tanya/source/tanya/range/primitive.d
Eugen Wissner f15a90543f Remove support for moveFront/moveBack/moveAt
Range elements are movable (mobile) if they are returned by reference
and can be moved or if the elements doesn't define an elaborate postblit
constructor. Allowing to define custom moveFront/moveBack/moveAt makes
the range definition more complex (particulary writing range adapters)
without a good reason.
2018-04-03 21:44:50 +02:00

2036 lines
45 KiB
D

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* This module defines primitives for working with ranges.
*
* Copyright: Eugene Wissner 2017-2018.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/range/primitive.d,
* tanya/range/primitive.d)
*/
module tanya.range.primitive;
import tanya.algorithm.mutation;
import tanya.math;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range.array;
/**
* Returns the element type of the range $(D_PARAM R).
*
* Element type is the return type of such primitives like
* $(D_INLINECODE R.front) and (D_INLINECODE R.back) or the array base type.
* If $(D_PARAM R) is not a range, its element type is $(D_KEYWORD void).
*
* If $(D_PARAM R) is a string, $(D_PSYMBOL ElementType) doesn't distinguish
* between narrow and wide strings, it just returns the base type of the
* underlying array ($(D_KEYWORD char), $(D_KEYWORD wchar) or
* $(D_KEYWORD dchar)).
*
* Params:
* R = Range type.
*
* Returns: Element type of the range $(D_PARAM R).
*/
template ElementType(R)
{
static if (is(R U : U[]))
{
alias ElementType = U;
}
else static if (isInputRange!R)
{
alias ElementType = ReturnType!((R r) => r.front());
}
else
{
alias ElementType = void;
}
}
/**
* Detects whether $(D_PARAM R) has a length property.
*
* $(D_PARAM R) does not have to be a range to support the length.
*
* Length mustn't be a $(D_KEYWORD @property) or a function, it can be a member
* variable or $(D_KEYWORD enum). But its type (or the type returned by the
* appropriate function) should be $(D_KEYWORD size_t), otherwise
* $(D_PSYMBOL hasLength) is $(D_KEYWORD false).
*
* All dynamic arrays except $(D_KEYWORD void)-arrays have length.
*
* Params:
* R = A type.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) has a length property,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL isInfinite).
*/
template hasLength(R)
{
enum bool hasLength = is(ReturnType!((R r) => r.length) == size_t);
}
///
@nogc nothrow pure @safe unittest
{
static assert(hasLength!(char[]));
static assert(hasLength!(int[]));
static assert(hasLength!(const(int)[]));
struct A
{
enum size_t length = 1;
}
static assert(hasLength!(A));
struct B
{
@property size_t length() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(hasLength!(B));
struct C
{
@property const(size_t) length() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(!hasLength!C);
}
/**
* Determines whether $(D_PARAM R) is a forward range with slicing support
* ($(D_INLINECODE R[i .. j])).
*
* For finite ranges, the result of `opSlice()` must be of the same type as the
* original range. If the range defines opDollar, it must support subtraction.
*
* For infinite ranges, the result of `opSlice()` must be of the same type as
* the original range only if it defines `opDollar()`. Otherwise it can be any
* forward range.
*
* For both finite and infinite ranges, the result of `opSlice()` must have
* length.
*
* Params:
* R = The type to be tested.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) supports slicing,
* $(D_KEYWORD false) otherwise.
*/
template hasSlicing(R)
{
private enum bool hasDollar = is(typeof((R r) => r[0 .. $]));
private enum bool subDollar = !hasDollar
|| isInfinite!R
|| is(ReturnType!((R r) => r[0 .. $ - 1]) == R);
static if (isForwardRange!R
&& is(ReturnType!((R r) => r[0 .. 0]) T)
&& (!hasDollar || is(ReturnType!((R r) => r[0 .. $]) == R))
&& subDollar
&& isForwardRange!(ReturnType!((ref R r) => r[0 .. 0])))
{
enum bool hasSlicing = (is(T == R) || isInfinite!R)
&& hasLength!T;
}
else
{
enum bool hasSlicing = false;
}
}
///
@nogc nothrow pure @safe unittest
{
static assert(hasSlicing!(int[]));
static assert(hasSlicing!(const(int)[]));
static assert(hasSlicing!(dstring));
static assert(hasSlicing!(string));
static assert(!hasSlicing!(const int[]));
static assert(!hasSlicing!(void[]));
struct A
{
int front() @nogc nothrow pure @safe
{
return 0;
}
void popFront() @nogc nothrow pure @safe
{
}
bool empty() const @nogc nothrow pure @safe
{
return false;
}
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
@property size_t length() const @nogc nothrow pure @safe
{
return 0;
}
typeof(this) opSlice(const size_t i, const size_t j)
pure nothrow @safe @nogc
{
return this;
}
}
static assert(hasSlicing!A);
struct B
{
struct Dollar
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
void popFront() @nogc nothrow pure @safe
{
}
bool empty() const @nogc nothrow pure @safe
{
return false;
}
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
@property size_t length() const @nogc nothrow pure @safe
{
return 0;
}
@property Dollar opDollar() const @nogc nothrow pure @safe
{
return Dollar();
}
typeof(this) opSlice(const size_t i, const Dollar j)
pure nothrow @safe @nogc
{
return this;
}
}
static assert(!hasSlicing!B);
struct C
{
int front() @nogc nothrow pure @safe
{
return 0;
}
void popFront() @nogc nothrow pure @safe
{
}
enum bool empty = false;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
typeof(this) opSlice(const size_t i, const size_t j)
pure nothrow @safe @nogc
{
return this;
}
}
static assert(!hasSlicing!C);
struct D
{
struct Range
{
int front() @nogc nothrow pure @safe
{
return 0;
}
void popFront() @nogc nothrow pure @safe
{
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
@property size_t length() const @nogc nothrow pure @safe
{
return 0;
}
}
int front() @nogc nothrow pure @safe
{
return 0;
}
void popFront() @nogc nothrow pure @safe
{
}
enum bool empty = false;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
Range opSlice(const size_t i, const size_t j)
pure nothrow @safe @nogc
{
return Range();
}
}
static assert(hasSlicing!D);
}
version (unittest)
{
mixin template InputRangeStub()
{
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property bool empty() const @nogc nothrow pure @safe
{
return false;
}
void popFront() @nogc nothrow pure @safe
{
}
}
mixin template BidirectionalRangeStub()
{
@property int back() @nogc nothrow pure @safe
{
return 0;
}
void popBack() @nogc nothrow pure @safe
{
}
}
}
private template isDynamicArrayRange(R)
{
static if (is(R E : E[]))
{
enum bool isDynamicArrayRange = !is(E == void);
}
else
{
enum bool isDynamicArrayRange = false;
}
}
/**
* Determines whether $(D_PARAM R) is an input range.
*
* An input range should define following primitives:
*
* $(UL
* $(LI front)
* $(LI empty)
* $(LI popFront)
* )
*
* Params:
* R = The type to be tested.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) is an input range,
* $(D_KEYWORD false) otherwise.
*/
template isInputRange(R)
{
static if (is(ReturnType!((R r) => r.front()) U)
&& is(ReturnType!((R r) => r.empty) == bool)
&& is(typeof(R.popFront())))
{
enum bool isInputRange = !is(U == void);
}
else
{
enum bool isInputRange = isDynamicArrayRange!R;
}
}
///
@nogc nothrow pure @safe unittest
{
static struct Range
{
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(isInputRange!Range);
static assert(isInputRange!(int[]));
static assert(!isInputRange!(void[]));
}
@nogc nothrow pure @safe unittest
{
static struct Range1(T)
{
void popFront()
{
}
int front()
{
return 0;
}
T empty() const
{
return true;
}
}
static assert(!isInputRange!(Range1!int));
static assert(!isInputRange!(Range1!(const bool)));
static struct Range2
{
int popFront() @nogc nothrow pure @safe
{
return 100;
}
int front() @nogc nothrow pure @safe
{
return 100;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(isInputRange!Range2);
static struct Range3
{
void popFront() @nogc nothrow pure @safe
{
}
void front() @nogc nothrow pure @safe
{
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(!isInputRange!Range3);
static struct Range4
{
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
enum bool empty = false;
}
static assert(isInputRange!Range4);
}
/**
* Determines whether $(D_PARAM R) is a forward range.
*
* A forward range is an input range that also defines:
*
* $(UL
* $(LI save)
* )
*
* Params:
* R = The type to be tested.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) is a forward range,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL isInputRange).
*/
template isForwardRange(R)
{
static if (is(ReturnType!((R r) => r.save()) U))
{
enum bool isForwardRange = isInputRange!R && is(U == R);
}
else
{
enum bool isForwardRange = false;
}
}
///
@nogc nothrow pure @safe unittest
{
static struct Range
{
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
}
static assert(isForwardRange!Range);
static assert(isForwardRange!(int[]));
static assert(!isForwardRange!(void[]));
}
@nogc nothrow pure @safe unittest
{
static struct Range1
{
}
static struct Range2
{
mixin InputRangeStub;
Range1 save() @nogc nothrow pure @safe
{
return Range1();
}
}
static assert(!isForwardRange!Range2);
static struct Range3
{
mixin InputRangeStub;
const(typeof(this)) save() const @nogc nothrow pure @safe
{
return this;
}
}
static assert(!isForwardRange!Range3);
}
/**
* Determines whether $(D_PARAM R) is a bidirectional range.
*
* A bidirectional range is a forward range that also defines:
*
* $(UL
* $(LI back)
* $(LI popBack)
* )
*
* Params:
* R = The type to be tested.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) is a bidirectional range,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL isForwardRange).
*/
template isBidirectionalRange(R)
{
static if (is(ReturnType!((R r) => r.back()) U)
&& is(typeof(R.popBack())))
{
enum bool isBidirectionalRange = isForwardRange!R
&& is(U == ReturnType!((R r) => r.front()));
}
else
{
enum bool isBidirectionalRange = isDynamicArrayRange!R;
}
}
///
@nogc nothrow pure @safe unittest
{
static struct Range
{
void popFront() @nogc nothrow pure @safe
{
}
void popBack() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property int back() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
Range save() @nogc nothrow pure @safe
{
return this;
}
}
static assert(isBidirectionalRange!Range);
static assert(isBidirectionalRange!(int[]));
static assert(!isBidirectionalRange!(void[]));
}
@nogc nothrow pure @safe unittest
{
static struct Range(T, U)
{
void popFront() @nogc nothrow pure @safe
{
}
void popBack() @nogc nothrow pure @safe
{
}
@property T front() @nogc nothrow pure @safe
{
return T.init;
}
@property U back() @nogc nothrow pure @safe
{
return U.init;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
Range save() @nogc nothrow pure @safe
{
return this;
}
}
static assert(!isBidirectionalRange!(Range!(int, uint)));
static assert(!isBidirectionalRange!(Range!(int, const int)));
}
/**
* Determines whether $(D_PARAM R) is a random-access range.
*
* A random-access range is a range that allows random access to its
* elements by index using $(D_INLINECODE [])-operator (defined with
* $(D_INLINECODE opIndex())). Further a random access range should
* have a length or be infinite.
*
* Params:
* R = The type to be tested.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) is a random-access range,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL isInfinite),
* $(D_PSYMBOL hasLength).
*
* Note: This definition differs from `std.range.primitives.isRandomAccessRange`
* in the D standard library in that it does not also require $(D_PARAM R) to
* be a forward range and a bidirectional range. Those properties may be tested
* separately with $(D_PSYMBOL isForwardRange) and
* $(D_PSYMBOL isBidirectionalRange).
*/
template isRandomAccessRange(R)
{
static if (is(ReturnType!((R r) => r.opIndex(size_t.init)) U))
{
enum bool isRandomAccessRange = isInputRange!R
&& (hasLength!R || isInfinite!R)
&& is(U == ReturnType!((R r) => r.front()));
}
else
{
enum bool isRandomAccessRange = isDynamicArrayRange!R;
}
}
///
@nogc nothrow pure @safe unittest
{
static struct A
{
void popFront() @nogc nothrow pure @safe
{
}
void popBack() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property int back() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{
return 0;
}
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(isRandomAccessRange!A);
static assert(isRandomAccessRange!(int[]));
static assert(!isRandomAccessRange!(void[]));
static struct B
{
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
enum bool empty = false;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{
return 0;
}
}
static assert(isRandomAccessRange!B);
}
@nogc nothrow pure @safe unittest
{
static struct Range1
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos) @nogc nothrow pure @safe
{
return 0;
}
}
static assert(!isRandomAccessRange!Range1);
static struct Range2(Args...)
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(Args) @nogc nothrow pure @safe
{
return 0;
}
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(isRandomAccessRange!(Range2!size_t));
static assert(!isRandomAccessRange!(Range2!()));
static assert(!isRandomAccessRange!(Range2!(size_t, size_t)));
static struct Range3
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1, const size_t pos2 = 0)
@nogc nothrow pure @safe
{
return 0;
}
size_t length() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(isRandomAccessRange!Range3);
static struct Range4
{
mixin InputRangeStub;
mixin BidirectionalRangeStub;
typeof(this) save() @nogc nothrow pure @safe
{
return this;
}
int opIndex(const size_t pos1) @nogc nothrow pure @safe
{
return 0;
}
size_t opDollar() const @nogc nothrow pure @safe
{
return 0;
}
}
static assert(!isRandomAccessRange!Range4);
}
/**
* Puts $(D_PARAM e) into the $(D_PARAM range).
*
* $(D_PSYMBOL R) should be an output range for $(D_PARAM E).
*
* $(D_PARAM range) is advanced after putting an element into it if all of the
* following conditions are met:
*
* $(OL
* $(LI $(D_PSYMBOL R) is an input range)
* $(LI $(D_PSYMBOL R) doesn't define a `put`-method)
* $(LI $(D_PARAM e) can be assigned to $(D_INLINECODE range.front))
* )
*
* Params:
* R = Target range type.
* E = Source element type.
* range = Target range.
* e = Source element.
*
* See_Also: $(D_PSYMBOL isOutputRange).
*/
void put(R, E)(ref R range, auto ref E e)
{
static if (__traits(hasMember, R, "put")
&& is(typeof((R r, E e) => r.put(e))))
{
range.put(e);
}
else static if (isInputRange!R
&& is(typeof((R r, E e) => r.front = e)))
{
range.front = e;
range.popFront();
}
else static if (is(typeof((R r, E e) => r(e))))
{
range(e);
}
else static if (isInputRange!E)
{
for (; !e.empty; e.popFront())
{
put(range, e.front);
}
}
else
{
static assert(false, R.stringof ~ " is not an output range for "
~ E.stringof);
}
}
///
@nogc nothrow pure @safe unittest
{
int[2] actual;
auto slice = actual[];
put(slice, 2);
assert(actual == [2, 0]);
}
///
@nogc nothrow pure @safe unittest
{
static struct Put
{
int e;
void put(int e)
{
this.e = e;
}
}
Put p;
put(p, 2);
assert(p.e == 2);
}
///
@nogc nothrow pure @safe unittest
{
static struct OpCall
{
int e;
void opCall(int e)
{
this.e = e;
}
}
OpCall oc;
put(oc, 2);
assert(oc.e == 2);
}
///
@nogc nothrow pure @safe unittest
{
int[2] actual;
int[2] expected = [2, 3];
auto slice = actual[];
put(slice, expected[]);
assert(actual == expected);
}
/**
* Determines whether $(D_PARAM R) is an output range for the elemens of type
* $(D_PARAM E).
*
* If $(D_PARAM R) is an output range for the elements of type $(D_PARAM E)
* if an element `e` of type $(D_PARAM E) can be put into the range instance
* `r` in one of the following ways:
*
* $(TABLE
* $(TR
* $(TH Code)
* $(TH Scenario)
* )
* $(TR
* $(TD r.put(e))
* $(TD $(D_PARAM R) defines `put` for $(D_PARAM E).)
* )
* $(TR
* $(TD r.front = e)
* $(TD $(D_PARAM R) is an input range, whose element type is
* $(D_PARAM E) and `front` is an lvalue.)
* )
* $(TR
* $(TD r(e))
* $(TD $(D_PARAM R) defines `opCall` for $(D_PARAM E).)
* )
* $(TR
* $(TD for (; !e.empty; e.popFront()) r.put(e.front) $(BR)
* for (; !e.empty; e.popFront(), r.popFront())
* r.front = e.front $(BR)
* for (; !e.empty; e.popFront()) r(e.front)
* )
* $(TD $(D_PARAM E) is input range, whose elements can be put into
* $(D_PARAM R) according to the rules described above in this table.
* )
* )
* )
*
* Params:
* R = The type to be tested.
* E = Element type should be tested for.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) is an output range for the
* elements of the type $(D_PARAM E), $(D_KEYWORD false) otherwise.
*/
enum bool isOutputRange(R, E) = is(typeof((ref R r, ref E e) => put(r, e)));
///
@nogc nothrow pure @safe unittest
{
static struct R1
{
void put(int) @nogc nothrow pure @safe
{
}
}
static assert(isOutputRange!(R1, int));
static struct R2
{
int value;
void popFront() @nogc nothrow pure @safe
{
}
ref int front() @nogc nothrow pure @safe
{
return value;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(isOutputRange!(R2, int));
static struct R3
{
void popFront() @nogc nothrow pure @safe
{
}
int front() @nogc nothrow pure @safe
{
return 0;
}
bool empty() const @nogc nothrow pure @safe
{
return true;
}
}
static assert(!isOutputRange!(R3, int));
static struct R4
{
void opCall(int) @nogc nothrow pure @safe
{
}
}
static assert(isOutputRange!(R4, int));
static assert(isOutputRange!(R1, R3));
static assert(isOutputRange!(R2, R3));
static assert(isOutputRange!(R4, R3));
}
/**
* Determines whether $(D_PARAM R) is an infinite range.
*
* An infinite range is an input range whose `empty` member is defined as
* $(D_KEYWORD enum) which is always $(D_KEYWORD false).
*
* Params:
* R = A type.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) is an infinite range,
* $(D_KEYWORD false) otherwise.
*/
template isInfinite(R)
{
static if (isInputRange!R && is(typeof({enum bool e = R.empty;})))
{
enum bool isInfinite = R.empty == false;
}
else
{
enum bool isInfinite = false;
}
}
///
@nogc nothrow pure @safe unittest
{
static assert(!isInfinite!int);
static struct NotRange
{
enum bool empty = false;
}
static assert(!isInfinite!NotRange);
static struct InfiniteRange
{
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
enum bool empty = false;
}
static assert(isInfinite!InfiniteRange);
static struct InputRange
{
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
@property bool empty() const @nogc nothrow pure @safe
{
return false;
}
}
static assert(!isInfinite!InputRange);
}
@nogc nothrow pure @safe unittest
{
static struct StaticConstRange
{
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
static bool empty = false;
}
static assert(!isInfinite!StaticConstRange);
static struct TrueRange
{
void popFront() @nogc nothrow pure @safe
{
}
@property int front() @nogc nothrow pure @safe
{
return 0;
}
static const bool empty = true;
}
static assert(!isInfinite!TrueRange);
}
/**
* Removes exactly $(D_PARAM count) first elements from the input range
* $(D_PARAM range).
*
* $(D_PARAM R) must have length or be infinite.
*
* Params:
* R = Range type.
* range = Some input range.
* count = Number of elements to remove.
*
* See_Also: $(D_PSYMBOL popBackExactly),
* $(D_PSYMBOL popFrontN),
* $(D_PSYMBOL isInputRange),
* $(D_PSYMBOL hasLength),
* $(D_PSYMBOL isInfinite).
*
* Precondition: If $(D_PARAM R) has length, it must be less than or equal to
* $(D_PARAM count).
*/
void popFrontExactly(R)(ref R range, size_t count)
if (isInputRange!R && (hasLength!R || isInfinite!R))
in
{
static if (hasLength!R)
{
assert(count <= range.length);
}
}
do
{
static if (hasSlicing!R)
{
range = range[count .. $];
}
else
{
while (count-- != 0)
{
range.popFront();
}
}
}
///
@nogc nothrow pure @safe unittest
{
int[5] a = [1, 2, 3, 4, 5];
auto slice = a[];
popFrontExactly(slice, 3);
assert(slice.length == 2);
assert(slice[0] == 4);
assert(slice[$ - 1] == 5);
popFrontExactly(slice, 2);
assert(slice.length == 0);
}
/**
* Removes exactly $(D_PARAM count) last elements from the bidirectional range
* $(D_PARAM range).
*
* $(D_PARAM R) must have length or be infinite.
*
* Params:
* R = Range type.
* range = Some bidirectional range.
* count = Number of elements to remove.
*
* See_Also: $(D_PSYMBOL popFrontExactly),
* $(D_PSYMBOL popBackN),
* $(D_PSYMBOL isBidirectionalRange),
* $(D_PSYMBOL hasLength),
* $(D_PSYMBOL isInfinite).
*
* Precondition: If $(D_PARAM R) has length, it must be less than or equal to
* $(D_PARAM count).
*/
void popBackExactly(R)(ref R range, size_t count)
if (isBidirectionalRange!R && (hasLength!R || isInfinite!R))
in
{
static if (hasLength!R)
{
assert(count <= range.length);
}
}
do
{
static if (hasSlicing!R)
{
range = range[0 .. $ - count];
}
else
{
while (count-- != 0)
{
range.popBack();
}
}
}
///
@nogc nothrow pure @safe unittest
{
int[5] a = [1, 2, 3, 4, 5];
auto slice = a[];
popBackExactly(slice, 3);
assert(slice.length == 2);
assert(slice[0] == 1);
assert(slice[$ - 1] == 2);
popBackExactly(slice, 2);
assert(slice.length == 0);
}
/**
* Removes maximum $(D_PARAM count) first elements from the input range
* $(D_PARAM range).
*
* Params:
* R = Range type.
* range = Some input range.
* count = Number of elements to remove.
*
* See_Also: $(D_PSYMBOL popBackN),
* $(D_PSYMBOL popFrontExactly),
* $(D_PSYMBOL isInputRange).
*/
void popFrontN(R)(ref R range, size_t count)
if (isInputRange!R)
{
static if (hasLength!R && hasSlicing!R)
{
range = range[min(count, range.length) .. $];
}
else static if (hasLength!R)
{
size_t length = min(count, range.length);
while (length--)
{
range.popFront();
}
}
else
{
while (count-- != 0 && !range.empty)
{
range.popFront();
}
}
}
///
@nogc nothrow pure @safe unittest
{
int[5] a = [1, 2, 3, 4, 5];
auto slice = a[];
popFrontN(slice, 3);
assert(slice.length == 2);
assert(slice[0] == 4);
assert(slice[$ - 1] == 5);
popFrontN(slice, 20);
assert(slice.length == 0);
}
/**
* Removes maximum $(D_PARAM count) last elements from the bidirectional range
* $(D_PARAM range).
*
* Params:
* R = Range type.
* range = Some bidirectional range.
* count = Number of elements to remove.
*
* See_Also: $(D_PSYMBOL popFrontN),
* $(D_PSYMBOL popBackExactly),
* $(D_PSYMBOL isBidirectionalRange).
*/
void popBackN(R)(ref R range, size_t count)
if (isBidirectionalRange!R)
{
static if (hasLength!R && hasSlicing!R)
{
range = range[0 .. $ - min(count, range.length)];
}
else static if (hasLength!R)
{
size_t length = min(count, range.length);
while (length--)
{
range.popBack();
}
}
else
{
while (count-- != 0 && !range.empty)
{
range.popBack();
}
}
}
///
@nogc nothrow pure @safe unittest
{
int[5] a = [1, 2, 3, 4, 5];
auto slice = a[];
popBackN(slice, 3);
assert(slice.length == 2);
assert(slice[0] == 1);
assert(slice[$ - 1] == 2);
popBackN(slice, 20);
assert(slice.length == 0);
}
@nogc nothrow pure @safe unittest
{
static struct InfiniteRange
{
private int i;
InfiniteRange save() @nogc nothrow pure @safe
{
return this;
}
void popFront() @nogc nothrow pure @safe
{
++this.i;
}
void popBack() @nogc nothrow pure @safe
{
--this.i;
}
@property int front() const @nogc nothrow pure @safe
{
return this.i;
}
@property int back() const @nogc nothrow pure @safe
{
return this.i;
}
enum bool empty = false;
}
{
InfiniteRange range;
popFrontExactly(range, 2);
assert(range.front == 2);
popFrontN(range, 2);
assert(range.front == 4);
}
{
InfiniteRange range;
popBackExactly(range, 2);
assert(range.back == -2);
popBackN(range, 2);
assert(range.back == -4);
}
}
@nogc nothrow pure @safe unittest
{
static struct Range
{
private int[5] a = [1, 2, 3, 4, 5];
private size_t begin = 0, end = 5;
Range save() @nogc nothrow pure @safe
{
return this;
}
void popFront() @nogc nothrow pure @safe
{
++this.begin;
}
void popBack() @nogc nothrow pure @safe
{
--this.end;
}
@property int front() const @nogc nothrow pure @safe
{
return this.a[this.begin];
}
@property int back() const @nogc nothrow pure @safe
{
return this.a[this.end - 1];
}
@property bool empty() const @nogc nothrow pure @safe
{
return this.begin >= this.end;
}
}
{
Range range;
popFrontN(range, 3);
assert(range.front == 4);
assert(range.back == 5);
popFrontN(range, 20);
assert(range.empty);
}
{
Range range;
popBackN(range, 3);
assert(range.front == 1);
assert(range.back == 2);
popBackN(range, 20);
assert(range.empty);
}
}
/**
* Moves the front element of an input range.
*
* The front element is left in a valid but unspecified state.
* $(D_PSYMBOL moveFront) doesn't advances the range, so `popFront` should be
* probably called after this function.
*
* Params:
* R = Type of the range.
* range = Input range.
*
* Returns: The front element of the $(D_PSYMBOL range).
*
* See_Also: $(D_PSYMBOL move).
*/
ElementType!R moveFront(R)(R range)
if (isInputRange!R)
{
static if (!hasElaborateCopyConstructor!(ElementType!R))
{
return range.front;
}
else static if (is(typeof(((ref ElementType!R e) => e)(range.front))))
{
return move(range.front);
}
else
{
static assert(false, "Front element cannot be moved");
}
}
///
@nogc nothrow pure @safe unittest
{
// Has elements without a postblit constructor.
int[2] a = 5;
assert(moveFront(a[]) == 5);
}
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference.
static struct R1
{
Element element;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
}
static assert(is(typeof(moveFront(R1()))));
// Returns elements with a postblit constructor by value. moveFront fails.
static struct R2
{
enum bool empty = false;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
}
static assert(!is(typeof(moveFront(R2()))));
}
/**
* Moves the back element of a bidirectional range.
*
* The back element is left in a valid but unspecified state.
* $(D_PSYMBOL moveBack) doesn't advances the range, so `popBack` should be
* probably called after this function.
*
* Params:
* R = Type of the range.
* range = Bidirectional range.
*
* Returns: The back element of the $(D_PSYMBOL range).
*
* See_Also: $(D_PSYMBOL move).
*/
ElementType!R moveBack(R)(R range)
if (isBidirectionalRange!R)
{
static if (!hasElaborateCopyConstructor!(ElementType!R))
{
return range.back;
}
else static if (is(typeof(((ref ElementType!R e) => e)(range.back))))
{
return move(range.back);
}
else
{
static assert(false, "Back element cannot be moved");
}
}
///
@nogc nothrow pure @safe unittest
{
// Has elements without a postblit constructor.
int[2] a = 5;
assert(moveBack(a[]) == 5);
}
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference.
static struct R1
{
Element element;
enum bool empty = false;
ref Element back() @nogc nothrow pure @safe
{
return element;
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R1 save() @nogc nothrow pure @safe
{
return this;
}
}
static assert(is(typeof(moveBack(R1()))));
// Returns elements with a postblit constructor by value. moveBack fails.
static struct R2
{
enum bool empty = false;
Element back() @nogc nothrow pure @safe
{
return Element();
}
alias front = back;
void popBack() @nogc nothrow pure @safe
{
}
alias popFront = popBack;
R2 save() @nogc nothrow pure @safe
{
return this;
}
}
static assert(!is(typeof(moveBack(R2()))));
}
/**
* Moves the element at the position $(D_PARAM n) out of the range.
*
* The moved element is left in a valid but unspecified state.
*
* Params:
* R = Range type.
* range = Random-access range.
* n = Element position.
*
* Returns: The element at the position $(D_PARAM n).
*
* See_Also: $(D_PSYMBOL move).
*/
ElementType!R moveAt(R)(R range, size_t n)
if (isRandomAccessRange!R)
{
static if (!hasElaborateCopyConstructor!(ElementType!R))
{
return range[n];
}
else static if (is(typeof(((ref ElementType!R e) => e)(range[0]))))
{
return move(range[n]);
}
else
{
static assert(false, "Random element cannot be moved");
}
}
///
@nogc nothrow pure @safe unittest
{
// Has elements without a postblit constructor.
int[3] a = 5;
assert(moveAt(a[], 1) == 5);
}
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
assert(false);
}
}
// Returns its elements by reference.
static struct R1
{
Element element;
enum bool empty = false;
ref Element front() @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
ref Element opIndex(size_t)
{
return element;
}
}
static assert(is(typeof(moveAt(R1(), 0))));
// Returns elements with a postblit constructor by value. moveAt fails.
static struct R2
{
enum bool empty = false;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
Element opIndex() @nogc nothrow pure @safe
{
return Element();
}
}
static assert(!is(typeof(moveAt(R2(), 0))));
}
/**
* Determines whether $(D_PSYMBOL R) is a range containing mobile elements,
* i.e. elements that can be moved out of the range.
*
* Having mobile elements means for an input range to support
* $(D_PSYMBOL moveFront), for a bidirectional range - both,
* $(D_PSYMBOL moveFront) and $(D_PSYMBOL moveBack), for a random-access
* range - $(D_PSYMBOL moveFront) and $(D_PSYMBOL moveAt).
*
* Params:
* R = Range type.
*
* Returns: $(D_KEYWORD true) if $(D_PSYMBOL R) has mobile elements,
* $(D_KEYWORD false) otherwise.
*
* See_Also: $(D_PSYMBOL moveFront), $(D_PSYMBOL moveBack),
* $(D_PSYMBOL moveAt).
*/
template hasMobileElements(R)
{
static if (isRandomAccessRange!R)
{
enum bool hasMobileElements = is(typeof((R r) => moveFront(r)))
&& is(typeof((R r) => moveAt(r, 0)));
}
else static if (isBidirectionalRange!R)
{
enum bool hasMobileElements = is(typeof((R r) => moveFront(r)))
&& is(typeof((R r) => moveBack(r)));
}
else
{
enum bool hasMobileElements = is(typeof((R r) => moveFront(r)));
}
}
///
@nogc nothrow pure @safe unittest
{
static assert(hasMobileElements!(int[]));
}
///
@nogc nothrow pure @safe unittest
{
static struct Element
{
this(this) @nogc nothrow pure @safe
{
}
}
static struct R1
{
enum bool empty = false;
Element front() @nogc nothrow pure @safe
{
return Element();
}
void popFront() @nogc nothrow pure @safe
{
}
}
static assert(!hasMobileElements!R1);
static struct R2
{
enum bool empty = false;
private Element front_;
ref Element front() @nogc nothrow pure @safe
{
return front_;
}
void popFront() @nogc nothrow pure @safe
{
}
}
static assert(hasMobileElements!R2);
}
/**
* Determines whether $(D_PARAM R) provides access to its elements by
* reference.
*
* Params:
* R = Range type.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) has lvalue elements,
* $(D_KEYWORD false) otherwise.
*/
template hasLvalueElements(R)
{
private alias refDg = (ref ElementType!R e) => e;
static if (isRandomAccessRange!R)
{
enum bool hasLvalueElements = is(typeof(refDg(R.init.front)))
&& is(typeof(refDg(R.init[0])));
}
else static if (isBidirectionalRange!R)
{
enum bool hasLvalueElements = is(typeof(refDg(R.init.front)))
&& is(typeof(refDg(R.init.back)));
}
else
{
enum bool hasLvalueElements = is(typeof(refDg(R.init.front)));
}
}
///
@nogc nothrow pure @safe unittest
{
static struct R1
{
enum bool empty = false;
int front() @nogc nothrow pure @safe
{
return 5;
}
void popFront() @nogc nothrow pure @safe
{
}
}
static assert(!hasLvalueElements!R1);
static struct R2
{
int element;
enum bool empty = false;
ref const(int) front() const @nogc nothrow pure @safe
{
return element;
}
void popFront() @nogc nothrow pure @safe
{
}
ref const(int) opIndex(size_t) const @nogc nothrow pure @safe
{
return element;
}
}
static assert(hasLvalueElements!R2);
}
/**
* Determines whether the elements of $(D_PARAM R) are assignable.
*
* Params:
* R = Range type.
*
* Returns: $(D_KEYWORD true) if the elements of $(D_PARAM R) are assignable
* $(D_KEYWORD false) otherwise.
*/
template hasAssignableElements(R)
{
static if (isRandomAccessRange!R)
{
enum bool assignable = is(typeof({R.init.front = R.init.front;}))
&& is(typeof({R.init[0] = R.init[0];}));
}
else static if (isBidirectionalRange!R)
{
enum bool assignable = is(typeof({R.init.front = R.init.front;}))
&& is(typeof({R.init.back = R.init.back;}));
}
else
{
enum bool assignable = is(typeof({R.init.front = R.init.front;}));
}
enum bool hasAssignableElements = assignable;
}
///
@nogc nothrow pure @safe unittest
{
static struct R1
{
int element;
enum bool empty = false;
ref int front() @nogc nothrow pure @safe
{
return element;
}
alias back = front;
void popFront() @nogc nothrow pure @safe
{
}
alias popBack = popFront;
R1 save() const @nogc nothrow pure @safe
{
return this;
}
}
static assert(hasAssignableElements!R1);
static struct R2
{
int element;
enum bool empty = false;
ref const(int) front() const @nogc nothrow pure @safe
{
return element;
}
alias back = front;
void popFront() @nogc nothrow pure @safe
{
}
alias popBack = popFront;
R2 save() const @nogc nothrow pure @safe
{
return this;
}
}
static assert(!hasAssignableElements!R2);
}
/**
* Determines whether the elements of $(D_PSYMBOL R) can be swapped with
* $(D_PSYMBOL swap).
*
* Params:
* R = Range type.
*
* Returns: $(D_KEYWORD true) if $(D_PARAM R) has swappable elements,
* $(D_KEYWORD false) otherwise.
*/
template hasSwappableElements(R)
{
static if (isRandomAccessRange!R)
{
enum bool hasSwappableElements = is(typeof(swap(R.init.front, R.init.front)))
&& is(typeof(swap(R.init[0], R.init[0])));
}
else static if (isBidirectionalRange!R)
{
enum bool hasSwappableElements = is(typeof(swap(R.init.front, R.init.front)))
&& is(typeof(swap(R.init.back, R.init.back)));
}
else
{
enum bool hasSwappableElements = is(typeof(swap(R.init.front, R.init.front)));
}
}
///
@nogc nothrow pure @safe unittest
{
static struct R1
{
int element;
enum bool empty = false;
ref int front() @nogc nothrow pure @safe
{
return element;
}
alias back = front;
void popFront() @nogc nothrow pure @safe
{
}
alias popBack = popFront;
R1 save() const @nogc nothrow pure @safe
{
return this;
}
}
static assert(hasSwappableElements!R1);
static struct R2
{
int element;
enum bool empty = false;
int front() const @nogc nothrow pure @safe
{
return element;
}
alias back = front;
void popFront() @nogc nothrow pure @safe
{
}
alias popBack = popFront;
R2 save() const @nogc nothrow pure @safe
{
return this;
}
}
static assert(!hasSwappableElements!R2);
}