tanya/source/tanya/algorithm/iteration.d

840 lines
20 KiB
D

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Iteration algorithms.
*
* These algorithms wrap other ranges and modify the way, how the original
* range is iterated, or the order in which its elements are accessed.
*
* All algorithms in this module are lazy, they request the next element of the
* original range on demand.
*
* Copyright: Eugene Wissner 2018-2020.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/algorithm/iteration.d,
* tanya/algorithm/iteration.d)
*/
module tanya.algorithm.iteration;
import std.algorithm.comparison;
import tanya.memory.lifetime;
import tanya.meta.trait;
import tanya.meta.transform;
import tanya.range;
import tanya.typecons;
// These predicates are used to help preserve `const` and `inout` for
// ranges built on other ranges.
private enum hasInoutFront(T) = is(typeof((inout ref T a) => a.front));
private enum hasInoutBack(T) = is(typeof((inout ref T a) => a.back));
private enum hasInoutIndex(T) = is(typeof((inout ref T a, size_t i) => a[i]));
private enum hasConstEmpty(T) = is(typeof(((const T* a) => (*a).empty)(null)) : bool);
private enum hasConstLength(T) = is(typeof(((const T* a) => (*a).length)(null)) : size_t);
private enum hasConstSave(T) = is(typeof(((const T* a) => (*a).save())(null)) : T);
private enum hasConstSlice(T) = is(typeof(((const T* a) => (*a)[0 .. $])(null)) : T);
@nogc nothrow pure @safe unittest
{
// Test the definitions.
static assert(hasInoutFront!string);
static assert(hasInoutBack!string);
static assert(hasInoutIndex!string);
static assert(hasConstEmpty!string);
static assert(hasConstLength!string);
static assert(hasConstSave!string);
static assert(hasConstSlice!string);
// Test that Take propagates const/inout correctly.
alias TakeString = Take!(string, false);
static assert(hasInoutFront!TakeString);
static assert(hasInoutBack!TakeString);
static assert(hasInoutIndex!TakeString);
static assert(hasConstEmpty!TakeString);
static assert(hasConstLength!TakeString);
static assert(hasConstSave!TakeString);
static assert(hasConstSlice!TakeString);
// Test that Retro propagates const/inout correctly.
alias RetroString = Retro!string;
static assert(hasInoutFront!RetroString);
static assert(hasInoutBack!RetroString);
static assert(hasInoutIndex!RetroString);
static assert(hasConstEmpty!RetroString);
static assert(hasConstLength!RetroString);
static assert(hasConstSave!RetroString);
static assert(hasConstSlice!RetroString);
}
private struct Take(R, bool exactly)
{
private R source;
size_t length_;
@disable this();
private this(R source, size_t length)
{
this.source = source;
static if (!exactly && hasLength!R)
{
this.length_ = min(source.length, length);
}
else
{
this.length_ = length;
}
}
mixin(`@property auto ref front() ` ~ (hasInoutFront!R ? `inout ` : ``) ~
`in (!empty)
{
return this.source.front;
}`);
void popFront()
in (!empty)
{
this.source.popFront();
--this.length_;
}
mixin(`@property bool empty() ` ~ (exactly || isInfinite!R || hasConstEmpty!R ? `const ` : ``) ~
`{
static if (exactly || isInfinite!R)
{
return length == 0;
}
else
{
return this.length_ == 0 || this.source.empty;
}
}`);
static if (exactly || hasLength!R)
{
@property size_t length() const
{
return this.length_;
}
}
static if (hasAssignableElements!R)
{
@property void front(ref ElementType!R value)
in (!empty)
{
this.source.front = value;
}
@property void front(ElementType!R value)
in (!empty)
{
this.source.front = move(value);
}
}
static if (isForwardRange!R)
{
mixin(`typeof(this) save() ` ~ (hasConstSave!R ? `const ` : ``) ~
`{
return typeof(this)(this.source.save(), length);
}`);
}
static if (isRandomAccessRange!R)
{
mixin(`@property auto ref back() ` ~ (hasInoutBack!R ? `inout ` : ``) ~
`in (!empty)
{
return this.source[this.length - 1];
}`);
void popBack()
in (!empty)
{
--this.length_;
}
mixin(`auto ref opIndex(size_t i) ` ~ (hasInoutIndex!R ? `inout ` : ``) ~
`in (i < length)
{
return this.source[i];
}`);
static if (hasAssignableElements!R)
{
@property void back(ref ElementType!R value)
in (!empty)
{
this.source[length - 1] = value;
}
@property void back(ElementType!R value)
in (!empty)
{
this.source[length - 1] = move(value);
}
void opIndexAssign(ref ElementType!R value, size_t i)
in (i < length)
{
this.source[i] = value;
}
void opIndexAssign(ElementType!R value, size_t i)
in (i < length)
{
this.source[i] = move(value);
}
}
}
static if (!exactly && hasSlicing!R)
{
static if (is(typeof(length))) alias opDollar = length;
mixin(`auto opSlice(size_t i, size_t j) ` ~ (hasConstSlice!R ? `const ` : ``) ~
`in (i <= j)
in (j <= length)
{
return typeof(this)(this.source[i .. j], length);
}`);
}
version (unittest) static assert(isInputRange!Take);
}
/**
* Takes $(D_PARAM n) elements from $(D_PARAM range).
*
* If $(D_PARAM range) doesn't have $(D_PARAM n) elements, the resulting range
* spans all elements of $(D_PARAM range).
*
* $(D_PSYMBOL take) is particulary useful with infinite ranges. You can take
` $(B n) elements from such range and pass the result to an algorithm which
* expects a finit range.
*
* Params:
* R = Type of the adapted range.
* range = The range to take the elements from.
* n = The number of elements to take.
*
* Returns: A range containing maximum $(D_PARAM n) first elements of
* $(D_PARAM range).
*
* See_Also: $(D_PSYMBOL takeExactly).
*/
auto take(R)(R range, size_t n)
if (isInputRange!R)
{
static if (hasSlicing!R && hasLength!R)
{
if (range.length <= n)
return range;
else
return range[0 .. n];
}
// Special case: take(take(...), n)
else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
{
if (n > range.length_)
n = range.length_;
static if (exact)
// `take(takeExactly(r, n0), n)` is rewritten `takeExactly(r, min(n0, n))`.
return Take!(RRange, true)(range.source, n);
else
// `take(take(r, n0), n)` is rewritten `take(r, min(n0, n))`.
return Take!(RRange, false)(range.source, n);
}
else static if (isInfinite!R)
{
// If the range is infinite then `take` is the same as `takeExactly`.
return Take!(R, true)(range, n);
}
else
{
return Take!(R, false)(range, n);
}
}
///
@nogc nothrow pure @safe unittest
{
static struct InfiniteRange
{
private size_t front_ = 1;
enum bool empty = false;
@property size_t front() @nogc nothrow pure @safe
{
return this.front_;
}
@property void front(size_t i) @nogc nothrow pure @safe
{
this.front_ = i;
}
void popFront() @nogc nothrow pure @safe
{
++this.front_;
}
size_t opIndex(size_t i) @nogc nothrow pure @safe
{
return this.front_ + i;
}
void opIndexAssign(size_t value, size_t i) @nogc nothrow pure @safe
{
this.front = i + value;
}
InfiniteRange save() @nogc nothrow pure @safe
{
return this;
}
}
auto t = InfiniteRange().take(3);
assert(t.length == 3);
assert(t.front == 1);
assert(t.back == 3);
t.popFront();
assert(t.front == 2);
assert(t.back == 3);
t.popBack();
assert(t.front == 2);
assert(t.back == 2);
t.popFront();
assert(t.empty);
}
/**
* Takes exactly $(D_PARAM n) elements from $(D_PARAM range).
*
* $(D_PARAM range) must have at least $(D_PARAM n) elements.
*
* $(D_PSYMBOL takeExactly) is particulary useful with infinite ranges. You can
` take $(B n) elements from such range and pass the result to an algorithm
* which expects a finit range.
*
* Params:
* R = Type of the adapted range.
* range = The range to take the elements from.
* n = The number of elements to take.
*
* Returns: A range containing $(D_PARAM n) first elements of $(D_PARAM range).
*
* See_Also: $(D_PSYMBOL take).
*/
auto takeExactly(R)(R range, size_t n)
if (isInputRange!R)
{
static if (hasSlicing!R)
{
return range[0 .. n];
}
// Special case: takeExactly(take(range, ...), n) is takeExactly(range, n)
else static if (is(Range == Take!(RRange, exact), RRange, bool exact))
{
assert(n <= range.length_);
return Take!(RRange, true)(range.source, n);
}
else
{
return Take!(R, true)(range, n);
}
}
///
@nogc nothrow pure @safe unittest
{
static struct InfiniteRange
{
private size_t front_ = 1;
enum bool empty = false;
@property size_t front() @nogc nothrow pure @safe
{
return this.front_;
}
@property void front(size_t i) @nogc nothrow pure @safe
{
this.front_ = i;
}
void popFront() @nogc nothrow pure @safe
{
++this.front_;
}
size_t opIndex(size_t i) @nogc nothrow pure @safe
{
return this.front_ + i;
}
void opIndexAssign(size_t value, size_t i) @nogc nothrow pure @safe
{
this.front = i + value;
}
InfiniteRange save() @nogc nothrow pure @safe
{
return this;
}
}
auto t = InfiniteRange().takeExactly(3);
assert(t.length == 3);
assert(t.front == 1);
assert(t.back == 3);
t.popFront();
assert(t.front == 2);
assert(t.back == 3);
t.popBack();
assert(t.front == 2);
assert(t.back == 2);
t.popFront();
assert(t.empty);
}
// Reverse-access-order range returned by `retro`.
private struct Retro(Range)
{
Range source;
@disable this();
private this(Range source) @safe
{
this.source = source;
}
mixin(`Retro save() ` ~ (hasConstSave!Range ? `const ` : ``) ~
`{
return Retro(source.save());
}`);
mixin(`@property auto ref front() ` ~ (hasInoutBack!Range ? `inout ` : ``) ~
`in (!empty)
{
return this.source.back;
}`);
void popFront()
in (!empty)
{
this.source.popBack();
}
mixin(`@property auto ref back() ` ~ (hasInoutFront!Range ? `inout ` : ``) ~
`in (!empty)
{
return this.source.front;
}`);
void popBack()
in (!empty)
{
this.source.popFront();
}
mixin(`@property bool empty() ` ~ (hasConstEmpty!Range ? `const ` : ``) ~
`{
return this.source.empty;
}`);
static if (hasLength!Range)
{
mixin(`@property size_t length() ` ~ (hasConstLength!Range ? `const ` : ``) ~
`{
return this.source.length;
}`);
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
mixin(`auto ref opIndex(size_t i) ` ~ (hasInoutIndex!Range ? `inout ` : ``) ~
`in (i < length)
{
return this.source[$ - ++i];
}`);
}
static if (hasLength!Range && hasSlicing!Range)
{
alias opDollar = length;
mixin(`auto opSlice(size_t i, size_t j) ` ~ (hasConstSlice!Range ? `const ` : ``) ~
`in (i <= j)
in (j <= length)
{
return typeof(this)(this.source[$-j .. $-i]);
}`);
}
static if (hasAssignableElements!Range)
{
@property void front(ref ElementType!Range value)
in (!empty)
{
this.source.back = value;
}
@property void front(ElementType!Range value)
in (!empty)
{
this.source.back = move(value);
}
@property void back(ref ElementType!Range value)
in (!empty)
{
this.source.front = value;
}
@property void back(ElementType!Range value)
in (!empty)
{
this.source.front = move(value);
}
static if (isRandomAccessRange!Range && hasLength!Range)
{
void opIndexAssign(ref ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = value;
}
void opIndexAssign(ElementType!Range value, size_t i)
in (i < length)
{
this.source[$ - ++i] = move(value);
}
}
}
version (unittest) static assert(isBidirectionalRange!Retro);
}
/**
* Iterates a bidirectional range backwards.
*
* If $(D_PARAM Range) is a random-access range as well, the resulting range
* is a random-access range too.
*
* Params:
* Range = Bidirectional range type.
* range = Bidirectional range.
*
* Returns: Bidirectional range with the elements order reversed.
*/
auto retro(Range)(Range range)
if (isBidirectionalRange!Range)
{
// Special case: retro(retro(range)) is range
static if (is(Range == Retro!RRange, RRange))
return range.source;
else
return Retro!Range(range);
}
///
@nogc nothrow pure @safe unittest
{
const int[3] given = [1, 2, 3];
const int[3] expected = [3, 2, 1];
auto actual = retro(given[]);
assert(actual.length == expected.length);
assert(!actual.empty);
assert(equal(actual, expected[]));
}
private struct SingletonByValue(E)
{
private Option!E element;
@disable this();
private this(U)(ref U element)
if (is(U == E))
{
this.element = move(element);
}
private this(U)(ref U element)
if (is(Unqual!U == Option!(Unqual!E)) || is(Unqual!U == Option!(const E)))
{
if (!element.isNothing)
{
this.element = element.get;
}
}
@property ref inout(E) front() inout
in (!empty)
{
return this.element.get;
}
alias back = front;
void popFront()
in (!empty)
{
this.element.reset();
}
alias popBack = popFront;
@property bool empty() const
{
return this.element.isNothing;
}
@property size_t length() const
{
return !this.element.isNothing;
}
auto save()
{
return SingletonByValue!E(this.element);
}
auto save() const
{
return SingletonByValue!(const E)(this.element);
}
ref inout(E) opIndex(size_t i) inout
in (!empty)
in (i == 0)
{
return this.element.get;
}
}
private struct SingletonByRef(E)
{
private E* element;
@disable this();
private this(return ref E element) @trusted
{
this.element = &element;
}
@property ref inout(E) front() inout return
in (!empty)
{
return *this.element;
}
alias back = front;
void popFront()
in (!empty)
{
this.element = null;
}
alias popBack = popFront;
@property bool empty() const
{
return this.element is null;
}
@property size_t length() const
{
return this.element !is null;
}
auto save() return
{
return typeof(this)(*this.element);
}
auto save() const return
{
return SingletonByRef!(const E)(*this.element);
}
ref inout(E) opIndex(size_t i) inout return
in (!empty)
in (i == 0)
{
return *this.element;
}
}
/**
* Creates a bidirectional and random-access range with the single element
* $(D_PARAM element).
*
* If $(D_PARAM element) is passed by value the resulting range stores it
* internally. If $(D_PARAM element) is passed by reference, the resulting
* range keeps only a pointer to the element.
*
* Params:
* E = Element type.
* element = Element.
*
* Returns: A range with one element.
*/
auto singleton(E)(return E element)
if (isMutable!E)
{
return SingletonByValue!E(element);
}
/// ditto
auto singleton(E)(return ref E element)
{
return SingletonByRef!E(element);
}
///
@nogc nothrow pure @safe unittest
{
auto singleChar = singleton('a');
assert(singleChar.length == 1);
assert(singleChar.front == 'a');
singleChar.popFront();
assert(singleChar.empty);
}
/**
* Accumulates all elements of a range using a function.
*
* $(D_PSYMBOL foldl) takes a function, an input range and the initial value.
* The function takes this initial value and the first element of the range (in
* this order), puts them together and returns the result. The return
* type of the function should be the same as the type of the initial value.
* This is than repeated for all the remaining elements of the range, whereby
* the value returned by the passed function is used at the place of the
* initial value.
*
* $(D_PSYMBOL foldl) accumulates from left to right.
*
* Params:
* F = Callable accepting the accumulator and a range element.
*/
template foldl(F...)
if (F.length == 1)
{
/**
* Params:
* R = Input range type.
* T = Type of the accumulated value.
* range = Input range.
* init = Initial value.
*
* Returns: Accumulated value.
*/
auto foldl(R, T)(R range, auto ref T init)
if (isInputRange!R && !isInfinite!R)
{
if (range.empty)
{
return init;
}
else
{
auto acc = F[0](init, getAndPopFront(range));
return foldl(range, acc);
}
}
}
///
@nogc nothrow pure @safe unittest
{
int[3] range = [1, 2, 3];
const actual = foldl!((acc, x) => acc + x)(range[], 0);
assert(actual == 6);
}
/**
* Accumulates all elements of a range using a function.
*
* $(D_PSYMBOL foldr) takes a function, an input range and the initial value.
* The function takes this initial value and the first element of the range (in
* this order), puts them together and returns the result. The return
* type of the function should be the same as the type of the initial value.
* This is than repeated for all the remaining elements of the range, whereby
* the value returned by the passed function is used at the place of the
* initial value.
*
* $(D_PSYMBOL foldr) accumulates from right to left.
*
* Params:
* F = Callable accepting the accumulator and a range element.
*/
template foldr(F...)
if (F.length == 1)
{
/**
* Params:
* R = Bidirectional range type.
* T = Type of the accumulated value.
* range = Bidirectional range.
* init = Initial value.
*
* Returns: Accumulated value.
*/
auto foldr(R, T)(R range, auto ref T init)
if (isBidirectionalRange!R)
{
if (range.empty)
{
return init;
}
else
{
auto acc = F[0](init, getAndPopBack(range));
return foldr(range, acc);
}
}
}
///
@nogc nothrow pure @safe unittest
{
int[3] range = [1, 2, 3];
int[3] output;
const int[3] expected = [3, 2, 1];
alias f = (acc, x) {
acc.front = x;
acc.popFront;
return acc;
};
const actual = foldr!f(range[], output[]);
assert(output[] == expected[]);
}