Introduce monad transformer for resolvers

Now the errors in the resolvers can be handled and 3 tests throwing
errors pass now. Another test fail but it requires distinguisching
nullable and non-nullable values.
This commit is contained in:
2019-07-02 20:07:26 +02:00
parent 1017b728d9
commit 91679650b5
6 changed files with 190 additions and 143 deletions

View File

@ -1,5 +1,5 @@
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE LambdaCase #-}
-- | This module provides a representation of a @GraphQL@ Schema in addition to
-- functions for defining and manipulating Schemas.
module Data.GraphQL.Schema
@ -25,12 +25,9 @@ module Data.GraphQL.Schema
, Value(..)
) where
import Control.Applicative (Alternative(..))
import Control.Monad (MonadPlus)
import Control.Monad (MonadPlus(..))
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.State ( get
, put
)
import Control.Monad.Trans.Except (runExceptT)
import Data.Foldable ( find
, fold
)
@ -42,7 +39,7 @@ import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.Text (Text)
import qualified Data.Text as T
import Language.GraphQL.Trans
import Data.GraphQL.AST.Core
-- | A GraphQL schema.
@ -63,104 +60,93 @@ type Arguments = [Argument]
type Subs = Name -> Maybe Value
-- | Create a new 'Resolver' with the given 'Name' from the given 'Resolver's.
object :: MonadPlus m => Name -> [Resolver m] -> Resolver m
object name resolvers = objectA name $ \case
[] -> resolvers
_ -> empty
object :: MonadPlus m => Name -> ActionT m [Resolver m] -> Resolver m
object name = objectA name . const
-- | Like 'object' but also taking 'Argument's.
objectA
:: MonadPlus m
=> Name -> (Arguments -> [Resolver m]) -> Resolver m
objectA name f = Resolver name go
objectA :: MonadPlus m
=> Name -> (Arguments -> ActionT m [Resolver m]) -> Resolver m
objectA name f = Resolver name $ resolveFieldValue f resolveRight
where
go fld@(Field _ _ args flds) = withField name (resolve (f args) flds) fld
resolveRight fld@(Field _ _ _ flds) resolver = withField name (resolve resolver flds) fld
-- | Create a named 'Resolver' from a list of 'Resolver's.
object' :: MonadPlus m => Name -> m [Resolver m] -> Resolver m
object' name resolvs = objectA' name $ \case
[] -> resolvs
_ -> empty
object' :: MonadPlus m => Name -> ActionT m [Resolver m] -> Resolver m
object' name = objectA' name . const
-- | Like 'object'' but also taking 'Argument's.
objectA'
:: MonadPlus m
=> Name -> (Arguments -> m [Resolver m]) -> Resolver m
objectA' name f = Resolver name go
objectA' :: MonadPlus m
=> Name -> (Arguments -> ActionT m [Resolver m]) -> Resolver m
objectA' name f = Resolver name $ resolveFieldValue f resolveRight
where
go fld@(Field _ _ args flds) = do
resolvs <- lift $ f args
withField name (resolve resolvs flds) fld
resolveRight fld@(Field _ _ _ flds) resolver = withField name (resolve resolver flds) fld
-- | A scalar represents a primitive value, like a string or an integer.
scalar :: (MonadPlus m, Aeson.ToJSON a) => Name -> a -> Resolver m
scalar name s = scalarA name $ \case
[] -> pure s
_ -> empty
scalar :: (MonadPlus m, Aeson.ToJSON a) => Name -> ActionT m a -> Resolver m
scalar name = scalarA name . const
-- | Like 'scalar' but also taking 'Argument's.
scalarA
:: (MonadPlus m, Aeson.ToJSON a)
=> Name -> (Arguments -> m a) -> Resolver m
scalarA name f = Resolver name go
scalarA :: (MonadPlus m, Aeson.ToJSON a)
=> Name -> (Arguments -> ActionT m a) -> Resolver m
scalarA name f = Resolver name $ resolveFieldValue f resolveRight
where
go fld@(Field _ _ args []) = withField name (lift $ f args) fld
go _ = empty
resolveRight fld@(Field _ _ _ []) result = withField name (return result) fld
resolveRight _ _ = mzero
array :: MonadPlus m => Name -> [[Resolver m]] -> Resolver m
array name resolvers = arrayA name $ \case
[] -> resolvers
_ -> empty
array :: MonadPlus m => Name -> ActionT m [[Resolver m]] -> Resolver m
array name = arrayA name . const
-- | Like 'array' but also taking 'Argument's.
arrayA
:: MonadPlus m
=> Name -> (Arguments -> [[Resolver m]]) -> Resolver m
arrayA name f = Resolver name go
arrayA :: MonadPlus m
=> Name -> (Arguments -> ActionT m [[Resolver m]]) -> Resolver m
arrayA name f = Resolver name $ resolveFieldValue f resolveRight
where
go fld@(Field _ _ args sels) = withField name (traverse (`resolve` sels) $ f args) fld
resolveRight fld@(Field _ _ _ sels) resolver
= withField name (traverse (`resolve` sels) resolver) fld
-- | Like 'object'' but taking lists of 'Resolver's instead of a single list.
array' :: MonadPlus m => Name -> m [[Resolver m]] -> Resolver m
array' name resolvs = arrayA' name $ \case
[] -> resolvs
_ -> empty
array' :: MonadPlus m => Name -> ActionT m [[Resolver m]] -> Resolver m
array' name = arrayA' name . const
-- | Like 'array'' but also taking 'Argument's.
arrayA'
:: MonadPlus m
=> Name -> (Arguments -> m [[Resolver m]]) -> Resolver m
arrayA' name f = Resolver name go
arrayA' :: MonadPlus m
=> Name -> (Arguments -> ActionT m [[Resolver m]]) -> Resolver m
arrayA' name f = Resolver name $ resolveFieldValue f resolveRight
where
go fld@(Field _ _ args sels) = do
resolvs <- lift $ f args
withField name (traverse (`resolve` sels) resolvs) fld
resolveRight fld@(Field _ _ _ sels) resolver
= withField name (traverse (`resolve` sels) resolver) fld
-- | Represents one of a finite set of possible values.
-- Used in place of a 'scalar' when the possible responses are easily enumerable.
enum :: MonadPlus m => Name -> m [Text] -> Resolver m
enum name enums = enumA name $ \case
[] -> enums
_ -> empty
enum :: MonadPlus m => Name -> ActionT m [Text] -> Resolver m
enum name = enumA name . const
-- | Like 'enum' but also taking 'Argument's.
enumA :: MonadPlus m => Name -> (Arguments -> m [Text]) -> Resolver m
enumA name f = Resolver name go
enumA :: MonadPlus m => Name -> (Arguments -> ActionT m [Text]) -> Resolver m
enumA name f = Resolver name $ resolveFieldValue f resolveRight
where
go fld@(Field _ _ args []) = withField name (lift $ f args) fld
go _ = empty
resolveRight fld resolver = withField name (return resolver) fld
resolveFieldValue :: MonadPlus m
=> ([Argument] -> ActionT m a)
-> (Field -> a -> CollectErrsT m (HashMap Text Aeson.Value))
-> Field
-> CollectErrsT m (HashMap Text Aeson.Value)
resolveFieldValue f resolveRight fld@(Field alias name args _) = do
result <- lift $ runExceptT . runActionT $ f args
either resolveLeft (resolveRight fld) result
where
resolveLeft err = do
_ <- addErrMsg err
return $ HashMap.singleton (fromMaybe name alias) Aeson.Null
-- | Helper function to facilitate 'Argument' handling.
withField :: (MonadPlus m, Aeson.ToJSON a)
=> Name -> CollectErrsT m a -> Field -> CollectErrsT m (HashMap Text Aeson.Value)
withField name v (Field alias _ _ _) = do
collection <- HashMap.singleton aliasOrName . Aeson.toJSON <$> runAppendErrs v
errors <- get
if null errors
then return collection
-- TODO: Report error when Non-Nullable type for field argument.
else put [] >> return (HashMap.singleton aliasOrName Aeson.Null)
=> Name -> CollectErrsT m a -> Field -> CollectErrsT m (HashMap Text Aeson.Value)
withField name v (Field alias _ _ _)
= HashMap.singleton aliasOrName . Aeson.toJSON <$> runAppendErrs v
{- TODO: Report error when Non-Nullable type for field argument.
else return (HashMap.singleton aliasOrName Aeson.Null) -}
where
aliasOrName = fromMaybe name alias
@ -168,10 +154,10 @@ withField name v (Field alias _ _ _) = do
-- 'Resolver' to each 'Field'. Resolves into a value containing the
-- resolved 'Field', or a null value and error information.
resolve :: MonadPlus m
=> [Resolver m] -> Fields -> CollectErrsT m Aeson.Value
=> [Resolver m] -> Fields -> CollectErrsT m Aeson.Value
resolve resolvers = fmap (Aeson.toJSON . fold) . traverse tryResolvers
where
tryResolvers fld = maybe empty (tryResolver fld) (find (compareResolvers fld) resolvers) <|> errmsg fld
tryResolvers fld = mplus (maybe mzero (tryResolver fld) $ find (compareResolvers fld) resolvers) $ errmsg fld
compareResolvers (Field _ name _ _) (Resolver name' _) = name == name'
tryResolver fld (Resolver _ resolver) = resolver fld
errmsg (Field alias name _ _) = do

View File

@ -0,0 +1,35 @@
module Language.GraphQL.Trans where
import Control.Applicative (Alternative(..))
import Control.Monad (MonadPlus(..))
import Control.Monad.IO.Class (MonadIO(..))
import Control.Monad.Trans.Class (MonadTrans(..))
import Control.Monad.Trans.Except (ExceptT)
import Data.Text (Text)
newtype ActionT m a = ActionT { runActionT :: ExceptT Text m a }
instance Functor m => Functor (ActionT m) where
fmap f = ActionT . fmap f . runActionT
instance Monad m => Applicative (ActionT m) where
pure = ActionT . pure
(ActionT f) <*> (ActionT x) = ActionT $ f <*> x
instance Monad m => Monad (ActionT m) where
return = pure
(ActionT action) >>= f = ActionT $ action >>= runActionT . f
instance MonadTrans ActionT where
lift = ActionT . lift
instance MonadIO m => MonadIO (ActionT m) where
liftIO = lift . liftIO
instance Monad m => Alternative (ActionT m) where
empty = ActionT empty
(ActionT x) <|> (ActionT y) = ActionT $ x <|> y
instance Monad m => MonadPlus (ActionT m) where
mzero = empty
mplus = (<|>)