305 lines
7.6 KiB
D

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Copyright: Eugene Wissner 2017.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/math/fp.d,
* tanya/math/fp.d)
*/
module tanya.math.fp;
import tanya.math.nbtheory;
/**
* Floating-point number precisions according to IEEE-754.
*/
enum IEEEPrecision : ubyte
{
/// Single precision: 64-bit.
single = 4,
/// Single precision: 64-bit.
double_ = 8,
/// Extended precision: 80-bit.
extended = 10,
}
/**
* Tests the precision of floating-point type $(D_PARAM F).
*
* For $(D_KEYWORD float), $(D_PSYMBOL ieeePrecision) always evaluates to
* $(D_INLINECODE IEEEPrecision.single); for $(D_KEYWORD double) - to
* $(D_INLINECODE IEEEPrecision.double). It returns different values only
* for $(D_KEYWORD real), since $(D_KEYWORD real) is a platform-dependent type.
*
* If $(D_PARAM F) is a $(D_KEYWORD real) and the target platform isn't
* currently supported, static assertion error will be raised (you can use
* $(D_INLINECODE is(typeof(ieeePrecision!F))) for testing the platform support
* without a compilation error).
*
* Params:
* F = Type to be tested.
*
* Returns: Precision according to IEEE-754.
*
* See_Also: $(D_PSYMBOL IEEEPrecision).
*/
template ieeePrecision(F)
if (isFloatingPoint!F)
{
static if (F.sizeof == float.sizeof)
{
enum IEEEPrecision ieeePrecision = IEEEPrecision.single;
}
else static if (F.sizeof == double.sizeof)
{
enum IEEEPrecision ieeePrecision = IEEEPrecision.double_;
}
else version (X86)
{
enum IEEEPrecision ieeePrecision = IEEEPrecision.extended;
}
else version (X86_64)
{
enum IEEEPrecision ieeePrecision = IEEEPrecision.extended;
}
else
{
static assert(false, "Unsupported IEEE 754 floating point precision");
}
}
private union FloatBits(F)
{
F floating;
static if (ieeePrecision!F == IEEEPrecision.single)
{
uint integral;
}
else static if (ieeePrecision!F == IEEEPrecision.double_)
{
ulong integral;
}
else static if (ieeePrecision!F == IEEEPrecision.extended)
{
struct // Little-endian.
{
ulong mantissa;
ushort exp;
}
}
else
{
static assert(false, "Unsupported IEEE 754 floating point precision");
}
}
enum FloatingPointClass : ubyte
{
nan,
zero,
infinite,
subnormal,
normal,
}
FloatingPointClass classify(F)(F x)
if (isFloatingPoint!F)
{
if (x == 0)
{
return FloatingPointClass.zero;
}
FloatBits!F bits;
bits.floating = abs(x);
static if (ieeePrecision!F == IEEEPrecision.single)
{
if (bits.integral > 0x7f800000)
{
return FloatingPointClass.nan;
}
else if (bits.integral == 0x7f800000)
{
return FloatingPointClass.infinite;
}
else if (bits.integral < 0x800000)
{
return FloatingPointClass.subnormal;
}
}
else static if (ieeePrecision!F == IEEEPrecision.double_)
{
if (bits.integral > 0x7ff0000000000000)
{
return FloatingPointClass.nan;
}
else if (bits.integral == 0x7ff0000000000000)
{
return FloatingPointClass.infinite;
}
else if (bits.integral < 0x10000000000000)
{
return FloatingPointClass.subnormal;
}
}
else static if (ieeePrecision!F == IEEEPrecision.extended)
{
if (bits.exp == 0x7fff)
{
if ((bits.mantissa & 0x7fffffffffffffff) == 0)
{
return FloatingPointClass.infinite;
}
else
{
return FloatingPointClass.nan;
}
}
else if (bits.exp == 0)
{
return FloatingPointClass.subnormal;
}
else if (bits.mantissa < 0x8000000000000000) // "Unnormal".
{
return FloatingPointClass.nan;
}
}
return FloatingPointClass.normal;
}
bool isFinite(F)(F x)
if (isFloatingPoint!F)
{
FloatBits!F bits;
static if (ieeePrecision!F == IEEEPrecision.single)
{
bits.floating = x;
bits.integral &= 0x7f800000;
return bits.integral != 0x7f800000;
}
else static if (ieeePrecision!F == IEEEPrecision.double_)
{
bits.floating = x;
bits.integral &= 0x7ff0000000000000;
return bits.integral != 0x7ff0000000000000;
}
else static if (ieeePrecision!F == IEEEPrecision.extended)
{
bits.floating = abs(x);
return (bits.exp != 0x7fff) && (bits.mantissa >= 0x8000000000000000);
}
}
bool isNaN(F)(F x)
if (isFloatingPoint!F)
{
FloatBits!F bits;
bits.floating = abs(x);
static if (ieeePrecision!F == IEEEPrecision.single)
{
return bits.integral > 0x7f800000;
}
else static if (ieeePrecision!F == IEEEPrecision.double_)
{
return bits.integral > 0x7ff0000000000000;
}
else static if (ieeePrecision!F == IEEEPrecision.extended)
{
if ((bits.exp == 0x7fff && (bits.mantissa & 0x7fffffffffffffff) != 0)
|| ((bits.exp != 0) && (bits.mantissa < 0x8000000000000000)))
{
return true;
}
return false;
}
}
bool isInfinity(F)(F x)
if (isFloatingPoint!F)
{
FloatBits!F bits;
bits.floating = abs(x);
static if (ieeePrecision!F == IEEEPrecision.single)
{
return bits.integral == 0x7f800000;
}
else static if (ieeePrecision!F == IEEEPrecision.double_)
{
return bits.integral == 0x7ff0000000000000;
}
else static if (ieeePrecision!F == IEEEPrecision.extended)
{
return (bits.exp == 0x7fff)
&& ((bits.mantissa & 0x7fffffffffffffff) == 0);
}
}
bool isSubnormal(F)(F x)
if (isFloatingPoint!F)
{
FloatBits!F bits;
bits.floating = abs(x);
static if (ieeePrecision!F == IEEEPrecision.single)
{
return bits.integral < 0x800000;
}
else static if (ieeePrecision!F == IEEEPrecision.double_)
{
return bits.integral < 0x10000000000000;
}
else static if (ieeePrecision!F == IEEEPrecision.extended)
{
return bits.exp == 0;
}
}
bool isNormal(F)(F x)
if (isFloatingPoint!F)
{
static if (ieeePrecision!F == IEEEPrecision.single)
{
FloatBits!F bits;
bits.floating = x;
bits.integral &= 0x7f800000;
return bits.integral != 0 && bits.integral != 0x7f800000;
}
else static if (ieeePrecision!F == IEEEPrecision.double_)
{
FloatBits!F bits;
bits.floating = x;
bits.integral &= 0x7ff0000000000000;
return bits.integral != 0 && bits.integral != 0x7ff0000000000000;
}
else static if (ieeePrecision!F == IEEEPrecision.extended)
{
return classify(x) == FloatingPointClass.normal;
}
}
bool signBit(F)(F x)
if (isFloatingPoint!F)
{
FloatBits!F bits;
bits.floating = x;
static if (ieeePrecision!F == IEEEPrecision.single)
{
return (bits.integral & (1 << 31)) != 0;
}
else static if (ieeePrecision!F == IEEEPrecision.double_)
{
return (bits.integral & (1 << 63)) != 0;
}
else static if (ieeePrecision!F == IEEEPrecision.extended)
{
return (bits.exp & (1 << 15)) != 0;
}
}