Generate code for loops

This commit is contained in:
Eugen Wissner 2024-04-18 12:15:26 +02:00
parent 9c7614dd25
commit f48fae4878
Signed by: belka
GPG Key ID: A27FDC1E8EE902C0
13 changed files with 788 additions and 333 deletions

View File

@ -26,6 +26,7 @@ add_executable(elna cli/main.cpp
source/parser.cpp include/elna/source/parser.hpp
source/result.cpp include/elna/source/result.hpp
source/semantic.cpp include/elna/source/semantic.hpp
source/optimizer.cpp include/elna/source/optimizer.hpp
backend/riscv.cpp include/elna/backend/riscv.hpp
backend/target.cpp include/elna/backend/target.hpp
cli/cl.cpp include/elna/cli/cl.hpp

7
TODO
View File

@ -3,19 +3,17 @@
- Catch exceptions thrown by the argument parser and print them normally.
- Structs or records.
- Unions.
- While loop.
- Type checking.
- Calculate additional stack space needed for subexpressions in the allocator
visitor and not in the backend.
- Support immediates greater than 12 bits.
- It seems instructions are correctly encoded only if the compiler is running
on a little endian architecture.
- Assignment to a pointer.
- Static array.
- Syscalls.
- Error message with an empty file wrongly says that a ")" is expected.
- Support any expressions for constants.
# Shell
- Persist the history.
- Replace hard coded ANSI codes with constants or functions.
## Completion
@ -25,4 +23,3 @@
- Don't hardcode fzf binary path.
- Send the word under the cursor to fzf as initial input.
- Home directory expansion.
- Show files in the PATH if starting at the beginning of the prompt

View File

@ -1,5 +1,6 @@
#include "elna/backend/riscv.hpp"
#include <cassert>
#include <functional>
#include <memory>
namespace elna::riscv
@ -77,366 +78,378 @@ namespace elna::riscv
return reinterpret_cast<const std::byte *>(&this->representation) + sizeof(this->representation);
}
visitor::visitor(std::shared_ptr<source::writer> writer,
std::shared_ptr<source::symbol_table> table)
: writer(writer), table(table)
static void relocate(std::string_view name, address_t target, std::vector<reference>& references,
std::vector<instruction>& instructions, std::shared_ptr<source::writer<std::byte>> writer)
{
references.push_back(reference());
references.back().name = name;
references.back().offset = writer->size() + instructions.size() * 4;
references.back().target = target;
}
void visitor::generate_intrinsics()
static void prologue(std::vector<instruction>& instructions)
{
this->writer->sink("printf");
{
auto format_string = this->writer->sink(reinterpret_cast<const std::byte *>("%c\n\0"), 4);
prologue();
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a1, funct3_t::addi, x_register::zero, 't'));
this->instructions.push_back(instruction(base_opcode::branch)
.b(8, funct3_t::bne, x_register::zero, x_register::a0));
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a1, funct3_t::addi, x_register::zero, 'f'));
relocate(format_string, address_t::high20);
this->instructions.push_back(instruction(base_opcode::lui).u(x_register::a5, 0));
relocate(format_string, address_t::lower12i);
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a0, funct3_t::addi, x_register::a5, 0));
relocate("printf", address_t::text);
this->instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0));
this->instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::ra, funct3_t::jalr, x_register::ra, 0));
epilogue(8);
this->writer->sink("writeb", reinterpret_cast<const std::byte *>(this->instructions.data()),
this->instructions.size() * sizeof(instruction));
this->instructions.clear();
}
{
auto format_string = this->writer->sink(reinterpret_cast<const std::byte *>("%d\n\0"), 4);
prologue();
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a1, funct3_t::addi, x_register::a0, 0));
relocate(format_string, address_t::high20);
this->instructions.push_back(instruction(base_opcode::lui).u(x_register::a5, 0));
relocate(format_string, address_t::lower12i);
this->instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a0, funct3_t::addi, x_register::a5, 0));
relocate("printf", address_t::text);
this->instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0));
this->instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::ra, funct3_t::jalr, x_register::ra, 0));
epilogue(8);
this->writer->sink("writei", reinterpret_cast<const std::byte *>(this->instructions.data()),
this->instructions.size() * sizeof(instruction));
this->instructions.clear();
}
}
void visitor::relocate(std::string_view name, address_t target)
{
this->references.push_back(reference());
this->references.back().name = name;
this->references.back().offset = writer->size() + instructions.size() * 4;
this->references.back().target = target;
}
void visitor::visit(source::declaration *declaration)
{
}
void visitor::visit(source::constant_definition *definition)
{
}
void visitor::prologue()
{
this->variable_counter = 1;
this->instructions.push_back(instruction(base_opcode::opImm));
this->instructions.push_back(instruction(base_opcode::store));
this->instructions.push_back(instruction(base_opcode::store));
this->instructions.push_back(instruction(base_opcode::opImm));
instructions.push_back(instruction(base_opcode::opImm));
instructions.push_back(instruction(base_opcode::store));
instructions.push_back(instruction(base_opcode::store));
instructions.push_back(instruction(base_opcode::opImm));
}
void visitor::epilogue(const std::size_t stack_size)
static void epilogue(const std::size_t stack_size, std::vector<instruction>& instructions)
{
this->instructions[0].i(x_register::sp, funct3_t::addi, x_register::sp, -stack_size);
this->instructions[1].s(0, funct3_t::sw, x_register::sp, x_register::s0);
this->instructions[2].s(4, funct3_t::sw, x_register::sp, x_register::ra);
this->instructions[3].i(x_register::s0, funct3_t::addi, x_register::sp, stack_size);
instructions[0].i(x_register::sp, funct3_t::addi, x_register::sp, -stack_size);
instructions[1].s(0, funct3_t::sw, x_register::sp, x_register::s0);
instructions[2].s(4, funct3_t::sw, x_register::sp, x_register::ra);
instructions[3].i(x_register::s0, funct3_t::addi, x_register::sp, stack_size);
// Epilogue.
this->instructions.push_back(instruction(base_opcode::load)
instructions.push_back(instruction(base_opcode::load)
.i(x_register::s0, funct3_t::lw, x_register::sp, 0));
this->instructions.push_back(instruction(base_opcode::load)
instructions.push_back(instruction(base_opcode::load)
.i(x_register::ra, funct3_t::lw, x_register::sp, 4));
this->instructions.push_back(instruction(base_opcode::opImm)
instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::sp, funct3_t::addi, x_register::sp, stack_size));
this->instructions.push_back(instruction(base_opcode::jalr)
instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::zero, funct3_t::jalr, x_register::ra, 0));
}
void visitor::visit(source::procedure_definition *definition)
static void generate_intrinsics(std::shared_ptr<source::writer<std::byte>> writer,
std::vector<reference>& references)
{
prologue();
auto main_symbol =
std::dynamic_pointer_cast<source::procedure_info>(this->table->lookup(definition->identifier()));
this->table = main_symbol->scope();
definition->body().accept(this);
this->table = main_symbol->scope()->scope();
// Set the return value (0).
this->instructions.push_back(instruction(base_opcode::op)
.r(x_register::a0, funct3_t::_and, x_register::zero, x_register::zero));
epilogue(static_cast<std::uint32_t>(this->variable_counter * 4 + 8 + main_symbol->stack_size()));
this->writer->sink(definition->identifier(),
reinterpret_cast<const std::byte *>(this->instructions.data()),
this->instructions.size() * sizeof(instruction));
this->instructions.clear();
}
void visitor::visit(source::block *block)
{
block->body().accept(this);
}
void visitor::visit(source::program *program)
{
generate_intrinsics();
for (auto& definition : program->definitions())
writer->sink("printf");
{
definition->accept(this);
std::vector<instruction> instructions;
auto format_string = writer->sink(reinterpret_cast<const std::byte *>("%c\n\0"), 4);
prologue(instructions);
instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a1, funct3_t::addi, x_register::zero, 't'));
instructions.push_back(instruction(base_opcode::branch)
.b(8, funct3_t::bne, x_register::zero, x_register::a0));
instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a1, funct3_t::addi, x_register::zero, 'f'));
relocate(format_string, address_t::high20, references, instructions, writer);
instructions.push_back(instruction(base_opcode::lui).u(x_register::a5, 0));
relocate(format_string, address_t::lower12i, references, instructions, writer);
instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a0, funct3_t::addi, x_register::a5, 0));
relocate("printf", address_t::text, references, instructions ,writer);
instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0));
instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::ra, funct3_t::jalr, x_register::ra, 0));
epilogue(8, instructions);
writer->sink("writeb", reinterpret_cast<const std::byte *>(instructions.data()),
instructions.size() * sizeof(instruction));
}
prologue();
auto main_symbol =
std::dynamic_pointer_cast<source::procedure_info>(this->table->lookup("main"));
program->body().accept(this);
// Set the return value (0).
this->instructions.push_back(instruction(base_opcode::op)
.r(x_register::a0, funct3_t::_and, x_register::zero, x_register::zero));
epilogue(static_cast<std::uint32_t>(this->variable_counter * 4 + 8 + main_symbol->local_stack_size));
this->writer->sink("main", reinterpret_cast<const std::byte *>(this->instructions.data()),
this->instructions.size() * sizeof(instruction));
}
void visitor::visit(source::call_statement *statement)
{
std::size_t argument_offset{ 0 };
for (auto& argument : statement->arguments())
{
argument->accept(this);
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
this->instructions.push_back(instruction(base_opcode::store)
.s(argument_offset, funct3_t::sw, x_register::sp, free_register));
argument_offset += 4;
}
relocate(statement->name(), address_t::text);
this->instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0));
this->instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::ra, funct3_t::jalr, x_register::ra, 0));
}
std::vector<instruction> instructions;
auto format_string = writer->sink(reinterpret_cast<const std::byte *>("%d\n\0"), 4);
void visitor::visit(source::compound_statement *statement)
{
for (auto& nested_statement : statement->statements())
{
nested_statement->accept(this);
prologue(instructions);
instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a1, funct3_t::addi, x_register::a0, 0));
relocate(format_string, address_t::high20, references, instructions, writer);
instructions.push_back(instruction(base_opcode::lui).u(x_register::a5, 0));
relocate(format_string, address_t::lower12i, references, instructions, writer);
instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a0, funct3_t::addi, x_register::a5, 0));
relocate("printf", address_t::text, references, instructions, writer);
instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0));
instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::ra, funct3_t::jalr, x_register::ra, 0));
epilogue(8, instructions);
writer->sink("writei", reinterpret_cast<const std::byte *>(instructions.data()),
instructions.size() * sizeof(instruction));
}
}
void visitor::visit(source::assign_statement *statement)
static void load_in_register(std::shared_ptr<source::operand> operand, const x_register target,
std::shared_ptr<source::procedure_info> procedure_info, std::vector<instruction>& instructions)
{
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
auto symbol = table->lookup(statement->lvalue());
auto variable_symbol = std::dynamic_pointer_cast<source::variable_info>(symbol);
std::shared_ptr<source::integer_operand> integer_operand{ nullptr };
std::shared_ptr<source::variable_operand> variable_operand{ nullptr };
std::shared_ptr<source::temporary_variable> temporary_variable{ nullptr };
std::shared_ptr<source::variable_info> variable_symbol{ nullptr };
std::shared_ptr<source::parameter_info> parameter_symbol{ nullptr };
statement->rvalue().accept(this);
this->instructions.push_back(instruction(base_opcode::store)
.s(variable_symbol->offset, funct3_t::sw, x_register::s0, x_register::a0));
}
void visitor::visit(source::if_statement *statement)
{
statement->prerequisite().accept(this);
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
auto before_branch = instructions.size();
instructions.push_back(instruction(base_opcode::branch));
statement->body().accept(this);
instructions[before_branch]
.b((instructions.size() - before_branch) * 4, funct3_t::beq, x_register::zero, free_register);
}
void visitor::visit(source::while_statement *statement)
{
statement->prerequisite().accept(this);
statement->body().accept(this);
}
void visitor::visit(source::type_expression *type)
{
}
void visitor::visit(source::variable_expression *variable)
{
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
auto symbol = table->lookup(variable->name());
if (auto constant_symbol = std::dynamic_pointer_cast<source::constant_info>(symbol))
if ((integer_operand = std::dynamic_pointer_cast<source::integer_operand>(operand)) != nullptr)
{
this->instructions.push_back(
instruction(base_opcode::opImm) // movl $x, %eax; where $x is a number.
.i(free_register, funct3_t::addi, x_register::zero, constant_symbol->value())
);
instructions.push_back(instruction(base_opcode::opImm)
.i(target, funct3_t::addi, x_register::zero, integer_operand->value()));
}
else if (auto variable_symbol = std::dynamic_pointer_cast<source::variable_info>(symbol))
else if ((variable_operand = std::dynamic_pointer_cast<source::variable_operand>(operand)) != nullptr)
{
this->instructions.push_back(
instruction(base_opcode::load)
.i(free_register, funct3_t::lw, x_register::s0, variable_symbol->offset)
);
const auto& name = procedure_info->scope()->lookup(variable_operand->name());
if ((variable_symbol = std::dynamic_pointer_cast<source::variable_info>(name)) != nullptr)
{
instructions.push_back(instruction(base_opcode::load)
.i(target, funct3_t::lw, x_register::s0, variable_symbol->offset));
}
else if ((parameter_symbol = std::dynamic_pointer_cast<source::parameter_info>(name)) != nullptr)
{
instructions.push_back(instruction(base_opcode::load)
.i(target, funct3_t::lw, x_register::s0, parameter_symbol->offset));
}
}
else if (auto parameter_symbol = std::dynamic_pointer_cast<source::parameter_info>(symbol))
else if ((temporary_variable = std::dynamic_pointer_cast<source::temporary_variable>(operand)) != nullptr)
{
this->instructions.push_back(
instruction(base_opcode::load)
.i(free_register, funct3_t::lw, x_register::s0, parameter_symbol->offset)
);
instructions.push_back(instruction(base_opcode::load));
instructions.back().i(target, funct3_t::lw, x_register::s0,
procedure_info->local_stack_size + 4 * temporary_variable->counter());
}
}
void visitor::visit(source::binary_expression *expression)
static void store_from_register(std::shared_ptr<source::operand> destination, const x_register target,
std::shared_ptr<source::procedure_info> procedure_info, std::vector<instruction>& instructions)
{
const auto lhs_register = this->register_in_use ? x_register::a0 : x_register::t0;
std::shared_ptr<source::variable_operand> variable_operand{ nullptr };
std::shared_ptr<source::temporary_variable> temporary_variable{ nullptr };
std::shared_ptr<source::variable_info> variable_symbol{ nullptr };
this->register_in_use = true;
expression->lhs().accept(this);
auto lhs_stack_position = this->variable_counter * 4;
++this->variable_counter;
if ((variable_operand = std::dynamic_pointer_cast<source::variable_operand>(destination)) != nullptr)
{
variable_symbol = std::dynamic_pointer_cast<source::variable_info>(
procedure_info->scope()->lookup(variable_operand->name()));
instructions.push_back(instruction(base_opcode::store)
.s(variable_symbol->offset, funct3_t::sw, x_register::s0, target));
}
else if ((temporary_variable = std::dynamic_pointer_cast<source::temporary_variable>(destination)) != nullptr)
{
instructions.push_back(instruction(base_opcode::store));
instructions.back().s(procedure_info->local_stack_size + 4 * temporary_variable->counter(),
funct3_t::sw, x_register::s0, target);
}
}
this->instructions.push_back(
instruction(base_opcode::store)
.s(static_cast<std::uint32_t>(lhs_stack_position), funct3_t::sw, x_register::sp, x_register::a0)
);
static void perform_binary_operation(const source::binary_operator operation, std::shared_ptr<source::operand> lhs,
std::shared_ptr<source::operand> rhs, std::shared_ptr<source::operand> destination,
std::shared_ptr<source::procedure_info> procedure_info, std::vector<instruction>& instructions)
{
constexpr auto lhs_register = x_register::a0;
std::shared_ptr<source::variable_operand> variable_operand{ nullptr };
std::shared_ptr<source::temporary_variable> temporary_variable{ nullptr };
std::shared_ptr<source::variable_info> variable_symbol{ nullptr };
this->register_in_use = false;
expression->rhs().accept(this);
this->register_in_use = lhs_register == x_register::a0; // Restore.
this->instructions.push_back(instruction(base_opcode::load)
.i(x_register::a0, funct3_t::lw, x_register::sp,
static_cast<std::int8_t>(lhs_stack_position))
);
load_in_register(lhs, x_register::a0, procedure_info, instructions);
load_in_register(rhs, x_register::t0, procedure_info, instructions);
// Calculate the result and assign it to a variable on the stack.
switch (expression->operation())
switch (operation)
{
case source::binary_operator::sum:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::add, x_register::a0, x_register::t0));
break;
case source::binary_operator::subtraction:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sub, x_register::a0, x_register::t0, funct7_t::sub));
break;
case source::binary_operator::multiplication:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::mul, x_register::a0, x_register::t0, funct7_t::muldiv));
break;
case source::binary_operator::division:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::div, x_register::a0, x_register::t0, funct7_t::muldiv));
break;
case source::binary_operator::equals:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sub, x_register::a0, x_register::t0, funct7_t::sub));
this->instructions.push_back(instruction(base_opcode::opImm)
instructions.push_back(instruction(base_opcode::opImm)
.i(lhs_register, funct3_t::sltiu, lhs_register, 1));
break;
case source::binary_operator::not_equals:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sub, x_register::a0, x_register::t0, funct7_t::sub));
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sltu, x_register::zero, lhs_register));
break;
case source::binary_operator::less:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sltu, x_register::a0, x_register::t0));
break;
case source::binary_operator::greater_equal:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::sltu, x_register::t0, x_register::a0));
break;
case source::binary_operator::greater:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::slt, x_register::a0, x_register::t0));
this->instructions.push_back(instruction(base_opcode::opImm)
instructions.push_back(instruction(base_opcode::opImm)
.i(lhs_register, funct3_t::xori, lhs_register, 1));
break;
case source::binary_operator::less_equal:
this->instructions.push_back(instruction(base_opcode::op)
instructions.push_back(instruction(base_opcode::op)
.r(lhs_register, funct3_t::slt, x_register::t0, x_register::a0));
this->instructions.push_back(instruction(base_opcode::opImm)
instructions.push_back(instruction(base_opcode::opImm)
.i(lhs_register, funct3_t::xori, lhs_register, 1));
break;
}
store_from_register(destination, lhs_register, procedure_info, instructions);
}
void visitor::visit(source::unary_expression *expression)
std::vector<reference> generate(source::intermediate_code_generator generator,
std::shared_ptr<source::symbol_table> table, std::shared_ptr<source::writer<std::byte>> writer)
{
switch (expression->operation())
std::vector<reference> references;
generate_intrinsics(writer, references);
for (auto& [identifier, intermediate_code] : generator)
{
case source::unary_operator::dereference:
expression->operand().accept(this);
std::vector<instruction> instructions;
auto main_symbol = std::dynamic_pointer_cast<source::procedure_info>(table->lookup(identifier));
std::size_t argument_offset{ 0 };
const auto stack_size = static_cast<std::uint32_t>(
intermediate_code.variable_counter() * 4 + 8 + main_symbol->stack_size());
std::unordered_map<std::size_t, std::function<void(std::size_t)>> missing_labels;
std::unordered_map<std::size_t, std::function<void(std::size_t)>>::iterator missing_label =
missing_labels.end();
std::unordered_map<std::size_t, std::size_t> local_labels;
this->instructions.push_back(instruction(base_opcode::load)
.i(x_register::a0, funct3_t::lw, x_register::a0, 0));
break;
case source::unary_operator::reference:
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
auto operand_identifier = dynamic_cast<source::variable_expression&>(expression->operand()).name();
auto variable_symbol =
std::dynamic_pointer_cast<source::variable_info>(this->table->lookup(operand_identifier));
for (auto& quadruple : intermediate_code)
{
switch (quadruple.operation())
{
case source::quadruple_operator::start:
prologue(instructions);
break;
case source::quadruple_operator::stop:
epilogue(stack_size, instructions);
break;
case source::quadruple_operator::add:
perform_binary_operation(source::binary_operator::sum, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::sub:
perform_binary_operation(source::binary_operator::subtraction, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::mul:
perform_binary_operation(source::binary_operator::multiplication, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::div:
perform_binary_operation(source::binary_operator::division, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::eq:
perform_binary_operation(source::binary_operator::equals, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::neq:
perform_binary_operation(source::binary_operator::not_equals, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::lt:
perform_binary_operation(source::binary_operator::less, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::ge:
perform_binary_operation(source::binary_operator::greater_equal, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::gt:
perform_binary_operation(source::binary_operator::greater, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::le:
perform_binary_operation(source::binary_operator::less_equal, quadruple.operand1(),
quadruple.operand2(), quadruple.operand3(), main_symbol, instructions);
break;
case source::quadruple_operator::load:
{
auto operand_identifier =
std::dynamic_pointer_cast<source::variable_operand>(quadruple.operand1())->name();
auto variable_symbol = std::dynamic_pointer_cast<source::variable_info>(
main_symbol->scope()->lookup(operand_identifier));
this->instructions.push_back(instruction(base_opcode::opImm)
.i(free_register, funct3_t::addi, x_register::s0, variable_symbol->offset));
break;
load_in_register(quadruple.operand1(), x_register::a0, main_symbol, instructions);
instructions.push_back(instruction(base_opcode::load)
.i(x_register::a0, funct3_t::lw, x_register::a0, 0));
store_from_register(quadruple.operand3(), x_register::a0, main_symbol, instructions);
}
break;
case source::quadruple_operator::ref:
{
auto operand_identifier =
std::dynamic_pointer_cast<source::variable_operand>(quadruple.operand1())->name();
auto variable_symbol = std::dynamic_pointer_cast<source::variable_info>(
main_symbol->scope()->lookup(operand_identifier));
instructions.push_back(instruction(base_opcode::opImm)
.i(x_register::a0, funct3_t::addi, x_register::s0, variable_symbol->offset));
store_from_register(quadruple.operand3(), x_register::a0, main_symbol, instructions);
}
break;
case source::quadruple_operator::beqz:
load_in_register(quadruple.operand1(), x_register::a0, main_symbol, instructions);
instructions.push_back(instruction(base_opcode::branch));
missing_labels.emplace(
std::dynamic_pointer_cast<source::label_operand>(quadruple.operand3())->counter(),
[before_branch = instructions.size() - 1, &instructions](std::size_t target) {
instructions[before_branch].b((target - before_branch) * 4,
funct3_t::beq, x_register::zero, x_register::a0);
});
break;
case source::quadruple_operator::j:
{
auto local_label = local_labels.find(
std::dynamic_pointer_cast<source::label_operand>(quadruple.operand3())->counter());
if (local_label != local_labels.end())
{
auto offset = -(instructions.size() - local_label->second) * 4;
instructions.push_back(instruction(base_opcode::auipc).u(x_register::a0, 0));
instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::zero, funct3_t::jalr, x_register::a0, offset));
}
}
break;
case source::quadruple_operator::label:
{
auto label_counter =
std::dynamic_pointer_cast<source::label_operand>(quadruple.operand3())->counter();
missing_label = missing_labels.find(label_counter);
if (missing_label != missing_labels.end())
{
missing_label->second(instructions.size());
}
local_labels[label_counter] = instructions.size();
}
break;
case source::quadruple_operator::assign:
load_in_register(quadruple.operand1(), x_register::a0, main_symbol, instructions);
store_from_register(quadruple.operand3(), x_register::a0, main_symbol, instructions);
break;
case source::quadruple_operator::param:
load_in_register(quadruple.operand1(), x_register::a0, main_symbol, instructions);
instructions.push_back(instruction(base_opcode::store)
.s(argument_offset, funct3_t::sw, x_register::sp, x_register::a0));
argument_offset += 4;
break;
case source::quadruple_operator::call:
relocate(std::dynamic_pointer_cast<source::variable_operand>(quadruple.operand1())->name(),
address_t::text, references, instructions, writer);
instructions.push_back(instruction(base_opcode::auipc).u(x_register::ra, 0));
instructions.push_back(instruction(base_opcode::jalr)
.i(x_register::ra, funct3_t::jalr, x_register::ra, 0));
argument_offset = 0;
break;
}
}
writer->sink(identifier,
reinterpret_cast<const std::byte *>(instructions.data()),
instructions.size() * sizeof(instruction));
}
}
void visitor::visit(source::integer_literal *number)
{
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
this->instructions.push_back(
instruction(base_opcode::opImm) // movl $x, %eax; where $x is a number.
.i(free_register, funct3_t::addi, x_register::zero, number->number())
);
}
void visitor::visit(source::boolean_literal *number)
{
const auto free_register = this->register_in_use ? x_register::a0 : x_register::t0;
this->instructions.push_back(
instruction(base_opcode::opImm) // movl $x, %eax; where $x is a number.
.i(free_register, funct3_t::addi, x_register::zero, number->boolean())
);
return references;
}
}

View File

@ -146,8 +146,8 @@ namespace elna::riscv
return -1;
}
void riscv32_elf(source::program *ast, std::shared_ptr<source::symbol_table> table,
const std::filesystem::path& out_file)
void riscv32_elf(source::program *ast, source::intermediate_code_generator intermediate_code_generator,
std::shared_ptr<source::symbol_table> table, const std::filesystem::path& out_file)
{
ELFIO::elfio writer;
@ -198,12 +198,14 @@ namespace elna::riscv
ELFIO::relocation_section_accessor rela(writer, rel_sec);
auto _writer = std::make_shared<elfio_writer>(text_sec, ro_sec, syma, stra);
visitor _visitor{ _writer, table };
_visitor.visit(ast);
// visitor _visitor{ _writer, table };
// _visitor.visit(ast);
auto references = generate(intermediate_code_generator, table, _writer);
syma.arrange_local_symbols();
for (auto& reference : _visitor.references)
for (auto& reference : references)
// for (auto& reference : _visitor.references)
{
ELFIO::Elf_Word relocated_symbol = lookup(syma, reference.name);

View File

@ -1,6 +1,7 @@
#include "elna/cli/cl.hpp"
#include "elna/backend/target.hpp"
#include "elna/source/semantic.hpp"
#include "elna/source/optimizer.hpp"
#include <iostream>
namespace elna::cli
@ -34,7 +35,11 @@ namespace elna::cli
source::name_analysis_visitor(global_scope).visit(ast.get());
source::type_analysis_visitor().visit(ast.get());
source::allocator_visitor(global_scope).visit(ast.get());
riscv::riscv32_elf(ast.get(), global_scope, out_file);
source::intermediate_code_generator intermediate_code_generator{ global_scope };
intermediate_code_generator.visit(ast.get());
riscv::riscv32_elf(ast.get(), intermediate_code_generator, global_scope, out_file);
}
catch (std::ios_base::failure&)
{

View File

@ -1,7 +1,7 @@
#pragma once
#include <cstdint>
#include "elna/source/parser.hpp"
#include "elna/source/optimizer.hpp"
namespace elna::riscv
{
@ -158,40 +158,6 @@ namespace elna::riscv
std::uint32_t representation{ 0 };
};
class visitor final : public source::parser_visitor
{
std::shared_ptr<source::writer> writer;
std::vector<instruction> instructions;
bool register_in_use{ true };
void generate_intrinsics();
void relocate(std::string_view name, address_t target);
void prologue();
void epilogue(const std::size_t stack_size);
public:
std::uint32_t variable_counter = 1;
std::vector<reference> references;
std::shared_ptr<source::symbol_table> table;
visitor(std::shared_ptr<source::writer> writer,
std::shared_ptr<source::symbol_table> table);
virtual void visit(source::declaration *declaration) override;
virtual void visit(source::constant_definition *definition) override;
virtual void visit(source::procedure_definition *definition) override;
virtual void visit(source::call_statement *statement) override;
virtual void visit(source::compound_statement *statement) override;
virtual void visit(source::assign_statement *statement) override;
virtual void visit(source::if_statement *statement) override;
virtual void visit(source::while_statement *statement) override;
virtual void visit(source::block *block) override;
virtual void visit(source::program *program) override;
virtual void visit(source::type_expression *variable) override;
virtual void visit(source::variable_expression *variable) override;
virtual void visit(source::binary_expression *expression) override;
virtual void visit(source::unary_expression *expression) override;
virtual void visit(source::integer_literal *number) override;
virtual void visit(source::boolean_literal *number) override;
};
std::vector<reference> generate(source::intermediate_code_generator generator,
std::shared_ptr<source::symbol_table> table, std::shared_ptr<source::writer<std::byte>> writer);
}

View File

@ -1,4 +1,7 @@
#pragma once
#include "elna/source/parser.hpp"
#include "elna/source/optimizer.hpp"
#include <filesystem>
#include <elfio/elfio.hpp>
@ -72,7 +75,7 @@ namespace elna::riscv
ELFIO::section *m_section;
};
class elfio_writer final : public source::writer
class elfio_writer final : public source::writer<std::byte>
{
ELFIO::section *text;
elfio_section_writer read_only;
@ -99,6 +102,6 @@ namespace elna::riscv
*/
std::ptrdiff_t lookup(ELFIO::symbol_section_accessor symbol_accessor, const std::string& label);
void riscv32_elf(source::program *ast, std::shared_ptr<source::symbol_table> table,
const std::filesystem::path& out_file);
void riscv32_elf(source::program *ast, source::intermediate_code_generator intermediate_code_generator,
std::shared_ptr<source::symbol_table> table, const std::filesystem::path& out_file);
}

View File

@ -0,0 +1,104 @@
#pragma once
#include "elna/source/parser.hpp"
namespace elna::source
{
enum class quadruple_operator
{
start,
stop,
add,
sub,
mul,
div,
eq,
neq,
lt,
ge,
gt,
le,
load,
ref,
beqz,
j,
label,
assign,
param,
call
};
/**
* Single instruction representation.
*/
struct quadruple
{
quadruple(const quadruple_operator operation, std::shared_ptr<operand> operand1 = nullptr,
std::shared_ptr<operand> operand2 = nullptr, std::shared_ptr<operand> operand3 = nullptr);
quadruple_operator operation() const noexcept;
std::shared_ptr<operand> operand1();
std::shared_ptr<operand> operand2();
std::shared_ptr<operand> operand3();
private:
quadruple_operator m_operation;
std::shared_ptr<operand> m_operand1;
std::shared_ptr<operand> m_operand2;
std::shared_ptr<operand> m_operand3;
};
class intermediate_code final
{
std::vector<quadruple> instructions;
std::uint32_t m_variable_counter;
std::uint32_t m_label_counter;
public:
intermediate_code();
void emplace_back(const quadruple_operator operation, std::shared_ptr<operand> operand1 = nullptr,
std::shared_ptr<operand> operand2 = nullptr, std::shared_ptr<operand> operand3 = nullptr);
void clear();
std::vector<quadruple>::iterator begin();
std::vector<quadruple>::iterator end();
std::int32_t variable_counter() const noexcept;
std::int32_t increment_variable() noexcept;
std::int32_t label_counter() const noexcept;
std::int32_t increment_label() noexcept;
};
class intermediate_code_generator final : public empty_visitor
{
std::unordered_map<std::string, intermediate_code> code;
intermediate_code current;
std::shared_ptr<symbol_table> table;
quadruple_operator convert(const binary_operator operation) const;
quadruple_operator convert(const unary_operator operation) const;
public:
intermediate_code_generator(std::shared_ptr<symbol_table> table);
std::unordered_map<std::string, intermediate_code>::iterator begin();
std::unordered_map<std::string, intermediate_code>::iterator end();
void visit(declaration *declaration) override;
void visit(constant_definition *definition) override;
void visit(procedure_definition *definition) override;
void visit(call_statement *statement) override;
void visit(assign_statement *statement) override;
void visit(if_statement *statement) override;
void visit(while_statement *statement) override;
void visit(block *block) override;
void visit(program *program) override;
void visit(type_expression *variable) override;
void visit(variable_expression *variable) override;
void visit(binary_expression *expression) override;
void visit(unary_expression *expression) override;
void visit(integer_literal *number) override;
void visit(boolean_literal *number) override;
};
}

View File

@ -89,6 +89,55 @@ namespace elna::source
virtual void visit(boolean_literal *boolean) override;
};
/**
* Operand representing a subexpression in the 3 address code.
*/
struct operand
{
public:
virtual ~operand() noexcept = 0;
};
struct integer_operand final : public operand
{
std::int32_t m_value;
public:
explicit integer_operand(const std::int32_t value);
std::int32_t value() const noexcept;
};
class variable_operand final : public operand
{
std::string m_name;
public:
explicit variable_operand(const std::string& name);
const std::string& name() const noexcept;
};
struct temporary_variable final : public operand
{
std::size_t m_counter;
public:
explicit temporary_variable(const std::size_t counter);
std::size_t counter() const noexcept;
};
struct label_operand final : public operand
{
std::size_t m_counter;
public:
explicit label_operand(const std::size_t counter);
std::size_t counter() const noexcept;
};
/**
* AST node.
*/
@ -122,6 +171,9 @@ namespace elna::source
class expression : public node
{
public:
std::shared_ptr<operand> place;
protected:
/**
* \param position Source code position.

View File

@ -301,6 +301,7 @@ namespace elna::source
std::shared_ptr<symbol_table> scope();
};
template<typename T>
struct writer
{
/**
@ -312,7 +313,7 @@ namespace elna::source
*
* \return New size of the table.
*/
virtual std::size_t sink(const std::string& label, const std::byte *data, std::size_t size) = 0;
virtual std::size_t sink(const std::string& label, const T *data, std::size_t size) = 0;
/**
* Writes data and returns a label under that the data can be accessed.
@ -322,7 +323,7 @@ namespace elna::source
*
* \return Label for the symbol.
*/
virtual std::string_view sink(const std::byte *data, std::size_t size) = 0;
virtual std::string_view sink(const T *data, std::size_t size) = 0;
/**
* Creates an external symbol.

267
source/optimizer.cpp Normal file
View File

@ -0,0 +1,267 @@
#include "elna/source/optimizer.hpp"
#include <cassert>
namespace elna::source
{
quadruple::quadruple(const quadruple_operator operation, std::shared_ptr<operand> operand1,
std::shared_ptr<operand> operand2, std::shared_ptr<operand> operand3)
: m_operation(operation), m_operand1(operand1), m_operand2(operand2), m_operand3(operand3)
{
}
quadruple_operator quadruple::operation() const noexcept
{
return m_operation;
}
std::shared_ptr<operand> quadruple::operand1()
{
return m_operand1;
}
std::shared_ptr<operand> quadruple::operand2()
{
return m_operand2;
}
std::shared_ptr<operand> quadruple::operand3()
{
return m_operand3;
}
intermediate_code::intermediate_code()
{
clear();
}
void intermediate_code::emplace_back(const quadruple_operator operation, std::shared_ptr<operand> operand1,
std::shared_ptr<operand> operand2, std::shared_ptr<operand> operand3)
{
this->instructions.emplace_back(operation, operand1, operand2, operand3);
}
void intermediate_code::clear()
{
this->instructions.clear();
std::uint32_t variable_counter = 1;
std::uint32_t label_counter = 0;
}
std::vector<quadruple>::iterator intermediate_code::begin()
{
return this->instructions.begin();
}
std::vector<quadruple>::iterator intermediate_code::end()
{
return this->instructions.end();
}
std::int32_t intermediate_code::variable_counter() const noexcept
{
return m_variable_counter;
}
std::int32_t intermediate_code::increment_variable() noexcept
{
return m_variable_counter++;
}
std::int32_t intermediate_code::label_counter() const noexcept
{
return m_label_counter;
}
std::int32_t intermediate_code::increment_label() noexcept
{
return m_label_counter++;
}
intermediate_code_generator::intermediate_code_generator(std::shared_ptr<symbol_table> table)
: table(table)
{
}
quadruple_operator intermediate_code_generator::convert(const binary_operator operation) const
{
switch (operation)
{
case binary_operator::sum:
return quadruple_operator::add;
case binary_operator::subtraction:
return quadruple_operator::sub;
case binary_operator::multiplication:
return quadruple_operator::mul;
case binary_operator::division:
return quadruple_operator::div;
case binary_operator::equals:
return quadruple_operator::eq;
case source::binary_operator::not_equals:
return quadruple_operator::neq;
case source::binary_operator::less:
return quadruple_operator::lt;
case source::binary_operator::greater_equal:
return quadruple_operator::ge;
case source::binary_operator::greater:
return quadruple_operator::gt;
case source::binary_operator::less_equal:
return quadruple_operator::le;
default:
assert(false);
}
}
quadruple_operator intermediate_code_generator::convert(const unary_operator operation) const
{
switch (operation)
{
case unary_operator::reference:
return quadruple_operator::ref;
case unary_operator::dereference:
return quadruple_operator::load;
default:
assert(false);
}
}
void intermediate_code_generator::visit(source::declaration *declaration)
{
}
void intermediate_code_generator::visit(source::constant_definition *definition)
{
}
void intermediate_code_generator::visit(procedure_definition *definition)
{
this->current.emplace_back(quadruple_operator::start);
definition->body().accept(this);
this->current.emplace_back(quadruple_operator::stop);
code[definition->identifier()] = std::move(this->current);
this->current.clear();
}
std::unordered_map<std::string, intermediate_code>::iterator intermediate_code_generator::begin()
{
return code.begin();
}
std::unordered_map<std::string, intermediate_code>::iterator intermediate_code_generator::end()
{
return code.end();
}
void intermediate_code_generator::visit(block *block)
{
block->body().accept(this);
}
void intermediate_code_generator::visit(program *program)
{
for (auto& definition : program->definitions())
{
definition->accept(this);
}
this->current.emplace_back(quadruple_operator::start);
program->body().accept(this);
this->current.emplace_back(quadruple_operator::stop);
code["main"] = std::move(this->current);
}
void intermediate_code_generator::visit(call_statement *statement)
{
for (auto& argument : statement->arguments())
{
argument->accept(this);
this->current.emplace_back(quadruple_operator::param, argument->place, nullptr, nullptr);
}
this->current.emplace_back(quadruple_operator::call,
std::make_shared<variable_operand>(statement->name()),
std::make_shared<integer_operand>(statement->arguments().size()));
}
void intermediate_code_generator::visit(assign_statement *statement)
{
statement->rvalue().accept(this);
this->current.emplace_back(quadruple_operator::assign, statement->rvalue().place, nullptr,
std::make_shared<variable_operand>(statement->lvalue()));
}
void intermediate_code_generator::visit(if_statement *statement)
{
statement->prerequisite().accept(this);
auto end_label = std::make_shared<label_operand>(this->current.increment_label());
this->current.emplace_back(quadruple_operator::beqz, statement->prerequisite().place, nullptr, end_label);
statement->body().accept(this);
this->current.emplace_back(quadruple_operator::label, nullptr, nullptr, end_label);
}
void intermediate_code_generator::visit(while_statement *statement)
{
auto condition_label = std::make_shared<label_operand>(this->current.increment_label());
this->current.emplace_back(quadruple_operator::label, nullptr, nullptr, condition_label);
statement->prerequisite().accept(this);
auto end_label = std::make_shared<label_operand>(this->current.increment_label());
this->current.emplace_back(quadruple_operator::beqz, statement->prerequisite().place, nullptr, end_label);
statement->body().accept(this);
this->current.emplace_back(quadruple_operator::j, nullptr, nullptr, condition_label);
this->current.emplace_back(quadruple_operator::label, nullptr, nullptr, end_label);
}
void intermediate_code_generator::visit(type_expression *type)
{
}
void intermediate_code_generator::visit(variable_expression *variable)
{
auto symbol = table->lookup(variable->name());
if (auto constant_symbol = std::dynamic_pointer_cast<source::constant_info>(symbol))
{
variable->place = std::make_shared<integer_operand>(constant_symbol->value());
}
else
{
variable->place = std::make_shared<variable_operand>(variable->name());
}
}
void intermediate_code_generator::visit(binary_expression *expression)
{
expression->lhs().accept(this);
auto left = expression->lhs().place;
expression->rhs().accept(this);
auto right = expression->rhs().place;
auto operation = convert(expression->operation());
auto new_place = std::make_shared<temporary_variable>(this->current.increment_variable());
this->current.emplace_back(operation, left, right, new_place);
expression->place = new_place;
}
void intermediate_code_generator::visit(unary_expression *expression)
{
expression->operand().accept(this);
auto operation = convert(expression->operation());
auto new_place = std::make_shared<temporary_variable>(this->current.increment_variable());
this->current.emplace_back(operation, expression->operand().place, nullptr, new_place);
expression->place = new_place;
}
void intermediate_code_generator::visit(integer_literal *number)
{
number->place = std::make_shared<integer_operand>(number->number());
}
void intermediate_code_generator::visit(boolean_literal *number)
{
number->place = std::make_shared<integer_operand>(number->boolean());
}
}

View File

@ -99,6 +99,50 @@ namespace elna::source
{
}
operand::~operand() noexcept
{
}
integer_operand::integer_operand(const std::int32_t value)
: m_value(value)
{
}
std::int32_t integer_operand::value() const noexcept
{
return m_value;
}
variable_operand::variable_operand(const std::string& name)
: m_name(name)
{
}
const std::string& variable_operand::name() const noexcept
{
return m_name;
}
temporary_variable::temporary_variable(const std::size_t counter)
: m_counter(counter)
{
}
std::size_t temporary_variable::counter() const noexcept
{
return m_counter;
}
label_operand::label_operand(const std::size_t counter)
: m_counter(counter)
{
}
std::size_t label_operand::counter() const noexcept
{
return m_counter;
}
node::node(const struct position position)
: source_position(position)
{

View File

@ -2,7 +2,7 @@ var i: Int;
begin
i := 1;
while i <= 6 do
while i < 6 do
begin
writei(i);
i := i + 1