tanya/source/tanya/math/nbtheory.d

168 lines
3.3 KiB
D

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* Number theory.
*
* Copyright: Eugene Wissner 2017-2019.
* License: $(LINK2 https://www.mozilla.org/en-US/MPL/2.0/,
* Mozilla Public License, v. 2.0).
* Authors: $(LINK2 mailto:info@caraus.de, Eugene Wissner)
* Source: $(LINK2 https://github.com/caraus-ecms/tanya/blob/master/source/tanya/math/nbtheory.d,
* tanya/math/nbtheory.d)
*/
module tanya.math.nbtheory;
import tanya.math.mp;
import tanya.meta.trait;
import tanya.meta.transform;
version (TanyaNative)
{
private extern float fabs(float) @nogc nothrow pure @safe;
private extern double fabs(double) @nogc nothrow pure @safe;
private extern real fabs(real) @nogc nothrow pure @safe;
private extern double log(double) @nogc nothrow pure @safe;
private extern float logf(float) @nogc nothrow pure @safe;
private extern real logl(real) @nogc nothrow pure @safe;
}
else
{
import core.math : fabs;
import std.math : log;
}
/**
* Calculates the absolute value of a number.
*
* Params:
* T = Argument type.
* x = Argument.
*
* Returns: Absolute value of $(D_PARAM x).
*/
Unqual!T abs(T)(T x)
if (isIntegral!T)
{
static if (isSigned!T)
{
return x >= 0 ? x : -x;
}
else
{
return x;
}
}
///
@nogc nothrow pure @safe unittest
{
int i = -1;
assert(i.abs == 1);
static assert(is(typeof(i.abs) == int));
uint u = 1;
assert(u.abs == 1);
static assert(is(typeof(u.abs) == uint));
}
/// ditto
Unqual!T abs(T)(T x)
if (isFloatingPoint!T)
{
return fabs(x);
}
///
@nogc nothrow pure @safe unittest
{
float f = -1.64;
assert(f.abs == 1.64F);
static assert(is(typeof(f.abs) == float));
double d = -1.64;
assert(d.abs == 1.64);
static assert(is(typeof(d.abs) == double));
real r = -1.64;
assert(r.abs == 1.64L);
static assert(is(typeof(r.abs) == real));
}
/// ditto
T abs(T : Integer)(const auto ref T x)
{
auto result = Integer(x, x.allocator);
result.sign = Sign.positive;
return result;
}
/// ditto
T abs(T : Integer)(T x)
{
x.sign = Sign.positive;
return x;
}
version (D_Ddoc)
{
/**
* Calculates natural logarithm of $(D_PARAM x).
*
* Params:
* T = Argument type.
* x = Argument.
*
* Returns: Natural logarithm of $(D_PARAM x).
*/
Unqual!T ln(T)(T x)
if (isFloatingPoint!T);
}
else version (TanyaNative)
{
Unqual!T ln(T)(T x) @nogc nothrow pure @safe
if (isFloatingPoint!T)
{
static if (is(Unqual!T == float))
{
return logf(x);
}
else static if (is(Unqual!T == double))
{
return log(x);
}
else
{
return logl(x);
}
}
}
else
{
Unqual!T ln(T)(T x)
if (isFloatingPoint!T)
{
return log(x);
}
}
///
@nogc nothrow pure @safe unittest
{
import tanya.math;
assert(isNaN(ln(-7.389f)));
assert(isNaN(ln(-7.389)));
assert(isNaN(ln(-7.389L)));
assert(isInfinity(ln(0.0f)));
assert(isInfinity(ln(0.0)));
assert(isInfinity(ln(0.0L)));
assert(ln(1.0f) == 0.0f);
assert(ln(1.0) == 0.0);
assert(ln(1.0L) == 0.0L);
}