Add lexer and parser sources

This commit is contained in:
2025-06-14 23:57:48 +02:00
parent d5e2d53e9b
commit f524311f06
25 changed files with 3475 additions and 427 deletions

View File

@ -0,0 +1,16 @@
DEFINITION MODULE CommandLineInterface;
FROM Common IMPORT ShortString;
TYPE
CommandLine = RECORD
input: ShortString;
output: ShortString;
lex: BOOLEAN;
parse: BOOLEAN
END;
PCommandLine = POINTER TO CommandLine;
PROCEDURE parse_command_line(): PCommandLine;
END CommandLineInterface.

View File

@ -0,0 +1,89 @@
module;
from SYSTEM import ADR, TSIZE;
from Args import GetArg, Narg;
from FIO import WriteString, WriteChar, WriteLine, StdErr;
from Storage import ALLOCATE;
from Strings import CompareStr, Length;
from MemUtils import MemZero;
from Common import ShortString;
proc parse_command_line() -> PCommandLine;
var
parameter: ShortString;
i: CARDINAL;
result: PCommandLine;
parsed: BOOLEAN;
begin
i := 1;
NEW(result);
result^.lex := false;
result^.parse := false;
MemZero(ADR(result^.input), 256);
result^.output[1] := CHAR(0);
while (i < Narg()) & (result <> nil) do
parsed := GetArg(parameter, i);
parsed := false;
if CompareStr(parameter, '--lex') = 0 then
parsed := true;
result^.lex := true
end;
if CompareStr(parameter, '--parse') = 0 then
parsed := true;
result^.parse := true
end;
if CompareStr(parameter, '-o') = 0 then
INC(i);
if i = Narg() then
WriteString(StdErr, 'Fatal error: expecting a file name following -o.');
result := nil
end;
if i < Narg() then
parsed := GetArg(parameter, i);
result^.output := parameter
end;
parsed := true
end;
if (parameter[1] <> '-') & (parsed = false) then
parsed := true;
if Length(result^.input) > 0 then
WriteString(StdErr, 'Fatal error: only one source file can be compiled at once. First given "');
WriteString(StdErr, result^.input);
WriteString(StdErr, '", then "');
WriteString(StdErr, parameter);
WriteString(StdErr, '".');
WriteLine(StdErr);
result := nil
end;
if result <> nil then
result^.input := parameter
end
end;
if parsed = false then
WriteString(StdErr, 'Fatal error: unknown command line options: ');
WriteString(StdErr, parameter);
WriteChar(StdErr, '.');
WriteLine(StdErr);
result := nil
end;
i := i + 1
end;
if (result <> nil) & (Length(result^.input) = 0) then
WriteString(StdErr, 'Fatal error: no input files.');
WriteLine(StdErr);
result := nil
end;
return result
end;
end.

12
source/Common.def Normal file
View File

@ -0,0 +1,12 @@
DEFINITION MODULE Common;
TYPE
ShortString = ARRAY[1..256] OF CHAR;
Identifier = ARRAY[1..256] OF CHAR;
PIdentifier = POINTER TO Identifier;
TextLocation = RECORD
line: CARDINAL;
column: CARDINAL
END;
END Common.

3
source/Common.elna Normal file
View File

@ -0,0 +1,3 @@
module;
end.

73
source/Compiler.elna Normal file
View File

@ -0,0 +1,73 @@
program;
from FIO import Close, IsNoError, File, OpenToRead, OpenToWrite, StdErr, StdOut, WriteLine, WriteString;
from SYSTEM import ADR;
from M2RTS import HALT, ExitOnHalt;
from Lexer import Lexer, lexer_destroy, lexer_initialize;
from Parser import Parser;
from Transpiler import transpile;
from CommandLineInterface import PCommandLine, parse_command_line;
from Parser import PAstModule, parse;
from Strings import Length;
var
command_line: PCommandLine;
proc compile_from_stream();
var
lexer: Lexer;
source_input: File;
source_output: File;
ast_module: PAstModule;
begin
source_input := OpenToRead(command_line^.input);
if IsNoError(source_input) = false then
WriteString(StdErr, 'Fatal error: failed to read the input file "');
WriteString(StdErr, command_line^.input);
WriteString(StdErr, '".');
WriteLine(StdErr);
ExitOnHalt(2)
end;
source_output := nil;
if Length(command_line^.output) > 0 then
source_output := OpenToWrite(command_line^.output);
if IsNoError(source_output) = false then
WriteString(StdErr, 'Fatal error: failed to create the output file "');
WriteString(StdErr, command_line^.output);
WriteString(StdErr, '".');
WriteLine(StdErr);
ExitOnHalt(2)
end
end;
if IsNoError(source_input) then
lexer_initialize(ADR(lexer), source_input);
ast_module := parse(ADR(lexer));
transpile(ast_module, StdOut, source_output, command_line^.input);
lexer_destroy(ADR(lexer));
Close(source_output);
Close(source_input)
end
end;
begin
ExitOnHalt(0);
command_line := parse_command_line();
if command_line <> nil then
compile_from_stream()
end;
if command_line = nil then
ExitOnHalt(1)
end;
HALT()
end.

107
source/Lexer.def Normal file
View File

@ -0,0 +1,107 @@
DEFINITION MODULE Lexer;
FROM FIO IMPORT File;
FROM Common IMPORT Identifier, ShortString, TextLocation;
TYPE
PLexerBuffer = POINTER TO CHAR;
BufferPosition = RECORD
iterator: PLexerBuffer;
location: TextLocation
END;
PBufferPosition = POINTER TO BufferPosition;
Lexer = RECORD
input: File;
buffer: PLexerBuffer;
size: CARDINAL;
length: CARDINAL;
start: BufferPosition;
current: BufferPosition
END;
PLexer = POINTER TO Lexer;
LexerKind = (
lexerKindEof,
lexerKindIdentifier,
lexerKindIf,
lexerKindThen,
lexerKindElse,
lexerKindElsif,
lexerKindWhile,
lexerKindDo,
lexerKindProc,
lexerKindBegin,
lexerKindEnd,
lexerKindXor,
lexerKindConst,
lexerKindVar,
lexerKindCase,
lexerKindOf,
lexerKindType,
lexerKindRecord,
lexerKindUnion,
lexerKindPipe,
lexerKindTo,
lexerKindBoolean,
lexerKindNull,
lexerKindAnd,
lexerKindOr,
lexerKindTilde,
lexerKindReturn,
lexerKindDefer,
lexerKindRange,
lexerKindLeftParen,
lexerKindRightParen,
lexerKindLeftSquare,
lexerKindRightSquare,
lexerKindGreaterEqual,
lexerKindLessEqual,
lexerKindGreaterThan,
lexerKindLessThan,
lexerKindNotEqual,
lexerKindEqual,
lexerKindSemicolon,
lexerKindDot,
lexerKindComma,
lexerKindPlus,
lexerKindMinus,
lexerKindAsterisk,
lexerKindDivision,
lexerKindRemainder,
lexerKindAssignment,
lexerKindColon,
lexerKindHat,
lexerKindAt,
lexerKindComment,
lexerKindInteger,
lexerKindWord,
lexerKindCharacter,
lexerKindString,
lexerKindFrom,
lexerKindPointer,
lexerKindArray,
lexerKindArrow,
lexerKindProgram,
lexerKindModule,
lexerKindImport
);
LexerToken = RECORD
CASE kind: LexerKind OF
lexerKindBoolean: booleanKind: BOOLEAN |
lexerKindIdentifier: identifierKind: Identifier |
lexerKindInteger: integerKind: INTEGER |
lexerKindString: stringKind: ShortString
END;
start_location: TextLocation;
end_location: TextLocation
END;
PLexerToken = POINTER TO LexerToken;
PROCEDURE lexer_initialize(lexer: PLexer; input: File);
PROCEDURE lexer_destroy(lexer: PLexer);
(* Returns the last read token. *)
PROCEDURE lexer_current(lexer: PLexer): LexerToken;
(* Read and return the next token. *)
PROCEDURE lexer_lex(lexer: PLexer): LexerToken;
END Lexer.

876
source/Lexer.elna Normal file
View File

@ -0,0 +1,876 @@
module;
from FIO import ReadNBytes;
from SYSTEM import ADR, TSIZE;
from DynamicStrings import String, InitStringCharStar, KillString;
from StringConvert import StringToInteger;
from Storage import DEALLOCATE, ALLOCATE;
from Strings import Length;
from MemUtils import MemCopy, MemZero;
from StrCase import Lower;
const
CHUNK_SIZE = 85536;
type
(*
* Classification table assigns each possible character to a group (class). All
* characters of the same group a handled equivalently.
*
* Classification:
*)
TransitionClass = (
transitionClassInvalid,
transitionClassDigit,
transitionClassAlpha,
transitionClassSpace,
transitionClassColon,
transitionClassEquals,
transitionClassLeftParen,
transitionClassRightParen,
transitionClassAsterisk,
transitionClassUnderscore,
transitionClassSingle,
transitionClassHex,
transitionClassZero,
transitionClassX,
transitionClassEof,
transitionClassDot,
transitionClassMinus,
transitionClassSingleQuote,
transitionClassDoubleQuote,
transitionClassGreater,
transitionClassLess,
transitionClassOther
);
TransitionState = (
transitionStateStart,
transitionStateColon,
transitionStateIdentifier,
transitionStateDecimal,
transitionStateGreater,
transitionStateMinus,
transitionStateLeftParen,
transitionStateLess,
transitionStateDot,
transitionStateComment,
transitionStateClosingComment,
transitionStateCharacter,
transitionStateString,
transitionStateLeadingZero,
transitionStateDecimalSuffix,
transitionStateEnd
);
TransitionAction = proc(PLexer, PLexerToken);
Transition = record
action: TransitionAction;
next_state: TransitionState
end;
TransitionClasses = [22]Transition;
var
classification: [128]TransitionClass;
transitions: [16]TransitionClasses;
proc initialize_classification();
var
i: CARDINAL;
begin
classification[1] := transitionClassEof; (* NUL *)
classification[2] := transitionClassInvalid; (* SOH *)
classification[3] := transitionClassInvalid; (* STX *)
classification[4] := transitionClassInvalid; (* ETX *)
classification[5] := transitionClassInvalid; (* EOT *)
classification[6] := transitionClassInvalid; (* EMQ *)
classification[7] := transitionClassInvalid; (* ACK *)
classification[8] := transitionClassInvalid; (* BEL *)
classification[9] := transitionClassInvalid; (* BS *)
classification[10] := transitionClassSpace; (* HT *)
classification[11] := transitionClassSpace; (* LF *)
classification[12] := transitionClassInvalid; (* VT *)
classification[13] := transitionClassInvalid; (* FF *)
classification[14] := transitionClassSpace; (* CR *)
classification[15] := transitionClassInvalid; (* SO *)
classification[16] := transitionClassInvalid; (* SI *)
classification[17] := transitionClassInvalid; (* DLE *)
classification[18] := transitionClassInvalid; (* DC1 *)
classification[19] := transitionClassInvalid; (* DC2 *)
classification[20] := transitionClassInvalid; (* DC3 *)
classification[21] := transitionClassInvalid; (* DC4 *)
classification[22] := transitionClassInvalid; (* NAK *)
classification[23] := transitionClassInvalid; (* SYN *)
classification[24] := transitionClassInvalid; (* ETB *)
classification[25] := transitionClassInvalid; (* CAN *)
classification[26] := transitionClassInvalid; (* EM *)
classification[27] := transitionClassInvalid; (* SUB *)
classification[28] := transitionClassInvalid; (* ESC *)
classification[29] := transitionClassInvalid; (* FS *)
classification[30] := transitionClassInvalid; (* GS *)
classification[31] := transitionClassInvalid; (* RS *)
classification[32] := transitionClassInvalid; (* US *)
classification[33] := transitionClassSpace; (* Space *)
classification[34] := transitionClassSingle; (* ! *)
classification[35] := transitionClassDoubleQuote; (* " *)
classification[36] := transitionClassOther; (* # *)
classification[37] := transitionClassOther; (* $ *)
classification[38] := transitionClassSingle; (* % *)
classification[39] := transitionClassSingle; (* & *)
classification[40] := transitionClassSingleQuote; (* ' *)
classification[41] := transitionClassLeftParen; (* ( *)
classification[42] := transitionClassRightParen; (* ) *)
classification[43] := transitionClassAsterisk; (* * *)
classification[44] := transitionClassSingle; (* + *)
classification[45] := transitionClassSingle; (* , *)
classification[46] := transitionClassMinus; (* - *)
classification[47] := transitionClassDot; (* . *)
classification[48] := transitionClassSingle; (* / *)
classification[49] := transitionClassZero; (* 0 *)
classification[50] := transitionClassDigit; (* 1 *)
classification[51] := transitionClassDigit; (* 2 *)
classification[52] := transitionClassDigit; (* 3 *)
classification[53] := transitionClassDigit; (* 4 *)
classification[54] := transitionClassDigit; (* 5 *)
classification[55] := transitionClassDigit; (* 6 *)
classification[56] := transitionClassDigit; (* 7 *)
classification[57] := transitionClassDigit; (* 8 *)
classification[58] := transitionClassDigit; (* 9 *)
classification[59] := transitionClassColon; (* : *)
classification[60] := transitionClassSingle; (* ; *)
classification[61] := transitionClassLess; (* < *)
classification[62] := transitionClassEquals; (* = *)
classification[63] := transitionClassGreater; (* > *)
classification[64] := transitionClassOther; (* ? *)
classification[65] := transitionClassSingle; (* @ *)
classification[66] := transitionClassAlpha; (* A *)
classification[67] := transitionClassAlpha; (* B *)
classification[68] := transitionClassAlpha; (* C *)
classification[69] := transitionClassAlpha; (* D *)
classification[70] := transitionClassAlpha; (* E *)
classification[71] := transitionClassAlpha; (* F *)
classification[72] := transitionClassAlpha; (* G *)
classification[73] := transitionClassAlpha; (* H *)
classification[74] := transitionClassAlpha; (* I *)
classification[75] := transitionClassAlpha; (* J *)
classification[76] := transitionClassAlpha; (* K *)
classification[77] := transitionClassAlpha; (* L *)
classification[78] := transitionClassAlpha; (* M *)
classification[79] := transitionClassAlpha; (* N *)
classification[80] := transitionClassAlpha; (* O *)
classification[81] := transitionClassAlpha; (* P *)
classification[82] := transitionClassAlpha; (* Q *)
classification[83] := transitionClassAlpha; (* R *)
classification[84] := transitionClassAlpha; (* S *)
classification[85] := transitionClassAlpha; (* T *)
classification[86] := transitionClassAlpha; (* U *)
classification[87] := transitionClassAlpha; (* V *)
classification[88] := transitionClassAlpha; (* W *)
classification[89] := transitionClassAlpha; (* X *)
classification[90] := transitionClassAlpha; (* Y *)
classification[91] := transitionClassAlpha; (* Z *)
classification[92] := transitionClassSingle; (* [ *)
classification[93] := transitionClassOther; (* \ *)
classification[94] := transitionClassSingle; (* ] *)
classification[95] := transitionClassSingle; (* ^ *)
classification[96] := transitionClassUnderscore; (* _ *)
classification[97] := transitionClassOther; (* ` *)
classification[98] := transitionClassHex; (* a *)
classification[99] := transitionClassHex; (* b *)
classification[100] := transitionClassHex; (* c *)
classification[101] := transitionClassHex; (* d *)
classification[102] := transitionClassHex; (* e *)
classification[103] := transitionClassHex; (* f *)
classification[104] := transitionClassAlpha; (* g *)
classification[105] := transitionClassAlpha; (* h *)
classification[106] := transitionClassAlpha; (* i *)
classification[107] := transitionClassAlpha; (* j *)
classification[108] := transitionClassAlpha; (* k *)
classification[109] := transitionClassAlpha; (* l *)
classification[110] := transitionClassAlpha; (* m *)
classification[111] := transitionClassAlpha; (* n *)
classification[112] := transitionClassAlpha; (* o *)
classification[113] := transitionClassAlpha; (* p *)
classification[114] := transitionClassAlpha; (* q *)
classification[115] := transitionClassAlpha; (* r *)
classification[116] := transitionClassAlpha; (* s *)
classification[117] := transitionClassAlpha; (* t *)
classification[118] := transitionClassAlpha; (* u *)
classification[119] := transitionClassAlpha; (* v *)
classification[120] := transitionClassAlpha; (* w *)
classification[121] := transitionClassX; (* x *)
classification[122] := transitionClassAlpha; (* y *)
classification[123] := transitionClassAlpha; (* z *)
classification[124] := transitionClassOther; (* { *)
classification[125] := transitionClassSingle; (* | *)
classification[126] := transitionClassOther; (* } *)
classification[127] := transitionClassSingle; (* ~ *)
classification[128] := transitionClassInvalid; (* DEL *)
i := 129;
while i <= 256 do
classification[i] := transitionClassOther;
INC(i)
end
end;
proc compare_keyword(keyword: ARRAY OF CHAR, token_start: BufferPosition, token_end: PLexerBuffer) -> BOOLEAN;
var
result: BOOLEAN;
index: CARDINAL;
keyword_length: CARDINAL;
continue: BOOLEAN;
begin
index := 0;
result := true;
keyword_length := Length(keyword);
continue := (index < keyword_length) & (token_start.iterator <> token_end);
while continue & result do
result := (keyword[index] = token_start.iterator^) or (Lower(keyword[index]) = token_start.iterator^);
INC(token_start.iterator);
INC(index);
continue := (index < keyword_length) & (token_start.iterator <> token_end)
end;
result := result & (index = Length(keyword));
return result & (token_start.iterator = token_end)
end;
(* Reached the end of file. *)
proc transition_action_eof(lexer: PLexer, token: PLexerToken);
begin
token^.kind := lexerKindEof
end;
proc increment(position: PBufferPosition);
begin
INC(position^.iterator)
end;
(* Add the character to the token currently read and advance to the next character. *)
proc transition_action_accumulate(lexer: PLexer, token: PLexerToken);
begin
increment(ADR(lexer^.current))
end;
(* The current character is not a part of the token. Finish the token already
* read. Don't advance to the next character. *)
proc transition_action_finalize(lexer: PLexer, token: PLexerToken);
begin
if lexer^.start.iterator^ = ':' then
token^.kind := lexerKindColon
end;
if lexer^.start.iterator^ = '>' then
token^.kind := lexerKindGreaterThan
end;
if lexer^.start.iterator^ = '<' then
token^.kind := lexerKindLessThan
end;
if lexer^.start.iterator^ = '(' then
token^.kind := lexerKindLeftParen
end;
if lexer^.start.iterator^ = '-' then
token^.kind := lexerKindMinus
end;
if lexer^.start.iterator^ = '.' then
token^.kind := lexerKindDot
end
end;
(* An action for tokens containing multiple characters. *)
proc transition_action_composite(lexer: PLexer, token: PLexerToken);
begin
if lexer^.start.iterator^ = '<' then
if lexer^.current.iterator^ = '>' then
token^.kind := lexerKindNotEqual
end;
if lexer^.current.iterator^ = '=' then
token^.kind := lexerKindLessEqual
end
end;
if (lexer^.start.iterator^ = '>') & (lexer^.current.iterator^ = '=') then
token^.kind := lexerKindGreaterEqual
end;
if (lexer^.start.iterator^ = '.') & (lexer^.current.iterator^ = '.') then
token^.kind := lexerKindRange
end;
if (lexer^.start.iterator^ = ':') & (lexer^.current.iterator^ = '=') then
token^.kind := lexerKindAssignment
end;
if (lexer^.start.iterator^ = '-') & (lexer^.current.iterator^ = '>') then
token^.kind := lexerKindArrow
end;
increment(ADR(lexer^.current))
end;
(* Skip a space. *)
proc transition_action_skip(lexer: PLexer, token: PLexerToken);
begin
increment(ADR(lexer^.start));
if ORD(lexer^.start.iterator^) = 10 then
INC(lexer^.start.location.line);
lexer^.start.location.column := 1
end;
lexer^.current := lexer^.start
end;
(* Delimited string action. *)
proc transition_action_delimited(lexer: PLexer, token: PLexerToken);
var
text_length: CARDINAL;
begin
if lexer^.start.iterator^ = '(' then
token^.kind := lexerKindComment
end;
if lexer^.start.iterator^ = '"' then
text_length := lexer^.current.iterator;
DEC(text_length, lexer^.start.iterator);
INC(text_length);
MemZero(ADR(token^.stringKind), TSIZE(ShortString));
MemCopy(lexer^.start.iterator, text_length, ADR(token^.stringKind));
token^.kind := lexerKindCharacter
end;
if lexer^.start.iterator^ = "'" then
text_length := lexer^.current.iterator;
DEC(text_length, lexer^.start.iterator);
INC(text_length);
MemZero(ADR(token^.stringKind), TSIZE(ShortString));
MemCopy(lexer^.start.iterator, text_length, ADR(token^.stringKind));
token^.kind := lexerKindString
end;
increment(ADR(lexer^.current))
end;
(* Finalize keyword or identifier. *)
proc transition_action_key_id(lexer: PLexer, token: PLexerToken);
begin
token^.kind := lexerKindIdentifier;
token^.identifierKind[1] := lexer^.current.iterator;
DEC(token^.identifierKind[1], lexer^.start.iterator);
MemCopy(lexer^.start.iterator, ORD(token^.identifierKind[1]), ADR(token^.identifierKind[2]));
if compare_keyword('program', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindProgram
end;
if compare_keyword('import', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindImport
end;
if compare_keyword('const', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindConst
end;
if compare_keyword('var', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindVar
end;
if compare_keyword('if', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindIf
end;
if compare_keyword('then', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindThen
end;
if compare_keyword('elsif', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindElsif
end;
if compare_keyword('else', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindElse
end;
if compare_keyword('while', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindWhile
end;
if compare_keyword('do', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindDo
end;
if compare_keyword('proc', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindProc
end;
if compare_keyword('begin', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindBegin
end;
if compare_keyword('end', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindEnd
end;
if compare_keyword('type', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindType
end;
if compare_keyword('record', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindRecord
end;
if compare_keyword('union', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindUnion
end;
if compare_keyword('NIL', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindNull
end;
if compare_keyword('or', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindOr
end;
if compare_keyword('return', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindReturn
end;
if compare_keyword('defer', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindDefer
end;
if compare_keyword('TO', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindTo
end;
if compare_keyword('CASE', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindCase
end;
if compare_keyword('OF', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindOf
end;
if compare_keyword('FROM', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindFrom
end;
if compare_keyword('module', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindModule
end;
if compare_keyword('xor', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindXor
end;
if compare_keyword('POINTER', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindPointer
end;
if compare_keyword('ARRAY', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindArray
end;
if compare_keyword('TRUE', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindBoolean;
token^.booleanKind := true
end;
if compare_keyword('FALSE', lexer^.start, lexer^.current.iterator) then
token^.kind := lexerKindBoolean;
token^.booleanKind := false
end
end;
(* Action for tokens containing only one character. The character cannot be
* followed by other characters forming a composite token. *)
proc transition_action_single(lexer: PLexer, token: PLexerToken);
begin
if lexer^.current.iterator^ = '&' then
token^.kind := lexerKindAnd
end;
if lexer^.current.iterator^ = ';' then
token^.kind := lexerKindSemicolon
end;
if lexer^.current.iterator^ = ',' then
token^.kind := lexerKindComma
end;
if lexer^.current.iterator^ = '~' then
token^.kind := lexerKindTilde
end;
if lexer^.current.iterator^ = ')' then
token^.kind := lexerKindRightParen
end;
if lexer^.current.iterator^ = '[' then
token^.kind := lexerKindLeftSquare
end;
if lexer^.current.iterator^ = ']' then
token^.kind := lexerKindRightSquare
end;
if lexer^.current.iterator^ = '^' then
token^.kind := lexerKindHat
end;
if lexer^.current.iterator^ = '=' then
token^.kind := lexerKindEqual
end;
if lexer^.current.iterator^ = '+' then
token^.kind := lexerKindPlus
end;
if lexer^.current.iterator^ = '*' then
token^.kind := lexerKindAsterisk
end;
if lexer^.current.iterator^ = '/' then
token^.kind := lexerKindDivision
end;
if lexer^.current.iterator^ = '%' then
token^.kind := lexerKindRemainder
end;
if lexer^.current.iterator^ = '@' then
token^.kind := lexerKindAt
end;
if lexer^.current.iterator^ = '|' then
token^.kind := lexerKindPipe
end;
increment(ADR(lexer^.current.iterator))
end;
(* Handle an integer literal. *)
proc transition_action_integer(lexer: PLexer, token: PLexerToken);
var
buffer: String;
integer_length: CARDINAL;
found: BOOLEAN;
begin
token^.kind := lexerKindInteger;
integer_length := lexer^.current.iterator;
DEC(integer_length, lexer^.start.iterator);
MemZero(ADR(token^.identifierKind), TSIZE(Identifier));
MemCopy(lexer^.start.iterator, integer_length, ADR(token^.identifierKind[1]));
buffer := InitStringCharStar(ADR(token^.identifierKind[1]));
token^.integerKind := StringToInteger(buffer, 10, found);
buffer := KillString(buffer)
end;
proc set_default_transition(current_state: TransitionState, default_action: TransitionAction, next_state: TransitionState);
var
default_transition: Transition;
begin
default_transition.action := default_action;
default_transition.next_state := next_state;
transitions[ORD(current_state) + 1][ORD(transitionClassInvalid) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassDigit) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassAlpha) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassSpace) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassColon) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassEquals) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassLeftParen) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassRightParen) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassAsterisk) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassUnderscore) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassSingle) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassHex) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassZero) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassX) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassEof) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassDot) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassMinus) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassSingleQuote) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassDoubleQuote) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassGreater) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassLess) + 1] := default_transition;
transitions[ORD(current_state) + 1][ORD(transitionClassOther) + 1] := default_transition
end;
(*
* The transition table describes transitions from one state to another, given
* a symbol (character class).
*
* The table has m rows and n columns, where m is the amount of states and n is
* the amount of classes. So given the current state and a classified character
* the table can be used to look up the next state.
*
* Each cell is a word long.
* - The least significant byte of the word is a row number (beginning with 0).
* It specifies the target state. "ff" means that this is an end state and no
* transition is possible.
* - The next byte is the action that should be performed when transitioning.
* For the meaning of actions see labels in the lex_next function, which
* handles each action.
*)
proc initialize_transitions();
begin
(* Start state. *)
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassInvalid) + 1].action := nil;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassInvalid) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDigit) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDigit) + 1].next_state := transitionStateDecimal;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassAlpha) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassAlpha) + 1].next_state := transitionStateIdentifier;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSpace) + 1].action := transition_action_skip;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSpace) + 1].next_state := transitionStateStart;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassColon) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassColon) + 1].next_state := transitionStateColon;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassEquals) + 1].action := transition_action_single;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassEquals) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassLeftParen) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassLeftParen) + 1].next_state := transitionStateLeftParen;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassRightParen) + 1].action := transition_action_single;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassRightParen) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassAsterisk) + 1].action := transition_action_single;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassAsterisk) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassUnderscore) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassUnderscore) + 1].next_state := transitionStateIdentifier;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSingle) + 1].action := transition_action_single;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSingle) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassHex) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassHex) + 1].next_state := transitionStateIdentifier;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassZero) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassZero) + 1].next_state := transitionStateLeadingZero;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassX) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassX) + 1].next_state := transitionStateIdentifier;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassEof) + 1].action := transition_action_eof;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassEof) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDot) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDot) + 1].next_state := transitionStateDot;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassMinus) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassMinus) + 1].next_state := transitionStateMinus;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSingleQuote) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassSingleQuote) + 1].next_state := transitionStateCharacter;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDoubleQuote) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassDoubleQuote) + 1].next_state := transitionStateString;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassGreater) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassGreater) + 1].next_state := transitionStateGreater;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassLess) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassLess) + 1].next_state := transitionStateLess;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassOther) + 1].action := nil;
transitions[ORD(transitionStateStart) + 1][ORD(transitionClassOther) + 1].next_state := transitionStateEnd;
(* Colon state. *)
set_default_transition(transitionStateColon, transition_action_finalize, transitionStateEnd);
transitions[ORD(transitionStateColon) + 1][ORD(transitionClassEquals) + 1].action := transition_action_composite;
transitions[ORD(transitionStateColon) + 1][ORD(transitionClassEquals) + 1].next_state := transitionStateEnd;
(* Identifier state. *)
set_default_transition(transitionStateIdentifier, transition_action_key_id, transitionStateEnd);
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassDigit) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassDigit) + 1].next_state := transitionStateIdentifier;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassAlpha) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassAlpha) + 1].next_state := transitionStateIdentifier;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassUnderscore) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassUnderscore) + 1].next_state := transitionStateIdentifier;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassHex) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassHex) + 1].next_state := transitionStateIdentifier;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassZero) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassZero) + 1].next_state := transitionStateIdentifier;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassX) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateIdentifier) + 1][ORD(transitionClassX) + 1].next_state := transitionStateIdentifier;
(* Decimal state. *)
set_default_transition(transitionStateDecimal, transition_action_integer, transitionStateEnd);
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassDigit) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassDigit) + 1].next_state := transitionStateDecimal;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassAlpha) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassAlpha) + 1].next_state := transitionStateDecimalSuffix;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassUnderscore) + 1].action := nil;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassUnderscore) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassHex) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassHex) + 1].next_state := transitionStateDecimalSuffix;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassZero) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassZero) + 1].next_state := transitionStateDecimal;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassX) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateDecimal) + 1][ORD(transitionClassX) + 1].next_state := transitionStateDecimalSuffix;
(* Greater state. *)
set_default_transition(transitionStateGreater, transition_action_finalize, transitionStateEnd);
transitions[ORD(transitionStateGreater) + 1][ORD(transitionClassEquals) + 1].action := transition_action_composite;
transitions[ORD(transitionStateGreater) + 1][ORD(transitionClassEquals) + 1].next_state := transitionStateEnd;
(* Minus state. *)
set_default_transition(transitionStateMinus, transition_action_finalize, transitionStateEnd);
transitions[ORD(transitionStateMinus) + 1][ORD(transitionClassGreater) + 1].action := transition_action_composite;
transitions[ORD(transitionStateMinus) + 1][ORD(transitionClassGreater) + 1].next_state := transitionStateEnd;
(* Left paren state. *)
set_default_transition(transitionStateLeftParen, transition_action_finalize, transitionStateEnd);
transitions[ORD(transitionStateLeftParen) + 1][ORD(transitionClassAsterisk) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateLeftParen) + 1][ORD(transitionClassAsterisk) + 1].next_state := transitionStateComment;
(* Less state. *)
set_default_transition(transitionStateLess, transition_action_finalize, transitionStateEnd);
transitions[ORD(transitionStateLess) + 1][ORD(transitionClassEquals) + 1].action := transition_action_composite;
transitions[ORD(transitionStateLess) + 1][ORD(transitionClassEquals) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateLess) + 1][ORD(transitionClassGreater) + 1].action := transition_action_composite;
transitions[ORD(transitionStateLess) + 1][ORD(transitionClassGreater) + 1].next_state := transitionStateEnd;
(* Hexadecimal after 0x. *)
set_default_transition(transitionStateDot, transition_action_finalize, transitionStateEnd);
transitions[ORD(transitionStateDot) + 1][ORD(transitionClassDot) + 1].action := transition_action_composite;
transitions[ORD(transitionStateDot) + 1][ORD(transitionClassDot) + 1].next_state := transitionStateEnd;
(* Comment. *)
set_default_transition(transitionStateComment, transition_action_accumulate, transitionStateComment);
transitions[ORD(transitionStateComment) + 1][ORD(transitionClassAsterisk) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateComment) + 1][ORD(transitionClassAsterisk) + 1].next_state := transitionStateClosingComment;
transitions[ORD(transitionStateComment) + 1][ORD(transitionClassEof) + 1].action := nil;
transitions[ORD(transitionStateComment) + 1][ORD(transitionClassEof) + 1].next_state := transitionStateEnd;
(* Closing comment. *)
set_default_transition(transitionStateClosingComment, transition_action_accumulate, transitionStateComment);
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassInvalid) + 1].action := nil;
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassInvalid) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassRightParen) + 1].action := transition_action_delimited;
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassRightParen) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassAsterisk) + 1].action := transition_action_accumulate;
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassAsterisk) + 1].next_state := transitionStateClosingComment;
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassEof) + 1].action := nil;
transitions[ORD(transitionStateClosingComment) + 1][ORD(transitionClassEof) + 1].next_state := transitionStateEnd;
(* Character. *)
set_default_transition(transitionStateCharacter, transition_action_accumulate, transitionStateCharacter);
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassInvalid) + 1].action := nil;
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassInvalid) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassEof) + 1].action := nil;
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassEof) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassSingleQuote) + 1].action := transition_action_delimited;
transitions[ORD(transitionStateCharacter) + 1][ORD(transitionClassSingleQuote) + 1].next_state := transitionStateEnd;
(* String. *)
set_default_transition(transitionStateString, transition_action_accumulate, transitionStateString);
transitions[ORD(transitionStateString) + 1][ORD(transitionClassInvalid) + 1].action := nil;
transitions[ORD(transitionStateString) + 1][ORD(transitionClassInvalid) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateString) + 1][ORD(transitionClassEof) + 1].action := nil;
transitions[ORD(transitionStateString) + 1][ORD(transitionClassEof) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateString) + 1][ORD(transitionClassDoubleQuote) + 1].action := transition_action_delimited;
transitions[ORD(transitionStateString) + 1][ORD(transitionClassDoubleQuote) + 1].next_state := transitionStateEnd;
(* Leading zero. *)
set_default_transition(transitionStateLeadingZero, transition_action_integer, transitionStateEnd);
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassDigit) + 1].action := nil;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassDigit) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassAlpha) + 1].action := nil;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassAlpha) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassUnderscore) + 1].action := nil;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassUnderscore) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassHex) + 1].action := nil;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassHex) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassZero) + 1].action := nil;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassZero) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassX) + 1].action := nil;
transitions[ORD(transitionStateLeadingZero) + 1][ORD(transitionClassX) + 1].next_state := transitionStateEnd;
(* Digit with a character suffix. *)
set_default_transition(transitionStateDecimalSuffix, transition_action_integer, transitionStateEnd);
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassAlpha) + 1].action := nil;
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassAlpha) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassDigit) + 1].action := nil;
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassDigit) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassHex) + 1].action := nil;
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassHex) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassZero) + 1].action := nil;
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassZero) + 1].next_state := transitionStateEnd;
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassX) + 1].action := nil;
transitions[ORD(transitionStateDecimalSuffix) + 1][ORD(transitionClassX) + 1].next_state := transitionStateEnd
end;
proc lexer_initialize(lexer: PLexer, input: File);
begin
lexer^.input := input;
lexer^.length := 0;
ALLOCATE(lexer^.buffer, CHUNK_SIZE);
MemZero(lexer^.buffer, CHUNK_SIZE);
lexer^.size := CHUNK_SIZE
end;
proc lexer_current(lexer: PLexer) -> LexerToken;
var
current_class: TransitionClass;
current_state: TransitionState;
current_transition: Transition;
result: LexerToken;
index1: CARDINAL;
index2: CARDINAL;
begin
lexer^.current := lexer^.start;
current_state := transitionStateStart;
while current_state <> transitionStateEnd DO
index1 := ORD(lexer^.current.iterator^);
INC(index1);
current_class := classification[index1];
index1 := ORD(current_state);
INC(index1);
index2 := ORD(current_class);
INC(index2);
current_transition := transitions[index1][index2];
if current_transition.action <> nil then
current_transition.action(lexer, ADR(result))
end;
current_state := current_transition.next_state
end;
result.start_location := lexer^.start.location;
result.end_location := lexer^.current.location;
return result
end;
proc lexer_lex(lexer: PLexer) -> LexerToken;
var
result: LexerToken;
begin
if lexer^.length = 0 then
lexer^.length := ReadNBytes(lexer^.input, CHUNK_SIZE, lexer^.buffer);
lexer^.current.location.column := 1;
lexer^.current.location.line := 1;
lexer^.current.iterator := lexer^.buffer
end;
lexer^.start := lexer^.current;
result := lexer_current(lexer);
return result
end;
proc lexer_destroy(lexer: PLexer);
begin
DEALLOCATE(lexer^.buffer, lexer^.size)
end;
begin
initialize_classification();
initialize_transitions()
end.

200
source/Parser.def Normal file
View File

@ -0,0 +1,200 @@
DEFINITION MODULE Parser;
FROM Common IMPORT Identifier, PIdentifier, ShortString;
FROM Lexer IMPORT PLexer;
TYPE
Parser = RECORD
lexer: PLexer
END;
PParser = POINTER TO Parser;
AstLiteralKind = (
astLiteralKindInteger,
astLiteralKindString,
astLiteralKindNull,
astLiteralKindBoolean
);
AstLiteral = RECORD
CASE kind: AstLiteralKind OF
astLiteralKindInteger: integer: INTEGER |
astLiteralKindString: string: ShortString |
astLiteralKindNull: |
astLiteralKindBoolean: boolean: BOOLEAN
END
END;
PAstLiteral = POINTER TO AstLiteral;
AstUnaryOperator = (
astUnaryOperatorReference,
astUnaryOperatorNot,
astUnaryOperatorMinus
);
AstBinaryOperator = (
astBinaryOperatorSum,
astBinaryOperatorSubtraction,
astBinaryOperatorMultiplication,
astBinaryOperatorDivision,
astBinaryOperatorRemainder,
astBinaryOperatorEquals,
astBinaryOperatorNotEquals,
astBinaryOperatorLess,
astBinaryOperatorGreater,
astBinaryOperatorLessEqual,
astBinaryOperatorGreaterEqual,
astBinaryOperatorDisjunction,
astBinaryOperatorConjunction,
astBinaryOperatorExclusiveDisjunction,
astBinaryOperatorShiftLeft,
astBinaryOperatorShiftRight
);
AstExpressionKind = (
astExpressionKindLiteral,
astExpressionKindIdentifier,
astExpressionKindArrayAccess,
astExpressionKindDereference,
astExpressionKindFieldAccess,
astExpressionKindUnary,
astExpressionKindBinary,
astExpressionKindCall
);
AstExpression = RECORD
CASE kind: AstExpressionKind OF
astExpressionKindLiteral: literal: PAstLiteral |
astExpressionKindIdentifier: identifier: Identifier |
astExpressionKindDereference: reference: PAstExpression |
astExpressionKindArrayAccess:
array: PAstExpression;
index: PAstExpression |
astExpressionKindFieldAccess:
aggregate: PAstExpression;
field: Identifier |
astExpressionKindUnary:
unary_operator: AstUnaryOperator;
unary_operand: PAstExpression |
astExpressionKindBinary:
binary_operator: AstBinaryOperator;
lhs: PAstExpression;
rhs: PAstExpression |
astExpressionKindCall:
callable: PAstExpression;
argument_count: CARDINAL;
arguments: PPAstExpression
END
END;
PAstExpression = POINTER TO AstExpression;
PPAstExpression = POINTER TO PAstExpression;
AstStatementKind = (
astStatementKindIf,
astStatementKindWhile,
astStatementKindAssignment,
astStatementKindReturn,
astStatementKindCall
);
AstStatement = RECORD
CASE kind: AstStatementKind OF
astStatementKindIf:
if_condition: PAstExpression;
if_branch: AstCompoundStatement |
astStatementKindWhile:
while_condition: PAstExpression;
while_body: AstCompoundStatement |
astStatementKindAssignment:
assignee: PAstExpression;
assignment: PAstExpression |
astStatementKindReturn: returned: PAstExpression |
astStatementKindCall: call: PAstExpression
END
END;
PAstStatement = POINTER TO AstStatement;
PPAstStatement = POINTER TO PAstStatement;
AstCompoundStatement = RECORD
count: CARDINAL;
statements: PPAstStatement
END;
AstImportStatement = RECORD
package: Identifier;
symbols: PIdentifier
END;
PAstImportStatement = POINTER TO AstImportStatement;
PPAstImportStatement = POINTER TO PAstImportStatement;
AstConstantDeclaration = RECORD
constant_name: Identifier;
constant_value: INTEGER
END;
PAstConstantDeclaration = POINTER TO AstConstantDeclaration;
PPAstConstantDeclaration = POINTER TO PAstConstantDeclaration;
AstFieldDeclaration = RECORD
field_name: Identifier;
field_type: PAstTypeExpression
END;
PAstFieldDeclaration = POINTER TO AstFieldDeclaration;
AstTypeExpressionKind = (
astTypeExpressionKindNamed,
astTypeExpressionKindRecord,
astTypeExpressionKindEnumeration,
astTypeExpressionKindArray,
astTypeExpressionKindPointer,
astTypeExpressionKindProcedure
);
AstTypeExpression = RECORD
CASE kind: AstTypeExpressionKind OF
astTypeExpressionKindNamed: name: Identifier |
astTypeExpressionKindEnumeration: cases: PIdentifier |
astTypeExpressionKindPointer: target: PAstTypeExpression |
astTypeExpressionKindRecord: fields: PAstFieldDeclaration |
astTypeExpressionKindArray:
base: PAstTypeExpression;
length: CARDINAL |
astTypeExpressionKindProcedure: parameters: PPAstTypeExpression
END
END;
PAstTypeExpression = POINTER TO AstTypeExpression;
PPAstTypeExpression = POINTER TO PAstTypeExpression;
AstTypedDeclaration = RECORD
identifier: Identifier;
type_expression: PAstTypeExpression
END;
PAstTypedDeclaration = POINTER TO AstTypedDeclaration;
PPAstTypedDeclaration = POINTER TO PAstTypedDeclaration;
AstVariableDeclaration = RECORD
variable_name: Identifier;
variable_type: PAstTypeExpression
END;
PAstVariableDeclaration = POINTER TO AstVariableDeclaration;
PPAstVariableDeclaration = POINTER TO PAstVariableDeclaration;
AstProcedureDeclaration = RECORD
name: Identifier;
parameter_count: CARDINAL;
parameters: PAstTypedDeclaration;
return_type: PAstTypeExpression;
constants: PPAstConstantDeclaration;
variables: PPAstVariableDeclaration;
statements: AstCompoundStatement
END;
PAstProcedureDeclaration = POINTER TO AstProcedureDeclaration;
PPAstProcedureDeclaration = POINTER TO PAstProcedureDeclaration;
AstModule = RECORD
main: BOOLEAN;
imports: PPAstImportStatement;
constants: PPAstConstantDeclaration;
types: PPAstTypedDeclaration;
variables: PPAstVariableDeclaration;
procedures: PPAstProcedureDeclaration;
statements: AstCompoundStatement
END;
PAstModule = POINTER TO AstModule;
PROCEDURE parse(lexer: PLexer): PAstModule;
END Parser.

1008
source/Parser.elna Normal file

File diff suppressed because it is too large Load Diff

20
source/Transpiler.def Normal file
View File

@ -0,0 +1,20 @@
DEFINITION MODULE Transpiler;
FROM FIO IMPORT File;
FROM Common IMPORT ShortString;
FROM Lexer IMPORT PLexer, Lexer;
FROM Parser IMPORT PAstModule;
TYPE
TranspilerContext = RECORD
input_name: ShortString;
output: File;
definition: File;
indentation: CARDINAL
END;
PTranspilerContext = POINTER TO TranspilerContext;
PROCEDURE transpile(ast_module: PAstModule; output: File; definition: File; input_name: ShortString);
END Transpiler.

658
source/Transpiler.elna Normal file
View File

@ -0,0 +1,658 @@
module;
from FIO import WriteNBytes, WriteLine, WriteChar, WriteString;
from SYSTEM import ADR, TSIZE;
from NumberIO import IntToStr;
from Common import Identifier, PIdentifier, ShortString;
from Parser import AstTypeExpressionKind, AstExpressionKind, AstLiteralKind, AstUnaryOperator, AstBinaryOperator,
PAstModule, PPAstExpression, PAstExpression, PAstLiteral, PPAstProcedureDeclaration,
PAstConstantDeclaration, PPAstConstantDeclaration, PPAstStatement, PAstStatement, AstStatementKind,
AstTypedDeclaration, PAstTypedDeclaration, PPAstTypedDeclaration, AstCompoundStatement, PAstProcedureDeclaration,
PAstVariableDeclaration, PPAstVariableDeclaration, PAstImportStatement, PPAstImportStatement,
PAstTypeExpression, PPAstTypeExpression, AstFieldDeclaration, PAstFieldDeclaration;
proc indent(context: PTranspilerContext);
var
count: CARDINAL;
begin
count := 0;
while count < context^.indentation do
WriteString(context^.output, ' ');
INC(count)
end
end;
(* Write a semicolon followed by a newline. *)
proc write_semicolon(output: File);
begin
WriteChar(output, ';');
WriteLine(output)
end;
proc transpile_import_statement(context: PTranspilerContext, import_statement: PAstImportStatement);
var
written_bytes: CARDINAL;
current_symbol: PIdentifier;
begin
WriteString(context^.output, 'FROM ');
written_bytes := WriteNBytes(context^.output, ORD(import_statement^.package[1]), ADR(import_statement^.package[2]));
WriteString(context^.output, ' IMPORT ');
current_symbol := import_statement^.symbols;
written_bytes := WriteNBytes(context^.output, ORD(current_symbol^[1]), ADR(current_symbol^[2]));
INC(current_symbol, TSIZE(Identifier));
while ORD(current_symbol^[1]) <> 0 do
WriteString(context^.output, ', ');
written_bytes := WriteNBytes(context^.output, ORD(current_symbol^[1]), ADR(current_symbol^[2]));
INC(current_symbol, TSIZE(Identifier))
end;
write_semicolon(context^.output)
end;
proc transpile_import_part(context: PTranspilerContext, imports: PPAstImportStatement);
var
import_statement: PAstImportStatement;
begin
while imports^ <> nil do
transpile_import_statement(context, imports^);
INC(imports, TSIZE(PAstImportStatement))
end;
WriteLine(context^.output)
end;
proc transpile_constant_declaration(context: PTranspilerContext, declaration: PAstConstantDeclaration);
var
buffer: [20]CHAR;
written_bytes: CARDINAL;
begin
WriteString(context^.output, ' ');
written_bytes := WriteNBytes(context^.output, ORD(declaration^.constant_name[1]), ADR(declaration^.constant_name[2]));
WriteString(context^.output, ' = ');
IntToStr(declaration^.constant_value, 0, buffer);
WriteString(context^.output, buffer);
write_semicolon(context^.output)
end;
proc transpile_constant_part(context: PTranspilerContext, declarations: PPAstConstantDeclaration, extra_newline: BOOLEAN);
var
current_declaration: PPAstConstantDeclaration;
begin
if declarations^ <> nil then
WriteString(context^.output, 'CONST');
WriteLine(context^.output);
current_declaration := declarations;
while current_declaration^ <> nil do
transpile_constant_declaration(context, current_declaration^);
INC(current_declaration, TSIZE(PAstConstantDeclaration))
end;
if extra_newline then
WriteLine(context^.output)
end
end
end;
proc transpile_module(context: PTranspilerContext, result: PAstModule);
begin
if result^.main = false then
WriteString(context^.output, 'IMPLEMENTATION ')
end;
WriteString(context^.output, 'MODULE ');
(* Write the module name and end the line with a semicolon and newline. *)
transpile_module_name(context);
write_semicolon(context^.output);
WriteLine(context^.output);
(* Write the module body. *)
transpile_import_part(context, result^.imports);
transpile_constant_part(context, result^.constants, true);
transpile_type_part(context, result^.types);
transpile_variable_part(context, result^.variables, true);
transpile_procedure_part(context, result^.procedures);
transpile_statement_part(context, result^.statements);
WriteString(context^.output, 'END ');
transpile_module_name(context);
WriteChar(context^.output, '.');
WriteLine(context^.output)
end;
proc transpile_type_fields(context: PTranspilerContext, fields: PAstFieldDeclaration);
var
written_bytes: CARDINAL;
current_field: PAstFieldDeclaration;
begin
current_field := fields;
while ORD(current_field^.field_name[1]) <> 0 do
WriteString(context^.output, ' ');
written_bytes := WriteNBytes(context^.output, ORD(current_field^.field_name[1]), ADR(current_field^.field_name[2]));
WriteString(context^.output, ': ');
transpile_type_expression(context, current_field^.field_type);
INC(current_field , TSIZE(AstFieldDeclaration));
if ORD(current_field^.field_name[1]) <> 0 then
WriteChar(context^.output, ';')
end;
WriteLine(context^.output)
end
end;
proc transpile_record_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
begin
WriteString(context^.output, 'RECORD');
WriteLine(context^.output);
transpile_type_fields(context, type_expression^.fields);
WriteString(context^.output, ' END')
end;
proc transpile_pointer_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
begin
WriteString(context^.output, 'POINTER TO ');
transpile_type_expression(context, type_expression^.target)
end;
proc transpile_array_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
var
buffer: [20]CHAR;
begin
WriteString(context^.output, 'ARRAY');
if type_expression^.length <> 0 then
WriteString(context^.output, '[1..');
IntToStr(type_expression^.length, 0, buffer);
WriteString(context^.output, buffer);
WriteChar(context^.output, ']')
end;
WriteString(context^.output, ' OF ');
transpile_type_expression(context, type_expression^.base)
end;
proc transpile_enumeration_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
var
current_case: PIdentifier;
written_bytes: CARDINAL;
begin
current_case := type_expression^.cases;
WriteString(context^.output, '(');
WriteLine(context^.output);
WriteString(context^.output, ' ');
written_bytes := WriteNBytes(context^.output, ORD(current_case^[1]), ADR(current_case^[2]));
INC(current_case, TSIZE(Identifier));
while ORD(current_case^[1]) <> 0 do
WriteChar(context^.output, ',');
WriteLine(context^.output);
WriteString(context^.output, ' ');
written_bytes := WriteNBytes(context^.output, ORD(current_case^[1]), ADR(current_case^[2]));
INC(current_case, TSIZE(Identifier))
end;
WriteLine(context^.output);
WriteString(context^.output, ' )')
end;
proc transpile_named_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
var
written_bytes: CARDINAL;
begin
written_bytes := WriteNBytes(context^.output, ORD(type_expression^.name[1]), ADR(type_expression^.name[2]))
end;
proc transpile_procedure_type(context: PTranspilerContext, type_expression: PAstTypeExpression);
var
result: PAstTypeExpression;
current_parameter: PPAstTypeExpression;
parameter_count: CARDINAL;
begin
WriteString(context^.output, 'PROCEDURE(');
current_parameter := type_expression^.parameters;
while current_parameter^ <> nil do
transpile_type_expression(context, current_parameter^);
INC(current_parameter, TSIZE(PAstTypeExpression));
if current_parameter^ <> nil then
WriteString(context^.output, ', ')
end
end;
WriteChar(context^.output, ')')
end;
proc transpile_type_expression(context: PTranspilerContext, type_expression: PAstTypeExpression);
begin
if type_expression^.kind = astTypeExpressionKindRecord then
transpile_record_type(context, type_expression)
end;
if type_expression^.kind = astTypeExpressionKindEnumeration then
transpile_enumeration_type(context, type_expression)
end;
if type_expression^.kind = astTypeExpressionKindArray then
transpile_array_type(context, type_expression)
end;
if type_expression^.kind = astTypeExpressionKindPointer then
transpile_pointer_type(context, type_expression)
end;
if type_expression^.kind = astTypeExpressionKindProcedure then
transpile_procedure_type(context, type_expression)
end;
if type_expression^.kind = astTypeExpressionKindNamed then
transpile_named_type(context, type_expression)
end
end;
proc transpile_type_declaration(context: PTranspilerContext, declaration: PAstTypedDeclaration);
var
written_bytes: CARDINAL;
begin
WriteString(context^.output, ' ');
written_bytes := WriteNBytes(context^.output, ORD(declaration^.identifier[1]), ADR(declaration^.identifier[2]));
WriteString(context^.output, ' = ');
transpile_type_expression(context, declaration^.type_expression);
write_semicolon(context^.output)
end;
proc transpile_type_part(context: PTranspilerContext, declarations: PPAstTypedDeclaration);
var
current_declaration: PPAstTypedDeclaration;
begin
if declarations^ <> nil then
WriteString(context^.output, 'TYPE');
WriteLine(context^.output);
current_declaration := declarations;
while current_declaration^ <> nil do
transpile_type_declaration(context, current_declaration^);
INC(current_declaration, TSIZE(PAstTypedDeclaration))
end;
WriteLine(context^.output)
end
end;
proc transpile_variable_declaration(context: PTranspilerContext, declaration: PAstVariableDeclaration);
var
written_bytes: CARDINAL;
begin
WriteString(context^.output, ' ');
written_bytes := WriteNBytes(context^.output, ORD(declaration^.variable_name[1]), ADR(declaration^.variable_name[2]));
WriteString(context^.output, ': ');
transpile_type_expression(context, declaration^.variable_type);
write_semicolon(context^.output)
end;
proc transpile_variable_part(context: PTranspilerContext, declarations: PPAstVariableDeclaration, extra_newline: BOOLEAN);
var
current_declaration: PPAstVariableDeclaration;
begin
if declarations^ <> nil then
WriteString(context^.output, 'VAR');
WriteLine(context^.output);
current_declaration := declarations;
while current_declaration^ <> nil do
transpile_variable_declaration(context, current_declaration^);
INC(current_declaration, TSIZE(PAstVariableDeclaration))
end;
if extra_newline then
WriteLine(context^.output)
end
end
end;
proc transpile_procedure_heading(context: PTranspilerContext, declaration: PAstProcedureDeclaration);
var
written_bytes: CARDINAL;
parameter_index: CARDINAL;
current_parameter: PAstTypedDeclaration;
begin
WriteString(context^.output, 'PROCEDURE ');
written_bytes := WriteNBytes(context^.output, ORD(declaration^.name[1]), ADR(declaration^.name[2]));
WriteChar(context^.output, '(');
parameter_index := 0;
current_parameter := declaration^.parameters;
while parameter_index < declaration^.parameter_count do
written_bytes := WriteNBytes(context^.output, ORD(current_parameter^.identifier[1]), ADR(current_parameter^.identifier[2]));
WriteString(context^.output, ': ');
transpile_type_expression(context, current_parameter^.type_expression);
INC(parameter_index);
INC(current_parameter, TSIZE(AstTypedDeclaration));
if parameter_index <> declaration^.parameter_count then
WriteString(context^.output, '; ')
end
end;
WriteString(context^.output, ')');
(* Check for the return type and write it. *)
if declaration^.return_type <> nil then
WriteString(context^.output, ': ');
transpile_type_expression(context, declaration^.return_type)
end;
write_semicolon(context^.output)
end;
proc transpile_unary_operator(context: PTranspilerContext, operator: AstUnaryOperator);
begin
if operator = astUnaryOperatorMinus then
WriteChar(context^.output, '-')
end;
if operator = astUnaryOperatorNot then
WriteChar(context^.output, '~')
end
end;
proc transpile_binary_operator(context: PTranspilerContext, operator: AstBinaryOperator);
begin
if operator = astBinaryOperatorSum then
WriteChar(context^.output, '+')
end;
if operator = astBinaryOperatorSubtraction then
WriteChar(context^.output, '-')
end;
if operator = astBinaryOperatorMultiplication then
WriteChar(context^.output, '*')
end;
if operator = astBinaryOperatorEquals then
WriteChar(context^.output, '=')
end;
if operator = astBinaryOperatorNotEquals then
WriteChar(context^.output, '#')
end;
if operator = astBinaryOperatorLess then
WriteChar(context^.output, '<')
end;
if operator = astBinaryOperatorGreater then
WriteChar(context^.output, '>')
end;
if operator = astBinaryOperatorLessEqual then
WriteString(context^.output, '<=')
end;
if operator = astBinaryOperatorGreaterEqual then
WriteString(context^.output, '>=')
end;
if operator = astBinaryOperatorDisjunction then
WriteString(context^.output, 'OR')
end;
if operator = astBinaryOperatorConjunction then
WriteString(context^.output, 'AND')
end
end;
proc transpile_expression(context: PTranspilerContext, expression: PAstExpression);
var
literal: PAstLiteral;
buffer: [20]CHAR;
written_bytes: CARDINAL;
argument_index: CARDINAL;
current_argument: PPAstExpression;
begin
if expression^.kind = astExpressionKindLiteral then
literal := expression^.literal;
if literal^.kind = astLiteralKindInteger then
IntToStr(literal^.integer, 0, buffer);
WriteString(context^.output, buffer)
end;
if literal^.kind = astLiteralKindString then
WriteString(context^.output, literal^.string)
end;
if literal^.kind = astLiteralKindNull then
WriteString(context^.output, 'NIL')
end;
if (literal^.kind = astLiteralKindBoolean) & literal^.boolean then
WriteString(context^.output, 'TRUE')
end;
if (literal^.kind = astLiteralKindBoolean) & (literal^.boolean = false) then
WriteString(context^.output, 'FALSE')
end
end;
if expression^.kind = astExpressionKindIdentifier then
written_bytes := WriteNBytes(context^.output, ORD(expression^.identifier[1]), ADR(expression^.identifier[2]))
end;
if expression^.kind = astExpressionKindDereference then
transpile_expression(context, expression^.reference);
WriteChar(context^.output, '^')
end;
if expression^.kind = astExpressionKindArrayAccess then
transpile_expression(context, expression^.array);
WriteChar(context^.output, '[');
transpile_expression(context, expression^.index);
WriteChar(context^.output, ']')
end;
if expression^.kind = astExpressionKindFieldAccess then
transpile_expression(context, expression^.aggregate);
WriteChar(context^.output, '.');
written_bytes := WriteNBytes(context^.output, ORD(expression^.field[1]), ADR(expression^.field[2]))
end;
if expression^.kind = astExpressionKindUnary then
transpile_unary_operator(context, expression^.unary_operator);
transpile_expression(context, expression^.unary_operand)
end;
if expression^.kind = astExpressionKindBinary then
WriteChar(context^.output, '(');
transpile_expression(context, expression^.lhs);
WriteChar(context^.output, ' ');
transpile_binary_operator(context, expression^.binary_operator);
WriteChar(context^.output, ' ');
transpile_expression(context, expression^.rhs);
WriteChar(context^.output, ')')
end;
if expression^.kind = astExpressionKindCall then
transpile_expression(context, expression^.callable);
WriteChar(context^.output, '(');
current_argument := expression^.arguments;
if expression^.argument_count > 0 then
transpile_expression(context, current_argument^);
argument_index := 1;
INC(current_argument, TSIZE(PAstExpression));
while argument_index < expression^.argument_count do
WriteString(context^.output, ', ');
transpile_expression(context, current_argument^);
INC(current_argument, TSIZE(PAstExpression));
INC(argument_index)
end
end;
WriteChar(context^.output, ')')
end
end;
proc transpile_if_statement(context: PTranspilerContext, statement: PAstStatement);
begin
WriteString(context^.output, 'IF ');
transpile_expression(context, statement^.if_condition);
WriteString(context^.output, ' THEN');
WriteLine(context^.output);
INC(context^.indentation);
transpile_compound_statement(context, statement^.if_branch);
DEC(context^.indentation);
indent(context);
WriteString(context^.output, 'END')
end;
proc transpile_while_statement(context: PTranspilerContext, statement: PAstStatement);
begin
WriteString(context^.output, 'WHILE ');
transpile_expression(context, statement^.while_condition);
WriteString(context^.output, ' DO');
WriteLine(context^.output);
INC(context^.indentation);
transpile_compound_statement(context, statement^.while_body);
DEC(context^.indentation);
indent(context);
WriteString(context^.output, 'END')
end;
proc transpile_assignment_statement(context: PTranspilerContext, statement: PAstStatement);
begin
transpile_expression(context, statement^.assignee);
WriteString(context^.output, ' := ');
transpile_expression(context, statement^.assignment)
end;
proc transpile_return_statement(context: PTranspilerContext, statement: PAstStatement);
begin
WriteString(context^.output, 'RETURN ');
transpile_expression(context, statement^.returned)
end;
proc transpile_compound_statement(context: PTranspilerContext, statement: AstCompoundStatement);
var
current_statement: PPAstStatement;
index: CARDINAL;
begin
index := 0;
current_statement := statement.statements;
while index < statement.count do
transpile_statement(context, current_statement^);
INC(current_statement, TSIZE(PAstStatement));
INC(index);
if index <> statement.count then
WriteChar(context^.output, ';')
end;
WriteLine(context^.output)
end
end;
proc transpile_statement(context: PTranspilerContext, statement: PAstStatement);
begin
indent(context);
if statement^.kind = astStatementKindIf then
transpile_if_statement(context, statement)
end;
if statement^.kind = astStatementKindWhile then
transpile_while_statement(context, statement)
end;
if statement^.kind = astStatementKindReturn then
transpile_return_statement(context, statement)
end;
if statement^.kind = astStatementKindAssignment then
transpile_assignment_statement(context, statement)
end;
if statement^.kind = astStatementKindCall then
transpile_expression(context, statement^.call)
end
end;
proc transpile_statement_part(context: PTranspilerContext, compound: AstCompoundStatement);
begin
if compound.count > 0 then
WriteString(context^.output, 'BEGIN');
WriteLine(context^.output);
INC(context^.indentation);
transpile_compound_statement(context, compound);
DEC(context^.indentation)
end
end;
proc transpile_procedure_declaration(context: PTranspilerContext, declaration: PAstProcedureDeclaration);
var
written_bytes: CARDINAL;
begin
transpile_procedure_heading(context, declaration);
transpile_constant_part(context, declaration^.constants, false);
transpile_variable_part(context, declaration^.variables, false);
transpile_statement_part(context, declaration^.statements);
WriteString(context^.output, 'END ');
written_bytes := WriteNBytes(context^.output, ORD(declaration^.name[1]), ADR(declaration^.name[2]));
write_semicolon(context^.output)
end;
proc transpile_procedure_part(context: PTranspilerContext, declaration: PPAstProcedureDeclaration);
begin
while declaration^ <> nil do
transpile_procedure_declaration(context, declaration^);
WriteLine(context^.output);
INC(declaration, TSIZE(PAstProcedureDeclaration))
end
end;
proc transpile_module_name(context: PTranspilerContext);
var
counter: CARDINAL;
last_slash: CARDINAL;
begin
counter := 1;
last_slash := 0;
while (context^.input_name[counter] <> '.') & (ORD(context^.input_name[counter]) <> 0) do
if context^.input_name[counter] = '/' then
last_slash := counter
end;
INC(counter)
end;
if last_slash = 0 then
counter := 1
end;
if last_slash <> 0 then
counter := last_slash + 1
end;
while (context^.input_name[counter] <> '.') & (ORD(context^.input_name[counter]) <> 0) do
WriteChar(context^.output, context^.input_name[counter]);
INC(counter)
end
end;
proc transpile(ast_module: PAstModule, output: File, definition: File, input_name: ShortString);
var
context: TranspilerContext;
begin
context.input_name := input_name;
context.output := output;
context.definition := definition;
context.indentation := 0;
transpile_module(ADR(context), ast_module)
end;
end.

1084
source/main.elna Normal file

File diff suppressed because it is too large Load Diff