table.sh_info = 0;
table.sh_addralign = 1;
table.sh_entsize = 0;
return table;
}
Elf64_Shdr makeInitialHeader() @nogc
{
Elf64_Shdr table;
table.sh_name = 0;
table.sh_type = SHT_NULL;
table.sh_flags = 0;
table.sh_addr = null;
table.sh_offset = 0;
table.sh_size = 0;
table.sh_link = SHN_UNDEF;
table.sh_info = 0;
table.sh_addralign = 0;
table.sh_entsize = 0;
return table;
}
Elf64_Sym makeInitialSymTable() @nogc
{
Elf64_Sym table;
table.st_name = 0;
table.st_info = 0;
table.st_other = 0;
table.st_shndx = 0;
table.st_value = null;
table.st_size = 0;
return table;
}
Elf64_Sym makeMainSymTable(Elf64_Half textIndex) @nogc
{
Elf64_Sym table;
table.st_name = 0x01;
table.st_info = ELF32_ST_INFO(STB_GLOBAL, STT_FUNC);
table.st_other = 0;
table.st_shndx = textIndex;
table.st_value = null;
table.st_size = 0;
return table;
}
/// Special Section Indices.
enum : ushort
{
/// Used to mark an undefined or meaningless section reference.
SHN_UNDEF = 0,
/// This value specifies the lower bound of the range of reserved indexes.
SHN_LORESERVE = 0xff00,
/// Processor-specific use.
SHN_LOPROC = 0xFF00,
SHN_HIPROC = 0xFF1F,
/// Environment-specific use.
SHN_LOOS = 0xFF20,
SHN_HIOS = 0xFF3F,
/// Indicates that the corresponding reference is an absolute value.
SHN_ABS = 0xFFF1,
/**
* Indicates a symbol that has been declared as a common block (Fortran
* COMMON or C tentative declaration).
*/
SHN_COMMON = 0xFFF2,
}
/**
* Object File Classes, e_ident[EI_CLASS].
*/
enum : ubyte
{
/// Invalid class.
ELFCLASSNONE = 0,
/// 32-bit objects.
ELFCLASS32 = 1,
/// 64-bit objects.
ELFCLASS64 = 2
}
enum : ubyte {
/// Invalid version.
EV_NONE = 0,
/// Current version.
EV_CURRENT = 1
}
/**
* Data Encodings, e_ident[EI_DATA].
*/
enum : ubyte
{
/// Object file data structures are little-endian.
ELFDATA2LSB = 1,
/// Object file data structures are big-endian.
ELFDATA2MSB = 2,
}
/**
* Operating System and ABI Identifiers, e_ident[EI_OSABI].
*/
enum EI_OSABI : ubyte
{
/// System V ABI.
ELFOSABI_SYSV = 0,
/// HP-UX operating system.
ELFOSABI_HPUX = 1,
/// Standalone (embedded) application.
ELFOSABI_STANDALONE = 255,
}
enum : Elf64_Half
{
ET_NONE = 0, /// No file type.
ET_REL = 1, /// Relocatable object file.
ET_EXEC = 2, /// Executable file.
ET_DYN = 3, /// Shared object file.
ET_CORE = 4, /// Core file.
ET_LOOS = 0xFE00, /// Environment-specific use.
ET_HIOS = 0xFEFF,
ET_LOPROC = 0xFF00, /// Processor-specific use.
ET_HIPROC = 0xFFFF,
}
auto pad(ubyte elfClass)(size_t value) @nogc
{
static if (elfClass == ELFCLASS32)
{
return cast(Elf32_Word) (value / 4 + 1) * 4;
}
else static if (elfClass == ELFCLASS64)
{
return cast(Elf64_Xword) (value / 8 + 1) * 8;
}
else
{
static assert(false, "Invalid ELF class");
}
}
struct Symbol
{
String name;
const(ubyte)[] text;
}
struct Elf
{
private Elf32_Ehdr fileHeader;
private Array!Elf32_Shdr sectionHeaders;
private Elf32_Off currentOffset = Elf32_Ehdr.sizeof;
private Array!Elf32_Sym symbols;
static immutable char[41] sections =
"\0.symtab\0.strtab\0.shstrtab\0.text\0.rodata\0";
private String strings;
private Elf32_Word lastLocalSymbol;
private Elf32_Word textSize;
private File output;
static Elf opCall(File output) @nogc
{
Elf elf = Elf.init;
elf.initializeFileHeader();
elf.initializeSectionHeaders();
elf.insertSymbols();
elf.output = move(output);
elf.output.seek(Elf32_Ehdr.sizeof, File.Whence.set);
return elf;
}
@disable this(this);
void finish() @nogc
{
makeTextHeader();
initializeSymbolTable(cast(Elf32_Word) (this.sectionHeaders.length + 1));
foreach (symbol; this.symbols)
{
output.write((cast(ubyte*) &symbol)[0 .. Elf32_Sym.sizeof]);
this.currentOffset += Elf32_Sym.sizeof;
}
this.sectionHeaders.insertBack(makeStringHeader(0x09, this.currentOffset, cast(Elf32_Word) strings.length));
output.write(cast(ubyte[]) this.strings.toStringz[0 .. this.strings.length + 1]);
this.currentOffset += this.strings.length + 1;
this.sectionHeaders.insertBack(makeStringHeader(0x11, this.currentOffset, sections.length));
output.write(cast(const(ubyte)[]) this.sections);
this.currentOffset += this.sections.length;
auto alignment = pad!ELFCLASS32(this.strings.length + 1 + this.sections.length);
const(ubyte)[4] padding = 0;
output.write(padding[0 .. alignment - this.strings.length - 1 - this.sections.length]);
this.currentOffset += alignment - this.strings.length - 1 - this.sections.length;
// End writing data, start writing headers.
output.write((cast(ubyte*) this.sectionHeaders.get)[0 .. Elf32_Shdr.sizeof * this.sectionHeaders.length]);
output.seek(0, File.Whence.set);
this.fileHeader.e_shoff = this.currentOffset;
this.fileHeader.e_shnum = cast(Elf32_Half) this.sectionHeaders.length;
// String table is the last one
this.fileHeader.e_shstrndx = cast(Elf32_Half) (this.sectionHeaders.length - 1);
output.write((cast(ubyte*) &this.fileHeader)[0 .. fileHeader.sizeof]);
}
private void insertSymbols() @nogc
{
// Zero symbol
Elf32_Sym symbol;
symbol.st_name = 0; // Word
symbol.st_value = 0; // Addr
symbol.st_size = 0; // Word
symbol.st_info = 0; // char
symbol.st_other = 0; // char
symbol.st_shndx = 0; // Half word
this.symbols.insertBack(symbol);
// All symbols are global.
this.lastLocalSymbol = cast(Elf32_Word) this.symbols.length;
}
private Elf32_Shdr makeStringHeader(Elf32_Word stringIndex, Elf32_Off offset, Elf32_Word size) @nogc
{
Elf32_Shdr table;
table.sh_name = stringIndex;
table.sh_type = SHT_STRTAB;
table.sh_flags = 0;
table.sh_addr = 0;
table.sh_offset = offset;
table.sh_size = size;
table.sh_link = SHN_UNDEF;
table.sh_info = 0;
table.sh_addralign = 1;
table.sh_entsize = 0;
return table;
}
private void initializeSymbolTable(Elf32_Word stringTableIndex) @nogc
{
Elf32_Shdr symbolTableHeader;
symbolTableHeader.sh_name = 0x01;
symbolTableHeader.sh_type = SHT_SYMTAB;
symbolTableHeader.sh_flags = 0;
symbolTableHeader.sh_addr = 0;
symbolTableHeader.sh_offset = this.currentOffset;
symbolTableHeader.sh_size = cast(Elf32_Word) (this.symbols.length * Elf32_Sym.sizeof);
// String table used by entries in this section.
symbolTableHeader.sh_link = stringTableIndex;
symbolTableHeader.sh_info = this.lastLocalSymbol;
symbolTableHeader.sh_addralign = 4;
symbolTableHeader.sh_entsize = Elf32_Sym.sizeof;
this.sectionHeaders.insertBack(symbolTableHeader);
}
void addCode(string name, ref Array!ubyte text) @nogc
{
this.output.write(text.get);
this.strings.insertBack("\0");
this.strings.insertBack(name[]);
Elf32_Sym symbol;
// Main function
symbol.st_name = 0x1; // Word
symbol.st_value = 0; // Addr
symbol.st_size = cast(Elf32_Word) text.length; // Word
symbol.st_info = ELF32_ST_INFO(STB_GLOBAL, STT_FUNC); // char
symbol.st_other = 0; // char
// .text header index, half word
symbol.st_shndx = cast(Elf32_Half) this.sectionHeaders.length;
this.symbols.insertBack(symbol);
this.textSize += text.length;
}
private void makeTextHeader() @nogc
{
Elf32_Shdr textHeader;
textHeader.sh_name = 0x1b;
textHeader.sh_type = SHT_PROGBITS;
textHeader.sh_flags = SHF_EXECINSTR | SHF_ALLOC;
textHeader.sh_addr = 0;
textHeader.sh_offset = this.currentOffset;
textHeader.sh_size = cast(Elf32_Word) this.textSize;
textHeader.sh_link = SHN_UNDEF;
textHeader.sh_info = 0;
textHeader.sh_addralign = 1;
textHeader.sh_entsize = 0;
this.sectionHeaders.insertBack(textHeader);
this.currentOffset += this.textSize;
}
private void initializeSectionHeaders() @nogc
{
Elf32_Shdr table;
table.sh_name = 0;
table.sh_type = SHT_NULL;
table.sh_flags = 0;
table.sh_addr = 0;
table.sh_offset = 0;
table.sh_size = 0;
table.sh_link = SHN_UNDEF;
table.sh_info = 0;
table.sh_addralign = 0;
table.sh_entsize = 0;
this.sectionHeaders.insertBack(table);
}
private void initializeFileHeader() @nogc
{
// Magic number.
this.fileHeader.e_ident[0] = '\x7f';
this.fileHeader.e_ident[1] = 'E';
this.fileHeader.e_ident[2] = 'L';
this.fileHeader.e_ident[3] = 'F';
this.fileHeader.e_ident[4] = ELFCLASS32;
this.fileHeader.e_ident[5] = ELFDATA2LSB;
this.fileHeader.e_ident[6] = EV_CURRENT;
this.fileHeader.e_ident[7] = EI_OSABI.ELFOSABI_SYSV;
this.fileHeader.e_ident[8] = 0;
this.fileHeader.e_type = ET_REL;
this.fileHeader.e_machine = 0xf3; // EM_RISCV
this.fileHeader.e_version = EV_CURRENT;
this.fileHeader.e_entry = 0;
this.fileHeader.e_phoff = 0;
// this.fileHeader.e_shoff = ?; (section header offset)
this.fileHeader.e_flags = 0;
this.fileHeader.e_ehsize = Elf32_Ehdr.sizeof;
this.fileHeader.e_phentsize = 0;
this.fileHeader.e_phnum = 0;
this.fileHeader.e_shentsize = Elf32_Shdr.sizeof;
// this.fileHeader.e_shnum = ?; (section header count)
// this.fileHeader.e_shstrndx = ?; (string index)
}
}

View File

@ -1,770 +0,0 @@
module elna.generator;
import core.stdc.stdio;
import core.stdc.stdlib;
import core.stdc.string;
import elna.ir;
import elna.extended;
import std.sumtype;
import std.typecons;
import tanya.container.array;
import tanya.container.string;
import tanya.memory.mmappool;
import tanya.format;
/// Unsigned program address.
alias Elf64_Addr = void*;
/// Unsigned file offset.
alias Elf64_Off = ulong;
/// Unsigned medium integer.
alias Elf64_Half = ushort;
/// Unsigned integer.
alias Elf64_Word = uint;
/// Signed integer.
alias Elf64_Sword = int;
/// Unsigned long integer.
alias Elf64_Xword = ulong;
/// Signed long integer.
alias Elf64_Sxword = long;
enum size_t EI_INDENT = 16;
/**
* File header.
*/
struct Elf64_Ehdr
{
/// ELF identification.
ubyte[EI_INDENT] e_ident;
/// Object file type.
Elf64_Half e_type;
/// Machine type.
Elf64_Half e_machine;
/// Object file version
Elf64_Word e_version;
/// Entry point address.
Elf64_Addr e_entry;
/// Program header offset.
Elf64_Off e_phoff;
/// Section header offset.
Elf64_Off e_shoff;
/// Processor-specific flags.
Elf64_Word e_flags;
/// ELF header size.
Elf64_Half e_ehsize;
/// Size of program header entry.
Elf64_Half e_phentsize;
/// Number of program header entries.
Elf64_Half e_phnum;
/// Size of section header entry.
Elf64_Half e_shentsize;
/// Number of section header entries.
Elf64_Half e_shnum;
/// Section name string table index.
Elf64_Half e_shstrndx;
}
/**
* Section header.
*/
struct Elf64_Shdr
{
/// Section name.
Elf64_Word sh_name;
/// Section type.
Elf64_Word sh_type;
/// Section attributes.
Elf64_Xword sh_flags;
/// Virtual address in memory.
Elf64_Addr sh_addr;
/// Offset in file.
Elf64_Off sh_offset;
/// Size of section.
Elf64_Xword sh_size;
/// Link to other section.
Elf64_Word sh_link;
/// Miscellaneous information.
Elf64_Word sh_info;
/// Address alignment boundary.
Elf64_Xword sh_addralign;
/// Size of entries, if section has table.
Elf64_Xword sh_entsize;
}
struct Elf64_Sym
{
/// Symbol name.
Elf64_Word st_name;
/// Type and Binding attributes.
ubyte st_info;
/// Reserved.
ubyte st_other;
/// Section table index.
Elf64_Half st_shndx;
/// Symbol value.
Elf64_Addr st_value;
/// Size of object (e.g., common).
Elf64_Xword st_size;
}
/// Section Types, sh_type.
enum : Elf64_Word
{
/// Marks an unused section header.
SHT_NULL = 0,
/// Contains information defined by the program.
SHT_PROGBITS = 1,
/// Contains a linker symbol table.
SHT_SYMTAB = 2,
/// Contains a string table.
SHT_STRTAB = 3,
/// Contains “Rela” type relocation entries.
SHT_RELA = 4,
/// Contains a symbol hash table
SHT_HASH = 5,
/// Contains dynamic linking tables
SHT_DYNAMIC = 6,
/// Contains note information
SHT_NOTE = 7,
/// Contains uninitialized space; does not occupy any space in the file.
SHT_NOBITS = 8,
/// Contains "Rel" type relocation entries.
SHT_REL = 9,
/// Reserved.
SHT_SHLIB = 10,
/// Contains a dynamic loader symbol table.
SHT_DYNSYM = 11,
/// Environment-specific use.
SHT_LOOS = 0x60000000,
SHT_HIOS = 0x6FFFFFFF,
/// Processor-specific use.
SHT_LOPROC = 0x70000000,
SHT_HIPROC = 0x7FFFFFFF,
}
/**
* Section Attributes, sh_flags.
*/
enum : Elf64_Xword
{
/// Section contains writable data.
SHF_WRITE = 0x1,
/// Section is allocated in memory image of program.
SHF_ALLOC = 0x2,
/// Section contains executable instructions.
SHF_EXECINSTR = 0x4,
/// Environment-specific use.
SHF_MASKOS = 0x0F000000,
/// Processor-specific use.
SHF_MASKPROC = 0xF0000000,
}
enum : Elf64_Word
{
/// Not visible outside the object file.
STB_LOCAL = 0,
/// Global symbol, visible to all object files.
STB_GLOBAL = 1,
/// Global scope, but with lower precedence than global symbols.
STB_WEAK = 2,
/// Environment-specific use.
STB_LOOS = 10,
STB_HIOS = 12,
/// Processor-specific use.
STB_LOPROC = 13,
STB_HIPROC = 15,
}
enum : Elf64_Word
{
/// No type specified (e.g., an absolute symbol).
STT_NOTYPE = 0,
/// Data object.
STT_OBJECT = 1,
/// Function entry point.
STT_FUNC = 2,
/// Symbol is associated with a section.
STT_SECTION = 3,
/// Source file associated with the object file.
STT_FILE = 4,
/// Environment-specific use.
STT_LOOS = 10,
STT_HIOS = 12,
/// Processor-specific use.
STT_LOPROC = 13,
STT_HIPROC = 15,
}
Elf64_Ehdr makeFileHeader(Elf64_Off sectionHeaderOffset,
Elf64_Half sectionHeaderCount,
Elf64_Half stringIndex) @nogc
{
Elf64_Ehdr header;
// Magic number.
header.e_ident[0] = '\x7f';
header.e_ident[1] = 'E';
header.e_ident[2] = 'L';
header.e_ident[3] = 'F';
// File class.
header.e_ident[4] = EI_CLASS.ELFCLASS64;
// Data encoding.
header.e_ident[5] = EI_DATA.ELFDATA2LSB;
// Version.
header.e_ident[6] = EV_CURRENT;
// OS/ABI identification.
header.e_ident[7] = EI_OSABI.ELFOSABI_SYSV;
// ABI version.
header.e_ident[8] = 0;
// Size of e_ident[].
header.e_ident[15] = 0;
header.e_type = ET_REL;
header.e_machine = 0x3e; // EM_X86_64: AMD x86-64 architecture
header.e_version = EV_CURRENT;
header.e_entry = null;
header.e_phoff = 0;
header.e_shoff = sectionHeaderOffset;
header.e_flags = 0;
header.e_ehsize = Elf64_Ehdr.sizeof;
header.e_phentsize = 0;
header.e_phnum = 0;
header.e_shentsize = Elf64_Shdr.sizeof;
header.e_shnum = sectionHeaderCount;
header.e_shstrndx = stringIndex;
return header;
}
enum char[33] sectionStringTable = "\0.symtab\0.strtab\0.shstrtab\0.text\0";
Elf64_Shdr makeTextHeader(Elf64_Off offset, Elf64_Xword size) @nogc
{
Elf64_Shdr table;
table.sh_name = 0x1b;
table.sh_type = SHT_PROGBITS;
table.sh_flags = SHF_EXECINSTR | SHF_ALLOC;
table.sh_addr = null;
table.sh_offset = offset;
table.sh_size = size;
table.sh_link = SHN_UNDEF;
table.sh_info = 0;
table.sh_addralign = 1;
table.sh_entsize = 0;
return table;
}
Elf64_Shdr makeDataHeader(Elf64_Off offset, Elf64_Xword size) @nogc
{
Elf64_Shdr table;
table.sh_name = 0x21;
table.sh_type = SHT_PROGBITS;
table.sh_flags = SHF_WRITE | SHF_ALLOC;
table.sh_addr = null;
table.sh_offset = offset;
table.sh_size = size;
table.sh_link = SHN_UNDEF;
table.sh_info = 0;
table.sh_addralign = 1;
table.sh_entsize = 0;
return table;
}
Elf64_Shdr makeSymtableHeader(Elf64_Off offset, Elf64_Xword size, Elf64_Word entriesCount) @nogc
{
Elf64_Shdr table;
table.sh_name = 0x01;
table.sh_type = SHT_SYMTAB;
table.sh_flags = 0;
table.sh_addr = null;
table.sh_offset = offset;
table.sh_size = size;
table.sh_link = 0x03; // String table used by entries in this section.
table.sh_info = entriesCount;
table.sh_addralign = 8;
table.sh_entsize = Elf64_Sym.sizeof;
return table;
}
Elf64_Shdr makeStringHeader(Elf64_Word stringIndex, Elf64_Off offset, Elf64_Xword size) @nogc
{
Elf64_Shdr table;
table.sh_name = stringIndex;
table.sh_type = SHT_STRTAB;
table.sh_flags = 0;
table.sh_addr = null;
table.sh_offset = offset;
table.sh_size = size;
table.sh_link = SHN_UNDEF;
table.sh_info = 0;
table.sh_addralign = 1;
table.sh_entsize = 0;
return table;
}
Elf64_Shdr makeInitialHeader() @nogc
{
Elf64_Shdr table;
table.sh_name = 0;
table.sh_type = SHT_NULL;
table.sh_flags = 0;
table.sh_addr = null;
table.sh_offset = 0;
table.sh_size = 0;
table.sh_link = SHN_UNDEF;
table.sh_info = 0;
table.sh_addralign = 0;
table.sh_entsize = 0;
return table;
}
Elf64_Sym makeInitialSymTable() @nogc
{
Elf64_Sym table;
table.st_name = 0;
table.st_info = 0;
table.st_other = 0;
table.st_shndx = 0;
table.st_value = null;
table.st_size = 0;
return table;
}
Elf64_Sym makeMainSymTable(Elf64_Half textIndex) @nogc
{
Elf64_Sym table;
table.st_name = 0x01;
table.st_info = ELF32_ST_INFO(STB_GLOBAL, STT_FUNC);
table.st_other = 0;
table.st_shndx = textIndex;
table.st_value = null;
table.st_size = 0;
return table;
}
ubyte ELF32_ST_BIND(ubyte i) @nogc nothrow pure @safe
{
return i >> 4;
}
ubyte ELF32_ST_TYPE(ubyte i) @nogc nothrow pure @safe
{
return i & 0xf;
}
ubyte ELF32_ST_INFO(ubyte b, ubyte t) @nogc nothrow pure @safe
{
return cast(ubyte) ((b << 4) + (t & 0xf));
}
/// Special Section Indices.
enum : Elf64_Half
{
/// Used to mark an undefined or meaningless section reference.
SHN_UNDEF = 0,
/// Processor-specific use.
SHN_LOPROC = 0xFF00,
SHN_HIPROC = 0xFF1F,
/// Environment-specific use.
SHN_LOOS = 0xFF20,
SHN_HIOS = 0xFF3F,
/// Indicates that the corresponding reference is an absolute value.
SHN_ABS = 0xFFF1,
/**
* Indicates a symbol that has been declared as a common block (Fortran
* COMMON or C tentative declaration).
*/
SHN_COMMON = 0xFFF2,
}
/**
* Object File Classes, e_ident[EI_CLASS].
*/
enum EI_CLASS : ubyte
{
/// 32-bit objects.
ELFCLASS32 = 1,
/// 64-bit objects.
ELFCLASS64 = 2,
}
enum ubyte EV_CURRENT = 1;
/**
* Data Encodings, e_ident[EI_DATA].
*/
enum EI_DATA : ubyte
{
/// Object file data structures are little-endian.
ELFDATA2LSB = 1,
/// Object file data structures are big-endian.
ELFDATA2MSB = 2,
}
/**
* Operating System and ABI Identifiers, e_ident[EI_OSABI].
*/
enum EI_OSABI : ubyte
{
/// System V ABI.
ELFOSABI_SYSV = 0,
/// HP-UX operating system.
ELFOSABI_HPUX = 1,
/// Standalone (embedded) application.
ELFOSABI_STANDALONE = 255,
}
enum : Elf64_Half
{
ET_NONE = 0, /// No file type.
ET_REL = 1, /// Relocatable object file.
ET_EXEC = 2, /// Executable file.
ET_DYN = 3, /// Shared object file.
ET_CORE = 4, /// Core file.
ET_LOOS = 0xFE00, /// Environment-specific use.
ET_HIOS = 0xFEFF,
ET_LOPROC = 0xFF00, /// Processor-specific use.
ET_HIPROC = 0xFFFF,
}
private size_t pad(size_t value) @nogc
{
return (value / 8 + 1) * 8;
}
struct Symbol
{
String name;
Array!Instruction instructions;
}
enum Register : ubyte
{
AX = 0,
CX = 1,
DX = 2,
BX = 3,
SP = 4,
BP = 5,
SI = 6,
DI = 7,
}
enum MOD : ubyte
{
indirect = 0,
one = 1,
four = 2,
direct = 3
}
enum Direction : ubyte
{
registerToMemory = 0,
memoryToRegister = 1 << 1
}
enum Size : ubyte
{
eight = 0,
thirtyTwo = 1
}
struct Instruction
{
private ushort opcode;
private ubyte rexPrefix;
private Nullable!ubyte modrmByte;
private SumType!(typeof(null), byte, int) operand1;
this(ushort opcode) @nogc nothrow pure @safe
{
this.opcode = opcode;
}
this(ubyte opcode, Register register) @nogc nothrow pure @safe
{
this.opcode = opcode + register;
}
this(ubyte opcode, Direction direction, Size size = Size.eight)
@nogc nothrow pure @safe
{
this.opcode = opcode | direction | size;
}
ref Instruction addREXPrefix(bool w = true, bool r = false, bool x = false, bool b = false)
return @nogc nothrow pure @safe
{
this.rexPrefix = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
return this;
}
ref Instruction addMODRMByte(MOD mode, Register register, Register rm)
return @nogc nothrow pure @safe
{
this.modrmByte = cast(ubyte) ((mode << 6) | (register << 3) | rm);
return this;
}
ref Instruction addOperand1(int operand)
return @nogc nothrow pure @safe
{
this.operand1 = operand;
return this;
}
ref Instruction addOperand1(byte operand)
return @nogc nothrow pure @safe
{
this.operand1 = operand;
return this;
}
}
Array!ubyte binaryInstructions(ref Array!Instruction instructions)
@nogc nothrow
{
Array!ubyte binary;
foreach (ref instruction; instructions)
{
if (instruction.rexPrefix)
{
binary.insertBack((&instruction.rexPrefix)[0 .. 1]);
}
binary.insertBack((cast(ubyte*) &instruction.opcode)[0 .. 1]);
if (!instruction.modrmByte.isNull)
{
binary.insertBack((&instruction.modrmByte.get())[0 .. 1]);
}
instruction.operand1.match!(
(byte operand) {
binary.insertBack((cast(ubyte*) &operand)[0 .. 1]);
},
(int operand) {
binary.insertBack((cast(ubyte*) &operand)[0 .. int.sizeof]);
},
(typeof(null)) {
}
);
}
return binary;
}
Array!Symbol buildInstructions(Definition ast) @nogc
{
Array!Instruction instructions;
// Prologue
// Opcode of pushq is “0x50 + r”, where “r” is the register opcode.
// Register opcode of %rbq is 5.
instructions.insertBack(Instruction(0x50, Register.BP)); // pushq %rbp
instructions.insertBack( // movq %rsp, %rbp
Instruction(0x89)
.addREXPrefix()
.addMODRMByte(MOD.direct, Register.SP, Register.BP)
);
int i = 1;
foreach (statement; ast.statements[])
{
if ((cast(Number) statement.subroutine.lhs) !is null)
{
// Opcode of mov is “0xb8 + r”, where “r” is the register opcode.
// Register opcode of %eax is 0.
instructions.insertBack(
Instruction(0xb8, Register.AX) // movl $x, %eax; where $x is a number.
.addOperand1((cast(Number) statement.subroutine.lhs).value)
);
}
else if ((cast(Variable) statement.subroutine.lhs) !is null)
{
// movl -x(%rbp), %eax; where x is a number.
instructions.insertBack(
Instruction(0x89, Direction.memoryToRegister, Size.thirtyTwo)
.addMODRMByte(MOD.one, Register.AX, Register.BP)
);
}
if ((cast(Number) statement.subroutine.rhs) !is null)
{
// Opcode of mov is “0xb8 + r”, where “r” is the register opcode.
// Register opcode of %ebx is 3.
instructions.insertBack(
Instruction(0xb8, Register.BX) // movl $x, %ebx; where $x is a number.
.addOperand1((cast(Number) statement.subroutine.rhs).value)
);
}
else if ((cast(Variable) statement.subroutine.rhs) !is null)
{
// movl -x(%rbp), %ebx; where x is a number.
instructions.insertBack(
Instruction(0x89, Direction.memoryToRegister, Size.thirtyTwo)
.addMODRMByte(MOD.one, Register.BX, Register.BP)
.addOperand1(cast(byte) ((cast(Variable) statement.subroutine.rhs).counter * (-4)))
);
}
// Calculate the result and assign it to a variable on the stack.
instructions.insertBack(
Instruction(0x00, Direction.registerToMemory, Size.thirtyTwo)
.addMODRMByte(MOD.direct, Register.BX, Register.AX) // add %ebx, %eax
);
instructions.insertBack( // movl %eax, -x(%rbp); where x is a number.
Instruction(0x89, Direction.registerToMemory, Size.thirtyTwo)
.addMODRMByte(MOD.one, Register.AX, Register.BP)
.addOperand1(cast(byte) (i * (-4)))
);
++i;
}
// Epilogue.
instructions.insertBack( // movq %rbp, %rsp
Instruction(0x89)
.addREXPrefix()
.addMODRMByte(MOD.direct, Register.BP, Register.SP)
);
instructions.insertBack(Instruction(0x58, Register.BP)); // popq %rbp
instructions.insertBack(Instruction(0xc3)); // ret
return typeof(return)([Symbol(String("main"), instructions)]);
}
void writeObject(Definition ast, String outputFilename) @nogc
{
auto handle = File.open(outputFilename.toStringz, BitFlags!(File.Mode)(File.Mode.truncate));
if (!handle.valid)
{
perror("writing sample");
return;
}
size_t currentOffset = Elf64_Ehdr.sizeof;
auto symbols = buildInstructions(ast);
Array!Elf64_Shdr sectionHeaders = [makeInitialHeader()];
Array!Elf64_Sym symbolEntries = [makeInitialSymTable()];
Array!ubyte instructionSection;
ubyte[8] padding = 0;
String stringTable = String("\0");
foreach (symbol; symbols[])
{
stringTable.insertBack(symbol.name[]);
stringTable.insertBack('\0');
auto code = binaryInstructions(symbol.instructions);
sectionHeaders.insertBack(makeTextHeader(currentOffset, code.length));
symbolEntries.insertBack(makeMainSymTable(cast(Elf64_Half) (sectionHeaders.length - 1)));
immutable size_t instructionsLength = pad(code.length);
instructionSection.insertBack(code[]);
instructionSection.insertBack(padding[0 .. instructionsLength - code.length]);
currentOffset += instructionsLength;
}
const symbolTableSize = (symbols.length + 1) * Elf64_Sym.sizeof;
sectionHeaders.insertBack(makeSymtableHeader(currentOffset, symbolTableSize, cast(uint) symbols.length));
currentOffset += symbolTableSize;
sectionHeaders.insertBack(makeStringHeader(0x09, currentOffset, stringTable.length));
currentOffset += stringTable.length;
sectionHeaders.insertBack(makeStringHeader(0x11, currentOffset, sectionStringTable.length));
currentOffset = pad(currentOffset + sectionStringTable.length);
auto fileHeader = makeFileHeader(currentOffset, 5, 4);
handle.write((cast(ubyte*) &fileHeader)[0 .. Elf64_Ehdr.sizeof]);
handle.write(instructionSection.get);
handle.write((cast(ubyte*) symbolEntries.get.ptr)[0 .. Elf64_Sym.sizeof * symbolEntries.length]);
immutable size_t codeLength = stringTable.length + sectionStringTable.length;
handle.write(cast(ubyte[]) stringTable.get);
handle.write(cast(ubyte[]) sectionStringTable);
handle.write(padding[0 .. pad(codeLength) - codeLength]);
handle.write((cast(ubyte*) sectionHeaders.get.ptr)[0 .. Elf64_Shdr.sizeof * sectionHeaders.length]);
}
void generate(Definition ast, String outputFilename) @nogc
{
auto asmTemplate = File.open(outputFilename.toStringz, BitFlags!(File.Mode)(File.Mode.truncate));
// Prologue
asmTemplate.write(cast(const(ubyte)[]) ".text
.globl main
.type main, @function
main:
pushq %rbp
movq %rsp, %rbp
");
/* Allocate space on the stack for local variables.
asmTemplate.insertBack(" sub $");
asmTemplate.insertBack(format!"{}"(ast.statements.length)[]);
asmTemplate.insertBack(", $esp\n"); */
int i = 1;
foreach (statement; ast.statements[])
{
if ((cast(Number) statement.subroutine.lhs) !is null)
{
asmTemplate.write(cast(const(ubyte)[]) " movl $");
asmTemplate.write(cast(ubyte[]) format!"{}"((cast(Number) statement.subroutine.lhs).value).get);
asmTemplate.write(cast(const(ubyte)[]) ", %eax\n");
}
else if ((cast(Variable) statement.subroutine.lhs) !is null)
{
asmTemplate.write(cast(const(ubyte)[]) " movl -");
asmTemplate.write(cast(ubyte[]) format!"{}"((cast(Variable) statement.subroutine.lhs).counter * 4).get);
asmTemplate.write(cast(const(ubyte)[]) "(%rbp), %eax\n");
}
if ((cast(Number) statement.subroutine.rhs) !is null)
{
asmTemplate.write(cast(const(ubyte)[]) " movl $");
asmTemplate.write(cast(ubyte[]) format!"{}"((cast(Number) statement.subroutine.rhs).value).get);
asmTemplate.write(cast(const(ubyte)[]) ", %ebx\n");
}
else if ((cast(Variable) statement.subroutine.rhs) !is null)
{
asmTemplate.write(cast(const(ubyte)[]) " movl -");
asmTemplate.write(cast(ubyte[]) format!"{}"((cast(Variable) statement.subroutine.rhs).counter * 4).get);
asmTemplate.write(cast(const(ubyte)[]) "(%rbp), %ebx\n");
}
// Calculate the result and assign it to a variable on the stack.
asmTemplate.write(cast(const(ubyte)[]) " add %ebx, %eax\n");
asmTemplate.write(cast(const(ubyte)[]) " movl %eax, -");
asmTemplate.write(cast(ubyte[]) format!"{}"(i * 4).get);
asmTemplate.write(cast(const(ubyte)[]) "(%rbp)\n");
++i;
}
// Epilogue.
asmTemplate.write(cast(const(ubyte)[]) " movq %rbp, %rsp
popq %rbp
ret
");
}

254
source/elna/riscv.d Normal file
View File

@ -0,0 +1,254 @@
module elna.riscv;
import elna.extended;
import elna.ir;
import std.algorithm;
import std.typecons;
import tanya.container.array;
import tanya.container.string;
enum XRegister : ubyte
{
zero = 0,
ra = 1,
sp = 2,
gp = 3,
tp = 4,
t0 = 5,
t1 = 6,
t2 = 7,
s0 = 8,
s1 = 9,
a0 = 10,
a1 = 11,
a2 = 12,
a3 = 13,
a4 = 14,
a5 = 15,
a6 = 16,
a7 = 17,
s2 = 18,
s3 = 19,
s4 = 20,
s5 = 21,
s6 = 22,
s7 = 23,
s8 = 24,
s9 = 25,
s10 = 26,
s11 = 27,
t3 = 28,
t4 = 29,
t5 = 30,
t6 = 31,
}
enum Funct3 : ubyte
{
addi = 0b000,
slti = 0b001,
sltiu = 0b011,
andi = 0b111,
ori = 0b110,
xori = 0b100,
slli = 0b000,
srli = 0b101,
srai = 0b101,
add = 0b000,
slt = 0b010,
sltu = 0b011,
and = 0b111,
or = 0b110,
xor = 0b100,
sll = 0b001,
srl = 0b101,
sub = 0b000,
sra = 0b101,
beq = 0b000,
bne = 0b001,
blt = 0b100,
bltu = 0b110,
bge = 0b101,
bgeu = 0b111,
fence = 0b000,
fenceI = 0b001,
csrrw = 0b001,
csrrs = 0b010,
csrrc = 0b011,
csrrwi = 0b101,
csrrsi = 0b110,
csrrci = 0b111,
priv = 0b000,
sb = 0b000,
sh = 0b001,
sw = 0b010,
lb = 0b000,
lh = 0b001,
lw = 0b010,
lbu = 0b100,
lhu = 0b101,
jalr = 0b000,
}
enum Funct12 : ubyte
{
ecall = 0b000000000000,
ebreak = 0b000000000001,
}
enum BaseOpcode : ubyte
{
opImm = 0b0010011,
lui = 0b0110111,
auipc = 0b0010111,
op = 0b0110011,
jal = 0b1101111,
jalr = 0b1100111,
branch = 0b1100011,
load = 0b0000011,
store = 0b0100011,
miscMem = 0b0001111,
system = 0b1110011,
}
struct Instruction
{
private uint instruction;
ref Instruction i(BaseOpcode opcode, XRegister rd, Funct3 funct3, XRegister rs1, uint immediate)
return scope @nogc
{
this.instruction = opcode
| (rd << 7)
| (funct3 << 12)
| (rs1 << 15)
| (immediate << 20);
return this;
}
ref Instruction s(BaseOpcode opcode, uint imm1, Funct3 funct3, XRegister rs1, XRegister rs2, uint imm2 = 0)
return scope @nogc
{
this.instruction = opcode
| (imm1 << 7)
| (funct3 << 12)
| (rs1 << 15)
| (rs2 << 20)
| (imm2 << 25);
return this;
}
ref Instruction r(BaseOpcode opcode, XRegister rd, Funct3 funct3, XRegister rs1, XRegister rs2, ubyte funct7 = 0)
return scope @nogc
{
this.instruction = opcode
| (rd << 7)
| (funct3 << 12)
| (rs1 << 15)
| (rs2 << 20)
| (funct7 << 25);
return this;
}
ubyte[] encode() return scope @nogc
{
return (cast(ubyte*) (&this.instruction))[0 .. uint.sizeof];
}
}
Array!ubyte writeNext(Definition ast) @nogc
{
Array!Instruction instructions;
// Prologue.
instructions.insertBack(
Instruction()
.i(BaseOpcode.opImm, XRegister.sp, Funct3.addi, XRegister.sp, cast(uint) -16)
);
instructions.insertBack(
Instruction()
.s(BaseOpcode.store, 12, Funct3.sw, XRegister.sp, XRegister.s0)
);
instructions.insertBack(
Instruction()
.i(BaseOpcode.opImm, XRegister.s0, Funct3.addi, XRegister.sp, 16)
);
int i = 1;
foreach (statement; ast.statements[])
{
if ((cast(Number) statement.subroutine.lhs) !is null)
{
// Opcode of mov is “0xb8 + r”, where “r” is the register opcode.
// Register opcode of %eax is 0.
instructions.insertBack(
Instruction() // movl $x, %eax; where $x is a number.
.i(BaseOpcode.opImm, XRegister.a0, Funct3.addi, XRegister.zero,
(cast(Number) statement.subroutine.lhs).value)
);
}
else if ((cast(Variable) statement.subroutine.lhs) !is null)
{
// movl -x(%rbp), %eax; where x is a number.
instructions.insertBack(
Instruction()
.i(BaseOpcode.load, XRegister.a0, Funct3.lw, XRegister.sp,
cast(byte) (cast(Variable) statement.subroutine.lhs).counter * 4)
);
}
if ((cast(Number) statement.subroutine.rhs) !is null)
{
// Opcode of mov is “0xb8 + r”, where “r” is the register opcode.
// Register opcode of %ebx is 3.
instructions.insertBack(
Instruction() // movl $x, %ebx; where $x is a number.
.i(BaseOpcode.opImm, XRegister.t0, Funct3.addi, XRegister.zero,
(cast(Number) statement.subroutine.rhs).value)
);
}
else if ((cast(Variable) statement.subroutine.rhs) !is null)
{
// movl -x(%rbp), %ebx; where x is a number.
instructions.insertBack(
Instruction()
.i(BaseOpcode.load, XRegister.t0, Funct3.lw, XRegister.sp,
cast(byte) (cast(Variable) statement.subroutine.rhs).counter * 4)
);
}
// Calculate the result and assign it to a variable on the stack.
instructions.insertBack(
Instruction()
.r(BaseOpcode.op, XRegister.a0, Funct3.add, XRegister.a0, XRegister.t0)
);
instructions.insertBack( // movl %eax, -x(%rbp); where x is a number.
Instruction()
.s(BaseOpcode.store, cast(uint) (i * 4), Funct3.sw, XRegister.sp, XRegister.a0)
);
++i;
}
// Prologue.
instructions.insertBack(
Instruction()
.i(BaseOpcode.load, XRegister.s0, Funct3.lw, XRegister.sp, 12)
);
instructions.insertBack(
Instruction()
.i(BaseOpcode.opImm, XRegister.sp, Funct3.addi, XRegister.sp, 16)
);
instructions.insertBack(
Instruction()
.i(BaseOpcode.jalr, XRegister.zero, Funct3.jalr, XRegister.ra, 0)
);
Array!ubyte programText;
foreach (ref instruction; instructions)
{
programText.insertBack(instruction.encode);
}
return programText;
}

View File

@ -1,35 +1,11 @@
import core.stdc.stdio; import elna.backend;
import core.stdc.string;
import core.stdc.stdlib;
import elna.lexer;
import elna.parser;
import elna.generator;
import elna.ir; import elna.ir;
import elna.extended;
import elna.arguments; import elna.arguments;
import std.algorithm; import std.path;
import std.range;
import std.sumtype; import std.sumtype;
import std.typecons;
import tanya.container.array;
import tanya.container.string; import tanya.container.string;
import tanya.memory.allocator; import tanya.memory.allocator;
import tanya.memory.mmappool; import tanya.memory.mmappool;
import tanya.os.error;
private Nullable!String readSource(string source) @nogc
{
enum size_t bufferSize = 255;
auto sourceFilename = String(source);
return readFile(sourceFilename).match!(
(ErrorCode errorCode) {
perror(sourceFilename.toStringz);
return Nullable!String();
},
(Array!ubyte contents) => nullable(String(cast(char[]) contents.get))
);
}
int main(string[] args) int main(string[] args)
{ {
@ -38,48 +14,20 @@ int main(string[] args)
return Arguments.parse(args).match!( return Arguments.parse(args).match!(
(ArgumentError argumentError) => 4, (ArgumentError argumentError) => 4,
(Arguments arguments) { (Arguments arguments) {
auto sourceText = readSource(arguments.inFile);
if (sourceText.isNull)
{
return 3;
}
auto tokens = lex(sourceText.get.get);
if (tokens.length == 0)
{
printf("Lexical analysis failed.\n");
return 1;
}
auto ast = parse(tokens);
if (!ast.valid)
{
auto compileError = ast.error.get;
printf("%lu:%lu: %s\n", compileError.line, compileError.column, compileError.message.ptr);
return 2;
}
auto ir = transform(ast.result);
String outputFilename; String outputFilename;
if (arguments.output is null) if (arguments.output is null)
{ {
auto slashIndex = max(0, arguments.inFile.retro.countUntil('/')); outputFilename = arguments
.inFile
outputFilename.insertBack(arguments.inFile[$ - slashIndex .. $ - 4]); .baseName
outputFilename.insertBack(arguments.assembler ? "s" : "o"); .withExtension("o");
} }
else else
{ {
outputFilename = String(arguments.output); outputFilename = String(arguments.output);
} }
if (arguments.assembler)
{
generate(ir, outputFilename);
}
else
{
writeObject(ir, outputFilename);
}
return 0; return generate(arguments.inFile, outputFilename);
} }
); );
} }

View File

@ -0,0 +1 @@
8

View File

@ -0,0 +1,2 @@
! + (+ 3 4) 1
.